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“The brightest flame casts the darkest shadow.” 
-George Martin

Introduction

Genes regulate lifespan, in some cases, dramatically.1-17 Pro-
aging genes encode signaling pathways such as the insulin/PI3K/
TOR pathway that accelerate aging.13-16 These signal-transduction 
pathways are essential for development, growth, and survival early 
in life.18 Furthermore, the same signaling pathways drive cellular 
geroconversion: a conversion from cellular quiescence to senes-
cence.19-40 The same PI3K/TOR pathway is also involved in can-
cer and other age-related diseases.41-44 The mTOR pathway links 
development and aging,42 cellular growth and senescence,43 robust-
ness early in life and diseases later in life,44,45 puberty and meno-
pause.46-48 Whereas development and growth are programmed, 
aging and diseases are not. They are aimless continuations of the 
program that was not switched off upon its completion. Somehow 
these notions are confused with programmed aging theory. As 
discussed,41,49-52 it is only development that is programmed for 
purpose, aging is not. It is a shadow. Natural selection cannot 
eliminate the shadow. Nature simply selects for the brightest 
flame, which in turn casts the darkest shadow.

What Are Programmed Theories of Aging

Aging and its diseases are so orderly that the explanation 
begs for a program. Like development, aging seems to be pro-
grammed.53-57 Programmed theories are thought-provocative and 

inspiring. They brilliantly illuminate limitations of mainstream 
theories that aging is a stochastic, random process.53,58 Also, 
while stochastic aging cannot be prevented,59 the program can 
be switched off.60-63 This makes programmed theories appeal-
ing. But why would nature program aging? It was suggested that 
aging is beneficial for species and groups.53 There are conditions 
for group selection in humans, given that human groups had the 
means to exterminate each other, or using modern terms, to com-
mit genocide. But even group selection cannot select for aging 
and age-related diseases. In contrast, it should select for robust 
soldiers, who defend the group from extermination (in human 
societies and social ants). It was also suggested that organisms 
undergo programmed death, similar to apoptosis in the multicel-
lular organism.64 Still, aging (at least in humans) is a decades-long 
process of developing age-related diseases (cancer, hypertension, 
diabetes, blindness) that terminate life. This is an inefficient way 
to commit suicide. According to programmed theories, aging 
prevents overpopulation, speeds up evolution, or benefits young 
animals, by eliminating old (“less valuable”) animals. But old 
animals seem less “valuable” precisely because of aging. Thus, 
aging is programmed to eliminate less valuable animals because 
of aging. This is a circular reasoning. The only way out from this 
circle is to suggest that the aging process exists independently 
of a putative “suicidal program”. But if so, then such a putative 
program is irrelevant to aging.

Is Aging Programmed in Yeast?

Yeast death in stationary cultures, also known as chronologic 
senescence, may seem to be programmed.53,65-67 Yeast secretes toxic 
substances (pheromones, acetic acid, etc.). If “altruistic” yeast 
die, then other yeast may survive. However, so-called “altruistic” 
yeast may be less resistant to pH and toxic substances. This sim-
ply may be a classic case of survival of the fittest (resistant) yeast. 
Yeast chronological aging is similar to metabolic self-destruction 
of human cancer cells.68 In stationary culture, cancer cells acidify 
the medium with lactic acid. When most cancer cells die, a few 
cells may survive. Are cancer cells altruistic? In yeast and cancer 
cell stationary cultures, acid-resistant cells survive. The main dif-
ference is that yeast produce acetic acid, whereas cancer cells pro-
duce lactic acid.68-72 In yeast, “oncogenic” pathways such as Ras 
and TOR accelerate chronological senescence.73-75 Inhibitors of 
the TOR pathway, including rapamycin, decelerate chronological 
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Aging is not and cannot be programmed. Instead, aging is a 
continuation of developmental growth, driven by genetic path-
ways such as mTOR. Ironically, this is often misunderstood as a 
sort of programmed aging. In contrast, aging is a purposeless 
quasi-program or, figuratively, a shadow of actual programs.
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senescence in yeast.75-77 Rapamycin decelerates “yeast-like chron-
ological senescence” in overcrowded cancer cell culture.68 The 
same signaling pathways (such as TOR) that are involved in 
chronological senescence in yeast are also involved in metabolic 
self-destruction of cancer cells.68,73,74,78-81 The same pathways are 
also involved in cellular geroconversion, organismal aging, and 
age-related diseases (see ref. 68).

Programmed Elements  
in Non-Programmed (Stochastic) Theories

Programmed theories neither specify nor predict mechanisms 
of death. Ironically, it was suggested that programmed aging 
is caused by free radicals.53 And, vice versa, mainstream (sto-
chastic, decay) theories accept special programs (Table 1). For 
example, it was suggested that menopause in women is purpose-
fully programmed to stop reproduction and to raise grandchil-
dren instead.82 Also, it was suggested that the rate of aging is 
regulated by allocation of energetic resources:83 paradoxically, the 
more available, the less used.83 It is also thought that aging is 
programmed in Pacific salmon,84 yet, salmon die from patholo-
gies similar to mammalian age-related diseases. Neither aging 
and nor age-related diseases in Pacific salmon (or any other ani-
mals) are programmed. Aging in Pacific salmon and menopause 
in women are quasi-programmed.46,85

Quasi-Programmed Hyperfunction (Aging)

Quasi-programmed aging is not something between “random 
damage” and “programmed” aging. Instead, quasi-programmed 
theory is absolutely different from both random damage and pro-
grammed theories (Table 1). According to quasi-programmed 
theory,41,42,44,45,49,50,52,86-90 neither aging nor menopause is pro-
grammed, they are manifestations of the aging process, which, 
in turn, is a pseudo-program of developmental growth. There is a 

mechanistic link between mTOR-driven geroconversion, aging, 
and age-related pathologies, explaining how cellular hyperfunc-
tions eventually lead to organismal death.41

Quasi-programmed theory predicts mechanisms of aging that 
are determined by mechanisms of growth, differentiation, and 
development. There is no need to guess what might be the mech-
anisms. Aging is a shadow. Its shape is determined by the devel-
opmental growth. This can be modeled in cell culture, revealing 
how growth can be converted to aging.

Quasi-Program of Cellular Senescence

Nutrients, growth factors, hormones, and cytokines all acti-
vate nutrient-sensing and growth-promoting signaling pathways 
such as mTOR (target of rapamycin). mTOR stimulates growth 
and anabolic metabolism, inhibits autophagy, and increases cel-
lular functions.91-102 Cells grow in size, progress through the cell 
cycle, and then divide. In the absence of growth factors, normal 
cells become quiescent: they neither grow nor cycle. In When the 
cell is stimulated to grow, while the cell cycle is arrested, then the 
cell becomes senescent (geroconversion).43 mTOR drives growth 
(program) and geroconversion (quasi-program) (Fig.  1). Also, 
cellular senescence can be viewed as a continuation of differentia-
tion. The same cytokines that initially cause growth and prolifer-
ation then cause cell cycle arrest and differentiation.103-106 During 
differentiation, cells acquire and amplify specific functions. One 
example of cellular function is secretion of cytokines, hormones, 
matrix, enzymes, metabolites, or lipoproteins, depending on cell 
type. Other examples include contraction of smooth muscle cells, 
adhesion, and aggregation of platelets as well as oxidative burst 
of neutrophils.

The same intracellular signaling pathways that initially drive 
proliferation, and then differentiation, also stimulate functions 
in differentiating cells. Cell senescence-associated hypertrophy 
and hyper-functions are a continuation of growth (Fig. 1).

Table 1. Comparison of 3 groups of theories of aging: programmed, stochastic, and quasi-programmed
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decline
yes yes mostly unspecified yes programmed unspecified unspecified

Stochastic
functional 

decline
sometimes*

in some 
cases*

mostly sometimes# yes programmed
vulnerability 
to diseases#

slows aging 
(via repair)

Quasi-
programmed

hyperfunction no no no always no
prototypi-
cal disease

manifested 
by diseases

fuels aging 
(via TOR)

According to stochastic theories, aging is caused by random accumulation of damages, errors, and “garbage” due to multiple causes including but not lim-
ited to free radicals. *Stochastic theories still accept that aging can be purposefully programmed (e.g., in salmon). #According to stochastic theories, aging 
can kill directly (by non-specified mechanisms) and also increases the vulnerability to age-related diseases.
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From Cellular to Organismal Aging

The most relevant hallmark of cellular aging is hypertrophy/
hyperfunctions and compensatory signal resistance, such as 
insulin resistance. Hyper-functions coupled with signal resis-
tance cause loss of homeostasis, malfunction, organ damage, and 
death. The link between hyper-functions, including hypertrophy, 
and diseases has been discussed41,42,50,78,107-110 and will be discussed 
further (“Aging: From fiction to hyperfunction”, in press).

Quasi-Program of Aging

Genetic programs determine developmental growth and the 
onset of reproduction. When these programs are completed, they 
are not switched off.

Thus, programs become quasi-programs (Fig.  2). Specific 
characteristics of quasi-programs of aging and age-related dis-
eases were discussed in detail.41-45,49-52,86-90 The evolutionary 
theory predicts quasi-programs, like it predicts genes harmful 
later in life, if they are useful earlier in life.49 I emphasize that 
the quasi-program does not exist for its own sake: it is a shadow. 
Aging has no purpose (neither for individuals nor for group), no 
intention. Nature does not select for quasi-programs. It selects 
for robust developmental growth. Accelerated aging is the price 
for robustness.46,50,52,88,111 Although (in some conditions) natural 
selection works against quasi-programs of aging, it cannot elimi-
nate them without harming development. Genes that drive aging 
are needed in development. Knockout of PI3K extends the lifes-
pan of C. elegans 10-fold.12 But this comes at a price: prolonged 
development. Even further, disruption of the mTOR gene leads 
to post-implantation lethality in mice.112-115 Whereas disruption 
of S6K1 extends lifespan in mice,14 knockout of both S6K1 and 
S6K2 causes perinatal lethality.116 In Drosophila, TOR is required 
for normal growth during larval development.117

The Utility of the Model

Mechanisms of aging are not arbitrary but determined by 
mechanisms of development and growth. Since development 
and growth are relatively well understood, we can interpolate 
this knowledge to studying aging. For example, it is known that 
mTOR drives cellular mass growth. This predicts that p53 and 
hypoxia, which inhibit mTOR and cellular mass growth, will 
suppress geroconversion despite causing cell cycle arrest.25,26,118-120 
Thus, like other tumor suppressors,43 p53 and hypoxia may play a 
dual role in aging.121-128 The map of growth-promoting signaling 
network can be interpolated to aging. Gerogenes (insulin recep-
tor, PI-3K, Akt, mTOR) and gerosuppressors (PTEN, TSC, 
AMPK) form a network, which (in analogy with the periodic 
“Mendeleev” table) predicts the effect of a particular gene on 
aging and diseases.129 Basically, genes that activate the mTOR 
pathway are gerogenes, and those that antagonize the pathway are 
gerosuppressors.43,129 As another example, developmental trends, 
such as an increase in blood pressure, near vision point, and FSH 
levels (all necessary for development and reproductive functions) 
cause hypertension, presbyopia, and menopause, respectively, 

Figure  2. From delelopmental growth (program) to aging (shadow). 
Quasi-programmed aging is driven by over-activation of signal-trans-
duction pathways such as TOR and exacerbation of normal cellular func-
tions, which become harmful (hyper-function), leading to alterations of 
homeostasis, malfunctions, diseases, and organ damage.

Figure  1. From cellular growth to hypertrophic senescence (gerocon-
version). Gerogenic conversion (geroconversion) from cellular growth to 
cellular aging, when the cell cycle is arrested. Geroconversion is a con-
tinuation of growth driven by mTOR and related pathways.

later in life.89 Many predictions of the quasi-programmed aging 
model42 were confirmed by 2010,87 including the prediction that 
rapamycin will extend lifespan in mice.130 Numerous recent pub-
lications further illuminate the role of the mTOR pathway (and 
related pathways) in aging.35,131-168

If used properly, rapamycin improves immunity and decreases 
infections and their complications.148,169,170 Under certain condi-
tions, rapamycin can exert immunostimulatory effects, boosting 
T-cell responses in the face of pathogen infections and vac-
cines.170,171 Rapamycin may improve response against pathogens 
but prevent transplant rejection.172,173

Conclusion

The essence of quasi-program was discussed previously.42,89 
Here I addressed a misunderstanding that a quasi-program is a 
sort of a program. It is not (Table 1). Whereas the growth of 
the body is programmed, the emergence of the shadow is not. 
Natural selection cannot eliminate the shadow without hurt-
ing the “body”. As a case in point, mTOR knockout is lethal 
in embryogenesis. However, pharmacologic interventions can 
be started in post-development, thus extending healthy lifespan. 
MTOR-driven quasi-program can be suppressed pharmacologi-
cally.174 And this is what is actually important. After all, accord-
ing to Oscar Wilde, “What men call the shadow of the body is not 
the shadow of the body, but is the body of the soul.”
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