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Abstract
Small-world networks provide an appealing description of cortical architecture owing to their
capacity for integration and segregation combined with an economy of connectivity. Previous
reports of low-density interareal graphs and apparent small-world properties are challenged by
data that reveal high-density cortical graphs in which economy of connections is achieved by
weight heterogeneity and distance-weight correlations. These properties define a model that
predicts many binary and weighted features of the cortical network including a core-periphery, a
typical feature of self-organizing information processing systems. Feedback and feedforward
pathways between areas exhibit a dual counterstream organization, and their integration into local
circuits constrains cortical computation. Here, we propose a bow-tie representation of interareal
architecture derived from the hierarchical laminar weights of pathways between the high-
efficiency dense core and periphery.

Because the concepts of localization of function and parcellation into cortical areas are
closely intertwined, elucidating the global pattern of areal interactions is central to
understanding higher brain functions (1–5). Cerebral cortex in the macaque monkey is sub-
divided into a mosaic of ~100 cortical areas, each displaying characteristic features,
including cytoarchitecture (6). Each area has a characteristic connectivity profile thought to
contribute to determining its functional properties (1, 7, 8). Here, we review how interareal
connectivity at the single-cell level (9), revealed by quantitative anatomical tract tracing, is
relevant to our understanding of large-scale cortical networks and their hierarchical
organization (8, 10–13).

The circuitry of cerebral cortex is dominated by local (within-area) connections, and
interareal connections constitute only about 20% of total cortical connectivity. Hence, the
dozens of long-distance projections to areas beyond the immediate neighboring areas
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account for ~ 5% (10). Local networks conform in many ways to a canonical microcircuit
that spans all cortical layers (14, 15) and includes recurrent excitation presumed to shape
and amplify the sparse input from subcortical and distant cortical sources (16).

Felleman and Van Essen (FVE) showed that interareal connectivity obeys hierarchical
constraints rooted in the strong anatomical regularities of feedforward and feedback
pathways (17). In this way, multiple distributed cortical hierarchies form a large-scale model
of the cortex (17) that reflects the laminar integration of interareal connectivity into local
circuits (18) and is relevant to sensory (17, 19, 20), motor (21, 22), and cognitive (23–27)
systems. The structural features of interareal interactions may provide important insights
into the observed dynamics of large-scale interareal networks controlling information flow
through the cortex (1, 28, 29).

Density and Small-World Architectures
Graph theory provides a powerful framework for investigating complex networks such as
those found in the brain. Many insights into the functional processes supported by such
networks have been gleaned from analysis at the binary level (i.e., connections present or
absent; see Glossary for definitions) (30). One important class of models that has received
much attention is that of small-world (SW) networks, distinguished by high clustering
coupled with a short average path length (also called characteristic path length) across the
graph (31). The relevance of the SW property to understanding the cortex comes from its
proposed capacity to optimize essential cortical features, including functional integration
and segregation (32, 33).

Several studies based on collations of published anatomical tract tracing data (34–38)
concluded that the cortical interareal network conforms to the SW network model of Watts
and Strogatz (31). According to this hypothesis, efficient signal propagation through cortical
circuits benefits from a modest number of shortcuts connecting different communities across
the cortical graph.

The SW hypothesis for interareal connectivity has been challenged by recent studies that
used a consistent and optimized methodology to establish a quantitative data-base of
macaque interareal connectivity (8, 11). We segmented the cortical sheet into 91 cortical
areas and quantitatively analyzed the incoming connections to a subset of 29 areas chosen to
represent five major regions of the cortex. By using similar procedures and identical area
definitions across brains, this effort set out to overcome the limitations inherent in collated
datasets that combine results across many anatomical studies (39). These limitations arise
from the diversity of procedures used among different anatomical studies, including cross-
study differences in parcellation schemes, extent of cortex examined, tracer sensitivity,
criteria for accepting the presence or absence of a connection, and the spatial resolution of
the analysis.

Injections of retrograde tracers in the 29 areas revealed 36% more connections than
previously reported (8, 10). These so-called new-found projections (NFPs) were presumably
missed by earlier studies for several reasons, including that they link widely separated areas
(long-distance connections) and tend to be sparse, therefore requiring high resolution
obtained by optimized sampling frequency for their detection (40, 41). Notably, repeat
injections in selected areas and statistical modeling of the variability of projection
magnitude demonstrated well-defined weighted connectivity profiles for each area and
indicated high consistency for pathways of sufficient strength (8, 10). Inclusion of the NFPs
considerably increases the cortical network density (i.e., the number of binary connections
that exist relative to the total number of connections possible) (42). The density of the full
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interareal network (FIN), represented by the graph (or matrix) G91×91, remains unknown.
However, a dominating set analysis of the currently known interareal network represented as
the G29×91 subgraph of the FIN predicts that the FIN is itself a densely connected network
(8).

The G29×29 interareal subgraph, formed among the injected (target) nodes, is edge-complete
(see Glossary), and it has a link density of 66% (i.e., two-thirds of connections that can exist
do exist) (8). The G29×29 is denser than any subgraph used in previous studies of the cortical
network. Figure 1A displays the differences in density and average path length of various
published subgraphs that have been used to investigate the large-scale properties of the
cortex. FVE analyzed several hundred publications and reported on 32 visual areas and 305
pathways, for a graph density of 32% (17). In their meta-analysis, many pathways were
identified as untested (i.e., the subgraph was edge-incomplete); they predicted a density of
45% if the unknown connections were to be tested. Three subsequent studies added collated
data to the FVE data set, thus generating subgraphs of 47 areas G47×47 (34), 71 areas G71×71
(43), and 179 areas G179×179 (44), respectively. The resulting subgraphs were also edge-
incomplete, but untested connections were assigned a “nonconnection” status, leading to low
density estimates ranging from 5 to 25%. Jouve et al. updated the FVE data set with
additional connections reported during the 7-year interval between the two studies, yielding
an observed density of 37% (45). They used an inference algorithm based on second-order
connection regularities and arrived at a density prediction of 58% for visual cortex.

The aggregate evidence suggesting high density of the FIN of the macaque neocortex led us
to explore the implications for putative SW properties of the dense cortical graph. In contrast
with d-dimensional regular lattices, where the characteristic path length L grows as a power-
law L ∝ n1/d with the number of nodes n, in a SW network path length growth is logarithmic

with the number of nodes and hence much slower, i.e., as , where k is the average
degree in the network (31, 46). Figure 1B examines the effect of density on a hypothetical
1000-node ring lattice network on the interval over which the SW phenomenon of high
clustering and short path length exists. The reduction in average path length and increase in
clustering of a lattice by random rewiring of connections is density dependent. At densities
below about 42%, even limited rewiring substantially decreases average path length while
maintaining high clustering, thereby providing shortcuts characteristic of a SW architecture.
By contrast, at high densities rewiring barely affects path length, because density alone
determines this feature, independently of the more detailed structure of the network. Figure
1C shows the SW coefficient as a function of rewiring probability for regular networks
(lattices) with increasing density [defined as in (31)]. These results indicate that the density
predicted by FVE (45%) and that reported by Markov et al. (8) would reject the hypothesis
of the large-scale interareal cortical network being a Watts-Strogatz–type SW network.

The G29×29 matrix discussed here has a density of 66% and includes pathways with few
labeled neurons. As we have argued elsewhere, weak pathways could fulfill diverse roles (8,
10, 11, 13, 39), and given that injections involve only a fraction of a target area, we do not
capture the full complement of neurons for each weak pathway. Thresholding would reduce
the range of weights that we report. For example, eliminating pathways with, on average,
fewer than 10 neurons per tracer injection would reduce the graph density from 66 to 53%,
and the range of connection weights (8) from five to four orders of magnitude. At 53%, our
conclusions concerning the SW would not change. However, 37% of the pathways that
would be eliminated by this thresholding have been reported in earlier publications. Further,
these conservative steps would ignore the possibility that much larger injections coupled
with higher sampling could potentially reveal larger cell numbers, thereby increasing the
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range of connection weights, numbers of areas connected, and the graph density with respect
to the values reported here.

At graph densities approaching 100%, the point when all pairs of nodes are interconnected,
the variability within the graph's structure approaches zero. Hence, at the high density found
in the G29×29 matrix, little binary specificity might be expected. However, because the
probability of connections drops steeply with distance, the subset of long-distance
connections can show binary specificity, as we demonstrate in the next section.

Binary Specificity in the High-Density Cortical Graph
Figure 2A shows the G29×29 matrix with the NFPs indicated in red and organized so that
target areas are associated with one of the five regions of the cortex (occipital, temporal,
parietal, frontal, and pre-frontal; see Fig. 2D). Earlier anatomical studies suggested that
cortical areas are preferentially connected to physically nearby areas in the region in which
they are located, whereas the additional NFPs mainly interconnect area pairs located in
different regions (8). Because regionally related areas tend to have similar connectivity
patterns, this raises the question of whether the NFPs are perhaps important because they
connect areas having dissimilar connectivity patterns. Using a similarity index (see Fig. 2B),
we measured the degree to which two areas receive (or avoid receiving) input from common
sources (in-link similarity) (11). This confirmed that within-region similarity was high;
between-region similarity was lower and, notably, declined with increasing distance
between regions (Fig. 2B). The observation that NFPs tend to interconnect distant areas with
low similarity provides one indication of their specificity.

Additional evidence for the NFP-related specificity comes from a dominating set analysis, a
graph theoretical method that quantifies the extent to which connections are gathered
(“dominated”) by a small set of nodes (8, 11). In the case of directed networks, in-link and
out-link domination are specified separately. Because with retrograde tracers all the in-links
are revealed for an injected target area (but not the out-links), we focused on in-link
domination (8, 11). A subset of nodes is said to be fully in-link dominating if all nodes of
the graph each project to at least one edge into this subset. There can be several fully
dominating sets of nodes (areas); a minimum fully dominating set (MDS) is the smallest
such set. The smaller the MDS, the more concentrated the input, indicating the increased
role that this set plays in the network. A more refined measure is given by encoding the
percentage of all nodes that project into a group of given target areas (8, 11) (thus 100%
corresponds to full domination). The histogram of this fraction over all possible groups of a
given size (e.g., all combinations of two or more targets) gives an overall picture of
domination; see fig. S3, A and B, in (11) for the G29×91 network. In this case, the low value
of 2 for the MDS along with the high domination percentage of many small groups of target
areas indicates that the FIN must also be a dense network [see (8) for more details].
Comparing these histograms with and without the NFPs included shows that the NFPs play
a key role in the statistics of the inputs to area groups, as their removal appreciably reduces
domination for all sets, and the MDS size jumps from 2 to 5 (11).

Besides suggesting a key role for the NFPs, the dominating set analysis confirms the high
density of the cortical graph (11). However, this density is not homogeneously distributed.
The percentage of areas projecting to a target area is 99% for areas within 10 mm, 85%
between 10 and 20 mm, 50 to 60% between 20 and 40 mm, and below 40% at 40 mm or
greater. Examination of the cortical areas projecting to a target region shows that a modest
number of areas outside that region project to all of the injected areas included in the target
region (11) (Fig. 2D). Thus each target region has a set of common input areas, which
constitute a connectivity signature of the target region (1, 7, 11). The number of common
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input areas to a region is substantially larger when NFPs are included (red versus blue in
Fig. 2D). Comparisons with randomly permuted networks indicate that the increase in the
number of common inputs after inclusion of NFPs significantly exceeds that which would
occur from an increase in density by the addition of an equivalent number of random
connections (11). Further, the specificity of the long-distance connections and hence of the
NFP is indicated by the fact that the density of the interregional edge-complete graphs is
considerably lower than for those formed by intraregional connections (Fig. 2C). Note, that
the specificity of the NFP connectivity is the same as for all long-distance connections,
including those already known (11).

The impact of the interareal pathways on the physiology of the target areas is constrained by
the laminar origins of the parent neurons of the pathway and the cortical layers targeted by
their synaptic terminals. These laminar constraints on interareal pathways contribute to
determining cortical hierarchies (17), which we address in the next section.

Hierarchical Organization
More than 70% of all the projections to a given locus on the cortical sheet arise from within
1.5 to 2.5 mm, so that cortical connectivity is dominated by short-distance (10), local
connections that conform to a canonical microcircuit optimized to amplify and shape weaker
long-distance cortical inputs (Fig. 3A) (16). Therefore, when considering long-distance
interareal pathways, it is important to consider not only the strength and the specificity of
the connections, but also their pronounced laminar asymmetry determined by the direction
of the connection. Hence, feedforward (FF) pathways (mostly directed rostrally) originate
principally from supragranular layers and terminate in layer 4 in higher areas (47–49),
whereas feedback (FB) pathways (mostly directed caudally) originate mainly from
infragranular layers in higher areas and avoid layer 4 in lower areas (47, 49–51). Pairwise
comparison of the connections has been used to reveal cortical hierarchies (17, 52). While
the FVE model is indeterminate (53), it can be partially resolved by using a continuous scale
such as hierarchical distance based on the fraction of supragranular layer neurons (SLNs)
(Fig. 3B) (54–56). The SLN index quantifies an order relation between areas as defined by
their laminar profiles of connectivity and thereby allows estimation of the hierarchical
distance separating them (57). Further analysis shows that connections between neighboring
areas have the highest weight, defined as the fraction of labeled neurons (FLN) (10, 58),
whereas long-distance FF and FB connections have lower weights (Fig. 3, B and C).

Interest in the hierarchical organization of the cortex is fueled by evidence that FF and FB
processes are distinct physiologically. A useful, albeit oversimplified characterization is that
FF connections are “driving” and FB connections are “modulatory” (59–63). Further, FF
and FB pathways engage different glutamate receptor subtypes (64). If the two polarities
indeed have relatively distinct roles, one might predict that any given neuron would
contribute to only one type of pathway, rather than supplying axons to both. This has been
tested by injecting two distinguishable retrograde tracers in higher and lower cortical areas
and examining the intermediate areas for double-labeled neurons (i.e., neurons with a
bifurcating axon directed at both pathways). The results showed that the FF and FB neurons
in the intermediate areas were virtually all single-labeled, which is striking given the
commonality of axonal bifurcation (57, 65). Not only do FF and FB constitute distinct
populations, but they also form two segregated streams, consistent with earlier observations
(47, 66, 67). The supra- and the infragranular layers each have a counterstream organization,
most pronounced in the supragranular layers (Fig. 3D) (12, 68). Further, the supragranular
counterstream showed a point-to-point (i.e., topographical) precise connectivity in both FF
and FB directions, whereas the infragranular counterstream has a more diffuse topography
showing high divergence and convergence in both directions (12). Hence, contrary to
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previous assertions, topographic precision distinguishes supragranular layer from
infragranular connections and not FB versus FF pathways (12).

The integration of interareal connections into the canonical microcircuit of a target area
presumably determines how top-down and bottom-up streams affect processing within the
target area (18). The concept of hierarchical processing has influenced theories of cortical
computation, predictive coding, and emerging concepts of inference in cortical function (18,
69, 70). Recent progress in elucidating interareal communication includes the demonstration
of gamma-band phase coherence in the supragranular and beta-band coherence in the
infragranular layers (71, 72). These differences in coherence reflect differences in interareal
synchronization (73–76), which are thought to facilitate effective communication (74, 77).
Recently beta-gamma asymmetries have been shown to correlate with the aforementioned
SLN fraction, suggesting a match between anatomically and functionally defined hierarchies
(18). The SLN analysis revealed infrequent, but potentially important, departures from the
reciprocity of FF and FB projections. For instance, instead of FF being invariably
reciprocated by FB, a few FF pathways are reciprocated by a FF, thereby forming a strong
loop (54, 78, 79), which is illustrated in Fig. 3E, where the FF projection of V4 to the frontal
eye field (area 8L) is reciprocated by a FF and not a FB connection (12, 54). Given the
evidence for different physiological roles of FF and FB pathways, such anti-hierarchical
pathways may allow circulation of information up and down the cortical hierarchy entirely
via FF pathways. The functional importance of these rare so-called strong loops (79)
remains to be determined.

Rich-Club and Bow-Tie Structure
Previous studies based on sparse cortical networks have suggested an important structural
heterogeneity in the cortex, where hub areas are statistically more interconnected than
expected, forming a so-called rich club (80–82) or central core (44). Using methods adapted
to high-density graphs (83), we have shown that the G29×29 subgraph harbors 13 cliques
(complete subgraphs in which all possible connections are present) of size 10. This results in
a very high, 92% density core formed of 17 nodes in the edge-complete G29×29 (13), a
periphery of 12 nodes with a density of 49%, and a 54% density of connectivity between the
periphery and core. Because additional injections cannot change the structure of the G29×29
subgraph, this implies that the FIN also has a dense core (to which the core of G29×29 must
belong, being 92% dense), possibly larger than that of G29×29. The core-periphery
distinction is also supported by the average strength of connections, as the fraction of
labeled neurons (FLN, see Glossary) between the core and periphery is on average weaker
than within either the core or periphery (13).

Next, we present a method (see captions of Table 1 and Fig. 4) that uses both the FLN
weights and the SLN fractions to reveal correlations among core and periphery links (Fig.
4A), thereby providing further information on the large-scale organization of the cortical
network. In Fig. 4B, peripheral nodes are split into two groups (Table 1). In the left fan, the
preponderant pathways are FF going from the periphery to the core reciprocated by FB from
the core to the periphery. In the right fan, the preponderant pathways are FB going from the
periphery to the core reciprocated by FF pathways from the core to the periphery (Fig. 4B).
The preponderant pathways being FF from left to right and FB in the inverse direction also
holds for the small number of direct links between the two fans (see Fig. 4B). The core
includes areas in the frontal, prefrontal, and parietal regions [see Fig. 2D for region locations
and (8) for area members of each region]. The predominant FF inputs from the left wing to
the core areas may serve as feeders for the central core processing (consistent with the
inclusion of primary sensory and motor areas in this left wing; see Fig. 4B), whereas the FB
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pathway predominance from the right wing could correspond to a monitoring or
coordinating role for the members of this group.

A Cortical Distance Rule as Cost-of-Wiring Principle: The EDR Model
The above observations suggest a general picture of the interareal network: It is a dense
network, but with high binary specificity ensured by long-distance connections and
characterized by the existence of a core-periphery structure organized into a bow tie via FF/
FB pathways. The specificity of connections increases with projection distance and with
decreasing connection weights. Is there a fundamental, biophysical principle–based model
that can capture most of these properties with a minimal number of fitting parameters? The
answer is yes, as discussed below.

A clue to the importance of weight-distance relations for understanding the properties of the
cortical network comes from the observation that the FLN weights are highly heterogeneous,
following a log-normal distribution varying over five orders of magnitude (8, 10) (Fig. 5A).
The log-normal distribution may directly reflect the interplay between metabolic costs
associated with projection lengths and a geometrical or spatial property of areal locations
(13). Axonal projections out to a distance d through the white matter come at an energy
(metabolic) cost, irrespective of the areas involved. This is suggested by the exponential
decay of the number of labeled neurons as a function of projection distance d: p(d) =
cexp(−λd), corresponding to an exponential distance rule (EDR) (Fig. 5B). The spatial decay
constant λ = 0.188 mm−1 expresses the growth rate of the metabolic cost with distance. We
therefore expect that the FLN between two areas separated by a distance d is determined to a
first approximation by this cost, independently of areal identity. A relevant spatial property
is expressed by the inset in Fig. 5B, showing that the fraction of area pairs separated by a
distance d is well approximated by a truncated Gaussian. Hence, combining the EDR with
the Gaussian distribution of interareal distances, one finds that the distribution of area pairs
with a given FLN indeed obeys a log-normal distribution (13).

These observations suggest that the EDR, which is a global distance rule, acts as a principle
for resource allocation via the probability factor determined by the space constant λ. To
what extent is the cortical network determined by this principle? To address this question,
we defined two random network models [see (13) for details], one based on the EDR and the
other on a constant distance rule (CDR, where projection length bears uniform cost). We
then compared the statistical properties of these two sets of networks to those of the
observed G29×29 subgraph. Only the EDR model captures the binary statistical graph
properties of G29×29 on all scales (from local to global), including motif distributions (84)
and graph spectral properties. Most notably, the EDR but not the CDR generates graphs with
a pronounced core-periphery structure, closely tracking the distribution of cliques in the
G29×29 (Fig. 5C). This figure also demonstrates that the CDR model fails to produce cliques
of size 8 and larger. This finding suggests that the existence of the dense core in the cortex
reflects the cost-of-wiring principle expressed in the EDR.

Efficiency of Information Transfer
A simple measure of bandwidth for information transfer in complex networks can be defined
via the average conductance between all source-target pairs in the network (85), called
global efficiency, or (Eg). Conductance here is interpreted as in physics, by the inverse
resistance of the directed path of minimal total path resistance through the network from the
source node to the target node (see Box 1 for definitions of the quantities in terms of FLNs).
The path resistance can be interpreted as the negative logarithm of the probability that
activity in the source node will generate activity in the target node. Here, we equate
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bandwidth with axon number as reflected by FLN. Thus, a sequence of edges having large
FLN values (or “high bandwidth” edges) directed from source to target would form a path of
low resistance (high conductance), providing a high-bandwidth pathway for information
transmission. To obtain a graded measure of global efficiency within the structure of G29×29
and to understand the role of weak projections, we computed Eg on the remaining network
after the sequential removal of the weakest link (smallest FLN) and plotted it as function of
the network density. Figure 5D shows that the global efficiency of the network does not
change before 76% of the weakest links are removed, indicating the existence of a high
global efficiency (high bandwidth) backbone formed by short-range paths (see Fig. 5, E and
F). Indeed, the average length of the remaining edges at 24% remaining density is 16 mm
compared to the 27-mm average length of the removed edges. This suggests that the cortical
network is organized in such a manner as to be independent of the activity along the weak
projections for high-bandwidth information transfer. We speculate that these long-range
pathways, which we have shown to have a high binary specificity, may contribute to
interareal synchronization between cooperating areas.

A more local notion of information transfer can be similarly defined (86), via the average
conductance between all the pairs of nodes that are neighbors of a given node i, after the
removal of node i, then averaging this quantity over all nodes i (see Box 1), called local
efficiency, El. One can think of El as a measure of accessibility between the satellites of a
town via routes that avoid the town. Figure 5D shows this quantity as a function of density
(following the same weakest-link removal procedure as above). Intriguingly, local efficiency
increases sharply with weak-link removal (or inactivity), compared to the global efficiency.
The weak-link removal increases locality because the weak links are long-range. This tends
to prune the interregional shortcuts and physiologically would be predicted to decrease
interactions between diverse functional modalities, leading to a more localized structure of
the remaining network. It eliminates those neighbors of a node to which it connects via weak
links, thus disconnecting regions and modalities but preserving dense within-region
connections. Accordingly, the paths linking the remaining neighbors of the node (avoiding
that node) are all strong, having small path resistance (large conductance), and hence the
measure of local efficiency becomes large. The redundancy of local strong paths [the
complete triangle is the most abundant three-motif, formed by strong links as shown in
figure 3B of (13)] guarantees that the number of edges on a path between two nodes is
small, which further decreases the path resistance between the nodes and hence further
increases the local efficiency.

These changes in local efficiency indicate flexibility of network modularity and long-
distance functional interactions—for example, in response to changes in cognitive load (13,
87). This suggests that in the cortical network, local information processing is voluminous,
and because of the redundancy of local high-conductance paths, it is much more efficient
than global information processing, whose efficiency acts at a constant base line (Box 1).
Notably, the organization of the cortical network around a high-efficiency backbone with
constant global efficiency and optimal local efficiency behavior is also captured well by the
EDR (Fig. 5D). These efficiencies are not binary graph measures, but are based on weights
(FLNs). By contrast, the CDR fails completely, especially for the local efficiency measure
(Fig. 5D).

Optimal Placement
The ability of the weight-distance relations of the G29×29 to predict numerous features of the
cortical network underlines the importance of the embedded nature of real-world networks
where nodes are located in three-dimensional (3D) Euclidean space and are linked by
weighted and directed edges (88). An important aspect of the embedded cortical network is
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the spatial layout of cortical areas. Numerous studies have presented evidence that the
spatial layout is optimized to minimize total wire length (89–91). A recent study used
collated data for 95 areas of the macaque and claimed that optimized component
rearrangements based on a simulated annealing algorithm could substantially reduce total
wire (92). However, the database used by that study was edge-incomplete and the network
density derived from it had a low density. In addition, weights were only classified as being
on one of four levels. We adapted evolutionary optimization algorithms and applied them to
our database to search for areal placements that minimize total wire length; we found
alternative organizations that shorten the binary network by 5%. For the weighted network,
the maximum reduction was less than 1% and involved a small number of switches between
adjacent areas (Fig. 6) (13). Figure 6A shows a 3D representation of the G29×29 network
with areas color coded to indicate regional identity. Figure 6B is an example of shuffled
areal positions leading to increased wire length and loss of adjacency of areas originally
from the same region. An optimization procedure applied to the randomized network leads
to regional clustering similar to that observed in the cortex (Fig. 6C). Further, random
networks based on the EDR had significantly shorter wire lengths than CDR-generated
networks. These results therefore confirm that wire minimization is a constitutive
organizational principle of the cortical network (89–91, 93–99) and suggest that this design
constraint is at least partially implemented by the operation of the EDR generating the
weight distributions of interareal projections (13).

Concluding Remarks
In summary, the interareal network achieves economy of connectivity and communication
efficiency by means of a distribution of weights, spatial organization and a core-periphery
structure in the form of a bow tie with a dense core. Interareal connections integrate across
the local circuits via dual counter-streams located in the supra- and infragranular layers,
which have distinct physiological properties. Further explorations of the impact of the
cortical core on the local circuit should improve our understanding of their dynamic
interaction.

The broadband connections involving large number of cells that form the global efficiency
backbone and that are expected to shape receptive fields in target areas are short range and
strongly cluster areas of a given modality. The considerably more numerous long-distance
connections are sparse and exhibit high binary specificity; we speculate that these
connections serve to promote cortical communication by controlling oscillatory coherence
(77) possibly via contraction dynamics (100). During primate evolution the increase in
numbers of areas and their spatially restricted broadband connections raises the possibility
that increases in brain size would lead to increased isolation of clustered communities (101,
102). We hypothesize that weak long-distance connections appeared during recent evolution
and may facilitate cooperation between distant areas. Assuming that a high-density
connectivity is a characteristic feature of the interareal cortical graph, long-distance weak
links may allow preservation of the connectedness of the cortical network following cortical
expansion. Further, long-distance connections allow accommodation of novel information
processing, thereby building over evolutionary time upon the existing repertoire of dynamic
functions. There are a number of advantages to be gained (see below) by developing a high
efficiency central core that we along with others have observed. Long-distance connections
particularly for the higher association areas play a special role in forming the cortical core.
The high incidence of long-distance projections involving prefrontal areas (11) suggests a
particular importance of this cortical region in core-periphery integration, indicating the
cortical core as an important component of higher order interareal architectures (103, 104).
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Self-organization in cortical development is well established (105). The findings
summarized above suggest interesting parallels with other, highly functional, self-organizing
information-processing networks. The high density, yet highly specific nature, of G29×29
suggests a heterogeneous, expandable, and cost-efficient information-processing network
subject to evolutionary constraints. In particular, we find (i) high connectivity, (ii) high
global accessibility, and (iii) large path diversity. Additional evidence supports several
further constraints: (iv) a high bisection bandwidth (Fig. 4D); (v) resilience to connectivity
failures (global conductance measurements in Fig. 5D show that during sequential removal
of the weakest links, a substantial decline in the network's global efficiency is not reached
until a density of 24%); and (vi) incremental expandability that allows addition of new areas
to the network during evolution, without a substantial wiring overhaul to maintain or
improve performance, also supported by optimal placement studies. The global efficiency
and the optimal layout of the G29×29 are supportive of (vi). As seen in Fig. 5D, global
efficiency stays constant with weak-link removal. Weak links are long-range and might be
more prevalent in large brains. Conversely, adding long-range links (during cortical
expansion) seems not to affect the global efficiency, much less worsen it (as would be
expected in a complete overhaul). In terms of optimal layout, the total wiring in G29×29 [see
(13)] is minimal as a consequence of the EDR. It remains minimal following the addition of
new areas with strong links to their neighbors and progressively weaker links to distant
areas. This corresponds to an optimal spatial arrangement, consistent with incremental
expandability. In an interesting parallel, a recent study on efficient, massive data-processing
networks shows that for their purposes, random structures with a pronounced core-periphery
organization allow incremental growth without sacrificing their high bisection bandwidth
and throughput capability (106).

Although primate neocortex shares a number of common features with human-made, large-
scale information-processing networks, there are also crucial differences, and so the
analogies should not be overextended. One important difference is that in current
technological information networks, information (including a destination address) is
encoded within the units (packets) that are sent along the edges of the network (packet-
switching networks), whereas this does not appear to be the case for the brain. Our results
show that spatial location does influence the wiring properties of the brain. Further, in the
brain, the location and timing of activity (in the context of other firing activities) represent
the message (neural coding), thus linking network activity to the structural properties of the
cortical network. In the Internet or World Wide Web, however, it does not matter where the
routers are physically in space, because the packets are routed on the basis of network
addresses encoded into the packet. This key difference suggests that spatio-temporal
network models should hold more promise for brain science than generic, purely graph
theoretical models such as the SW model.

Future Perspectives
While the high density of the binary interareal graph is not consistent with a SW architecture
at the computational level of a cortical area, the SW concept may nonetheless be relevant at
finer spatial scales. For example, the high clustering and short path lengths indicative of SW
architecture are suggested by diffusion magnetic resonance imaging (MRI) analysis at a
node scale of a few millimeters (about the size of the voxels) (107). Here, the importance of
the SW parameters revealed by this approach must be considered with respect to the
methodological thresholding imposed by the whole-brain imaging technique. The
nonrandom connectivity at the single-cell level raises the issue of SW architecture at this
scale (108, 109). The rich variety of cell identities posits a conceptual challenge for the
potential of SW network at the single-cell level. Large-scale circuit mapping at the single-
cell level is not currently feasible, although innovative approaches might conceivably
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provide the appropriate data in mice (110). At the interareal level, our results indicate that
the spatially embedded nature of the cortical network determines many of its properties,
such as structural and weighted graph characteristics. Could similar weight-distance
relations operate for single neurons, thereby suggesting a similar operational logic over
different scales? Like interareal connectivity, local connectivity shows an exponential
density decay (10), reflecting the decrease in the likelihood of synaptic contact with distance
(111). Also, log-normal distributions like that of interareal weights have been observed for
the distribution of synaptic strengths of single neurons (109).

The EDR that we describe shows that the spatial constant of interareal density decay
accounts for many of the binary and weighted features of the cortical graph, as well as the
important design feature of wire minimization. Given the high scalability of mammalian
neocortex, accommodating five orders of magnitude range of brain weight (112), we
examined the spatial location of cortical areas in the G29×29 subgraph and found that when
magnitude of connections is taken into account, it shows an optimal placement of area
positions indicating minimization of metabolic expenditure on total wire length, also well
predicted by the EDR. Given these results it will be instructive to explore the weight-
distance relations in different species to determine how the decay parameter λ changes with
brain size. This may provide insights into a common rule governing scaling properties of the
brain and also allow improved extrapolation of our understanding of the connectivity of the
macaque brain obtained using invasive techniques to the larger and less directly accessible
human brain.

A core-periphery structure has been observed in other self-organized information-processing
architectures, both human-made such as the World Wide Web (113) and the Internet (114,
115), and in biological networks, such as in metabolism (116, 117), the immune system
(118), and cell signaling (119–121). The resulting bow tie is an evolutionarily favored
structure for a wide variety of complex networks (122, 123), expressing the fact that
functional or living systems have an input interface, a processing unit, and an output
interface. This is because these systems are not in thermodynamic equilibrium and are
required to maintain energy and matter flow through the system. While the overall bow-tie
structure is common, we have seen that for the brain it emerges through a counterstream
organization of the directed links between core and periphery, showing its specific nature
when compared to other bow ties in biology or technical networks. However, the full details
of this structural organization will only become evident when additional tracer-based
anatomical data are incorporated.

Although the interareal connectivity data explored here has revealed interesting features of
the cortical network, many additional analyses remain to be done. It will be important to
complement the quantification of connectivity by func tional and improved molecular
characterization of cortical areas and also of the parent neurons (124–126). A necessary and
complementary development will be to use anterograde tracers to examine the laminar
integration of interareal connectivity, combining quantification and morphological
characterization at the synaptic level (127, 128). Finally, our use of the term “canonical
microcircuit” in the sense of a stereotyped circuit constituting a fundamental cortical
building block should be tempered by the evidence for large regional differences in cell
densities and dendritic arbor sizes (129, 130). While it is generally accepted that the local
circuit exhibits cell-specific connectivity across the cortex (thereby conforming to a
canonical circuit) and likewise that there are consistent input-output patterns across the
different areas (131), there is nevertheless only a single quantitative interlaminar
connectivity map, namely, for cat area 17 (132). The concept of the canonical microcircuit
provides a coherent framework for thinking about neocortical function, and evidence of
variations of local connectivity point to the need to establish additional quantitative
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interlaminar maps. Dynamic models built on existing quantitative interlaminar maps (132,
133) give realistic dynamics (134). Extending this type of modeling to include interareal
relations becomes a reasonable next step.
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Box 1. Efficiency measures for information transfer in networks

In the simplest approximation, we may interpret the FLN weight fij of the projection from
source area i to target area j as the probability pi→j that activity in i will induce activity in
j. Assuming that these are independent events, the probability of activity in area k
induced along the path i→j→k will be given by the product of the FLNs: pi→j→k = fij·fjk
or ln(pi→j→k) = ln(pi→j) + ln(pj→k). Then, the positive quantity wij = −ln(fij) can be
interpreted as a measure of resistance for information transfer along the i→j link, as
small FLN (weak links) induce a large resistance and vice versa. Additionally, based on
our assumption above, the link resistance is additive along network paths. We define the
resistance rxy from an arbitrary node x to an arbitrary node y as the smallest sum of link

resistances among all directed paths ωxy from x to y, that is, . The

highest transmission probability path will be the one, , that achieves this minimum
(see figure). The global efficiency measure Eg is defined as the average conductance
(inverse resistance) between all the possible N(N – 1) node pairs, where N is the number
of nodes in the network as shown in (A).

A local efficiency measure El is defined in (B): We remove a node i with all its links and
then we compute the average of the resistances between all pairs of its neighbors as
measured through the rest of the network, and finally, we average these quantities over
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all nodes i. Thus, El quantifies the degree to which the satellites of a typical city can
communicate via paths that avoid the city (B).

Schematics for efficiency measures

(A) Global efficiency and (B) local efficiency. The dashed curves are schematic paths
through the rest of the network (not shown). Here {i} denotes the set of network
neighbors of node i.
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Box 2. Glossary of technical terms

1. Area: A region of the cortex with specific cytoarchitecture and associated with
a function. Target area: An area that received a retrograde tracer injection.
Source area: An area containing labeled neurons projecting to a target area.

2. Average path length: Average value of shortest path lengths between all node
pairs in the graph. Length here is measured in hop-counts along directed edges.

3. Binary specificity: The degree to which a network or a graph differs in its
binary graph theoretical properties from a random graph.

4. Bisection bandwidth: The minimum of the number of connections between
two, equalsize partitions of the nodes of a graph, taken over all such partitions.

5. Clustering: The average of the fraction of connected neighbors of a node
(fraction of triangles).

6. Counterstream: Refers to the organization principle by which there are streams
ascending (supragranular layer) and descending (infragranular layer) the cortical
hierarchy (135). Recently, this has been extended to include a dual
counterstream organization where an ascending and descending stream is
identified in each of the two compartments (12).

7. Dominating set: A set of nodes in a graph such that all nodes of the graph have
at least one edge with one of their end-nodes in this set.

8. Edge: A link or connection between two nodes directed from one to the other,
here interareal pathway. There can be at most two directed links, oppositely
oriented between any two nodes.

9. Edge-complete subgraph: A subgraph that has exactly the same connections
between its nodes as the connections between the same nodes in the larger graph
that this subgraph is part of.

10. FLN: Fraction of labeled neurons: For a given injection (target area i) and
source area j, the FLN is the ratio fij between the number of labeled neurons in
area j and the total number of extrinsic (not in i) labeled neurons for that
injection. We use FLN as a measure of weight (10, 58).

11. Gnxm (sub)graph or matrix: For every one of the n targets (injected areas), it
specifies which of the m sources project into that target (0 if no projection, 1 if
there is a projection). Here, G91×91 denotes the full graph of interareal
connections, G29×91 represents the currently known projections from all areas
into the injected 29 areas, and G29×29 denotes the subgraph formed by the
connections among the target areas only. The latter is edge-complete, i.e., the
status of connectivity is fully known within this set of nodes.

12. Nodes: Discrete entities represented as points or vertices in graph theory for the
purpose of studying the patterns of interactions among them (represented as
links or edges). In this case, a node represents a cortical area.

13. SLN: The fraction of supragranular labeled neurons is defined for each source
area projecting to an injected target area. SLN corresponds to the number of
retrogradely labeled neurons located in the supragranular layer divided by the
total number of neurons (in infra-and supragranular layers). SLN distinguishes
FF and FB pathways and can be used to calculate hierarchical distance (12, 54,
55).
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Fig. 1. High density of the cortical graph excludes sparse small-world architecture
(A) Comparison of the average shortest path length and density of the G29x29 subgraph with
the graphs of previous studies. Sequential removal of weak connections causes an increase
in the characteristic path-length. Black triangle: G29x29; gray area: 95% confidence interval
following random removal of connections from G29x29. Dotted horizontal lines indicate the
5 to 95% interval with at least one unreachable node (after repeated and graded, random
edge removal). The three least dense graphs are near their 5% unreachability levels. Data
incompleteness meant that some of the initial networks have unreachable nodes (the latter
are removed and not considered here); 14 unreachable nodes are from Modha and Singh
(44); 1 unreachable node is from Young (43); and 2 unreachable nodes are from Felleman
and Van Essen (17). Modha and Singh 2010: (44); Young 1993: (43); Honey et al., 2007:
(34); Felleman and Van Essen 1991: (17); Jouve et al., 1998: (45); Markov et al., 2012: (8).
“Jouve et al., 1998 predicted” indicates values of the graph inferred using the published
algorithm (45). (B) Effect of density on Watts and Strogatz's formalization of the small
world. Clustering and average path-length variations generated by edge rewiring with
probability range indicated on the x axis applied to regular lattices [of 1000 nodes in a 1D
ring as in (31)] of increasingly higher densities. The pie charts show graph density encoded
via colors for path length (L) and clustering (C). On the y axis, we indicate the average path
length ratio (Lp/Lo) and clustering ratio (Cp/Co) of the randomly rewired network, where
Lo and Co are the path length (Lo) and clustering (Co) of the regular lattice, respectively. Lp
and Cp are the same quantities measured for the network rewired with probability (p).
Hence, for each density value indicated in the L and C pie charts, the corresponding Lp/Lo
and Cp/Co curves can be identified. Three diagrams below the x axis indicate the lattice
(left), sparsely rewired (middle), and the randomized (right) networks. (C) The small-world

coefficient  (33, 136) corresponding to each lattice rewiring. Color code is the same
as in (B). Dashed lines in (B) and (C) indicate 42% and 48% density levels. For electronic
data files, see www.core-nets.org.
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Fig. 2. Binary specificity in the dense network
(A) The G29×29 subgraph adjacency matrix organized so as to illustrate the connectivity
within (black squares) and between regions (in green). In red, new-found projections
(NFPs). (B) Regional in-link similarity of binary connections; positive values indicate
positive correlation and negative values indicate anticorrelation between area pairs, within
and between regions. The diagonal corresponds to average intraregion similarity;
everywhere else is interregion similarity. Occ, occipital region; Temp, temporal region; Par,
parietal region; Front, frontal region; Pref, prefrontal. (C) Densities of the interregion,
intraregion, and G29×29 edge-complete subgraphs. (D) Interregion common inputs to one of
the five regions (dark gray), including the NFP, increases the number of common inputs.
[Panels (B) to (D) adapted from (11)]
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Fig. 3. Cortical hierarchy
(A) Canonical microcircuit [adapted with permission (131)]. (B) Cartoon of the laminar
distribution of projections to a cortical mid-level area. (C) Relationship of SLN and FLN.
The strongest pathways are the short-distance lateral connections with an SLN of ~0.5; long-
distance FF and particularly FB are substantially weaker. (D) Cortical counterstreams. FB
and FF are organized in a dual counterstream system localized in supra- and infragranular
compartments. In the supragranular compartment, the layer 3B pyramidal cells have long-
distance FF axons targeting layer 4 of higher-order areas, while the pyramidal neurons of
layer 3A have short-range FB axons targeting the supragranular layers of lower-order areas.
In the infragranular compartment, layer 6 has long-distance FB axons that avoid layer 4 and
largely target layer 1, whereas layer 5 has short-distance FF axons. Layers 3A and B are the
major supragranular output layers and layer 4 is the major input layer for FF projections, and
layer 1 the major input layer for FB projections. Apical dendrites of pyramidal cells of
layers 3A and 3B and, to a lesser extent, layer 5 reach layer 1, where they can receive FB
influences, while some of the basal dendrites of FF layer 3B neurons are located in layer 4.
(E) A hierarchical organization of the visual cortical areas using SLN as a hierarchical
distance measure (12). The projection of area 8L (frontal eye field) to area V4, and from
area V4 to area 8L, are both defined by their SLN as FF and therefore form a strong loop
(12). (D and E) Color coding: red, FF; blue, FB. [Panel (D) from (12)]. For electronic data
files, see www.core-nets.org.
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Fig. 4. Bow-tie representation
Links are classified according to their SLN value being below 0.5 (that is, infra dominated,
also called FB) or above 0.5 (that is, supra dominated, also called FF) and according to
whether they are oriented toward the core (“out” or “o”) or from the core (“in” or “i”). This
generates a total of four possibilities for link types (y is an area from the core, x is noncore):
(1) x projecting to y (x→y) as FFo (denoted FFo), (2) x→y as FBo (denoted FBo), (3) y
projecting into x (x←y) as FF (or FFi), and (4) x←y as FB (or FBi). (A) The numbers of link
types are correlated over the set of all nodes (both from periphery, P, and core, C); the
number of FF links into the core (#FFo) correlates on average with the number of FB links
from the core (#FBi) and #FFi correlates with #FBo. (B) A bow-tie representation of the
G29×29. The dense core (92%) is shown in the middle. The left and right wings of the tie
were obtained based on the FF/FB counterstreams into and from the core and their
cumulative effective SLN values; see Table 1 legend for details. The cumulative effective
SLN is an average SLN to or from the C for the given connection type, weighted by link
strengths. In this way, for every area in the P, we obtain four numbers all between 0 and 1,
shown in Table 1, columns F to I. A strong FF into C pairs with a strong FB from C, and
vice versa, the connections forming FF/FB counterstreams. Computing two indices of
effective SLN strengths in absolute value for the two pairs |FFo – 0.5| + |FBi – 0.5| and |FFi –
0.5| + |FBo – 0.5| (columns J and K of Table 1), we classify the nodes into one of two groups
(L or R) depending on which value is larger. (C) The imbalance between the number of FF
and FB links from a node to C is mirrored on average by imbalance between the FF and FB
connections from C to the same node. (D) The edge-complete G29×29 has a very high
bisection bandwidth of 242 links, out of 536 total (see Glossary). For electronic data files,
see www.core-nets.org.
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Fig. 5. A spatial network model of the cortex
(A) Distribution of FLN weights and its approximation by a log-normal. (B) The number of
projections as function of projection distance d. (Inset) The distribution of interareal
distances through the white matter is well approximated by a Gaussian. (C) The distribution
of cliques in the G29×29 data network is well captured by the EDR model [see main text
and (13)]. (D) Global (Eg) and local (El) efficiencies (see Box 1) as a function of network
density during sequential removal of the weakest link. The EDR model (red) captures both
data curves (black) much better than the CDR (green). (E) The G29×29 subgraph using a
Kamada-Kawaii force-based layout algorithm with all links considered with unit weight. (F)
Same as (E) but considering the 24% strongest links only [blue arrow in (D)], with FLN
weights. In this case, the areas are clustered into functional regions (13). Color code in (E)
and (F) refers to regions (see key). For electronic data files, see www.core-nets.org.
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Fig. 6. Spatial positioning of areas and overall wire-length minimization
(A) A 3D representation of G29×29, nodes positioned at the bary-centers of the
corresponding areas identified on brain surface reconstructions (not shown). Edges are
visualized as straight lines, but the wire-length calculations for pairs of areas use the axonal
trajectory generated as the shortest possible path restricted to the white matter. Color coded
for regions (see key). Wire length is the product of the number of neurons involved in the
pathway with the estimated pathway length. (B) Random repositioning of areas with
connectivity preservation leads to wire-length increase. (C) An adapted harmony search
algorithm reduces the wire length of the starting network in (B). Wire reduction is
accompanied by restoration of areal adjacencies. Solutions that fail to reconstruct the initial
network exhibit increased wire length with respect to (A). Number in each panel refers to
wire lengths.
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