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Large-Scale Axonal Reorganization of Inhibitory Neurons

following Retinal Lesions

Sally A. Marik, Homare Yamahachi, Stephan Meyer zum Alten Borgloh, and Charles D. Gilbert
Laboratory of Neurobiology, The Rockefeller University, New York, New York 10065

The functional properties of adult cortical neurons are subject to alterations in sensory experience. Retinal lesions lead to remapping of
cortical topography in the region of primary visual cortex representing the lesioned part of the retina, the lesion projection zone (LPZ),
with receptive fields shifting to the intact parts of the retina. Neurons within the LPZ receive strengthened input from the surrounding
region by growth of the plexus of excitatory long-range horizontal connections. Here, by combining cell type-specific labeling with a
genetically engineered recombinant adeno-associated virus and in vivo two-photon microscopy in adult macaques, we showed that the
remapping was also associated with alterations in the axonal arbors of inhibitory neurons, which underwent a parallel process of pruning
and growth. The axons of inhibitory neurons located within the LPZ extended across the LPZ border, suggesting a mechanism by which
new excitatory input arising from the peri-LPZ is balanced by reciprocal inhibition arising from the LPZ.

Introduction
The adult brain adapts to experiences throughout life, and its
plasticity extends to primary sensory cortical areas. This is seen
most dramatically in the remapping of cortical topography fol-
lowing sensory loss. In the primary visual cortex (V1) following
retinal lesions, the lesion projection zone (LPZ) is initially si-
lenced and rendered unresponsive to visual stimuli. Soon after
making the lesion, the receptive fields (RFs) of neurons located
just within the LPZ border are enlarged and shifted outside the
retinal scotoma. In the following months, more central locations
within the LPZ recover visually driven activity with even larger
shifts in RF position (Gilbert et al., 1990; Kaas et al., 1990; Heinen
and Skavenski, 1991; Gilbert and Wiesel, 1992; Chino et al., 1995;
Das and Gilbert, 1995a, b; Calford et al., 2000; Giannikopoulos
and Eysel, 2006; Palagina et al., 2009). These changes are rapid,
extensive, long-lasting and ubiquitous across sensory maps
(Merzenich et al., 1983a,b, 1984; Simons and Land, 1987; Sanes et
al., 1988, 1990; Robertson and Irvine, 1989; Cusick et al., 1990;
Gilbert et al., 1990; Kaas et al., 1990; Heinen and Skavenski, 1991;
Ponsetal., 1991; Gilbert and Wiesel, 1992; Chino et al., 1995; Das
and Gilbert, 1995a; Nudo et al., 1996; Schmid et al., 1996; Wallace
and Fox, 1999; Calford et al., 2000).

Because of the topographic nature of the cortical reorganiza-
tion following retinal lesions, V1 has proven to be an ideal model
for elucidating the underlying circuit mechanisms. By producing
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a sharply delineated region within which the reorganization takes
place, we can topographically distinguish this area from the
source of visual input to the region undergoing recovery, and
characterize the changes in axonal arbors of neurons within and
outside the LPZ. Previously, we have demonstrated that excit-
atory horizontal connections undergo substantial sprouting over
the course of reorganization (Darian-Smith and Gilbert, 1994;
Yamahachi et al., 2009; Marik et al., 2010). In the current study,
we explore the involvement of inhibitory connections in the re-
mapping and their relationship to the excitatory neurons sprout-
ing into the LPZ.

While excitatory neurons have been the main focus of adult
experience-dependent plasticity, there is growing evidence that
inhibitory neurons also play a role. Sensory stimulation and
learning lead to an increase of inhibitory neuron synapses on
excitatory neuron spines (Knott et al., 2002; Jasinska et al., 2010).
Retinal lesions and ocular dominance plasticity in the adult are
associated with aloss of inhibitory synapses (Keck et al., 2011; van
Versendaal et al., 2012). Furthermore, there is evidence that the
dendrites of inhibitory neurons are structurally and functionally
modifiable (Lee et al., 2006; Kameyama et al., 2010; Chen et al.,
2011). In the current study, we sought to determine the extent of
inhibitory axonal remodeling within and around the LPZ. To
track the changes, we have used genetically engineered recombi-
nant adeno-associated virus (AAV) to provide cell type-specific
labeling. Our studies show extensive outgrowth of inhibitory ax-
ons along with pruning following the placement of retinal lesions.

Materials and Methods
Viral injections. All AAV injections and two-photon imaging sessions
were performed as previously described (Stettler et al., 2006; Yamahachi
et al., 2009). Two anesthetized adult male primates were used for the
experiments (Macaca fascicularis). All procedures were performed ac-
cording to institutional and federal guidelines.

We genetically engineered a recombinant AAV construct to label in-
hibitory neurons by using a 2.7 bp DNA fragment directly upstream from
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the GADG65 gene, as previously described (Marik et al., 2010). The titer
was determined to be 2 X 10'* particles/ml by quantitative PCR using
GFP-specific primers. We confirmed the specificity of labeling for inhib-
itory neurons by immunohistochemistry, using a cocktail of antibodies
against calbindin (1:5000), calretinin (1:2000), and parvalbumin (1:
5000; Swant) that collectively label 90% of all inhibitory neurons (Seress
et al., 1993; Heizmann and Braun, 1995; del Rio and DeFelipe, 1996).
Sections were incubated for 1 h in 10% normal goat serum and 0.2%
Triton X-100 in Tris-buffered saline (TBS) solution, followed by 48 h of
incubation of primary antibodies; rinsed three times in TBS; and then
incubated with a secondary antibody TRITC goat anti-rabbit (1:500;
Jackson ImmunoResearch Laboratories) at room temperature for 2 h.
After the rinsing, the sections were mounted and coverslipped with
Vectashield with DAPI (Vector Laboratories).

Dexamethasone (0.25 mg/kg) was administered the night before mak-
ing injections of virus. The initial induction of anesthesia was done using
ketamine (10 mg/kg body weight). A venous cannula was inserted, and
the animal was intubated with an endotracheal tube. Anesthesia was
maintained with isoflurane (3% induction, 1-1.5% maintenance)
throughout surgery. All vital signs were monitored and recorded
throughout the experiment. For the viral injection surgery, animals were
placed in a stereotactic frame. Under sterile surgical conditions an inci-
sion was made, the scalp retracted, and a craniotomy measuring 6 X 14
mm was made directly over the V1/V2 border. An H-cut was made in the
dura, and the dura was held back for viral injections. Electrodes made
from borosilicate glass (World Precision Instruments) were pulled, and
the tip was beveled before gas sterilization and surgery. We pressure
injected 200 nl of AAV-GAD65.EGFP per injection site over several min-
utes using a Picospritzer III (Parker Hannifin). Two medial-lateral rows
of three to four injections were made parallel to the V1/V2 border. There
was more space between injections in the middle of the craniotomy to
allow for the later placement of the LPZ boundary during the retinal
lesions. A piece of artificial dura (Kwik Sil, World Precision Instruments)
was slipped under the dura, and the dura was sutured. The bone was
replaced and secured with a metal mesh and three screws. Bone wax was
applied to the four sides. The scalp was closed and sutured back into
place. After the surgery, the animal returned to its cage where it remained
for at least three months before the onset of imaging.

In vivo imaging. The week before the onset of imaging sessions a head
post and chamber were implanted as in Yamahachi et al. (2009). Anes-
thesia and surgery were performed in a similar manner to the injection
surgery. Additionally, a craniotomy (16 mm in diameter) was made over
the area of cortex in which the viral injections had been made. A quartz
coverslip embedded in Kwik Sil, mounted in place by titanium rings, was
used to reduce motion artifacts, protect the cortex, and reduce dural
regrowth. The chamber was closed and sealed between imaging sessions,
allowing us to conduct multiple imaging sessions extending over several
weeks before and after making the lesions. Imaging sessions were con-
ducted under anesthesia.

Images were collected as described in the studies by Stettler et al.
(2006) and Yamahachi et al. (2009) on a custom-built two-photon mi-
croscope that was modified from a Leica TCS Sp2 confocal microscope
with a custom moveable scanning head, which can be moved in three
dimensions using a Sutter MP-285-3Z micromanipulator. The laser
source was provided by a Ti-sapphire laser (Tsunami/Millenia System,
Spectra-Physics). Images were acquired with Leica Confocal software.
Images were taken with a 40 X water-immersion objective (FLUOR 40X/
0.8 W DIC M, Nikon).

z-stacks were collected from superficial cortical layers before and for 3
weeks after the retinal lesion was made. Each stack measured 250 X 250
pm in x and y, and 300 wm in z. As many injection sites were imaged as
the maximum length of anesthesia of the animal allowed. Since a large
area needed to be covered for these imaging sessions, we were not able to
return to every injection site at every imaging session. We reconstructed
and analyzed a total axon length of 230.5 mm for these experiments.

Mapping RF and retinal lesions. Receptive field mapping and retinal
lesion methods have been described previously (Darian-Smith and Gil-
bert, 1995; Yamahachi et al., 2009). After 2 weeks of baseline imaging, we
mapped the RFs of the cortical area of interest using an insulated tung-
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sten microelectrode (impedance 1-2 M(); Alpha Omega). Superficial
electrode penetrations were evenly spaced, avoiding areas to be imaged to
prevent damage. A hand-held light stimulator was used to map mini-
mum response fields, orientation preference, and ocular dominance.

Retinal lesions were made as described previously (Gilbert and Wiesel,
1990, 1992; Yamahachi et al., 2009). After RF mapping was completed,
the microelectrode was placed at the desired LPZ border location within
the chamber. The lesion was placed so that the LPZ boundary was located
at the center of the chamber and between injection sites, with the nearest
injection sites located 1 mm from the boundary. The area of the retina
that corresponded to the location of the microelectrode was determined
by using the guide light from an ophthalmic laser (IRIDEX) as a visual
stimulus. Binocular retinal lesions were made by diode laser delivering
300 mW for 800—1000 ms. The position of the LPZ was confirmed by
subsequent electrophysiological mapping.

Image analysis. Off-line images were viewed with Image] (http://
rsbweb.nih.gov/ij/). Images were deconvolved using Huygens deconvo-
lution software (Scientific Volume Imaging). Finally, axons were traced
via the semiautomatic mode in Neuromantic (version 1.6.3; http://www.
rdg.ac.uk/neuromantic) using image stacks. Tracings were manually
confirmed, and reconstructions for different time points were performed
in parallel at the same cortical location for consecutive time points. Ax-
onal tracing was quantified using Neuromantic and Matlab software. The
area was determined by tracing the outer edge of the axons reconstructed
in manual mode of Neuromantic, which produces an swc file. The area
was calculated by a Matlab program that measures the area circum-
scribed by the points in the swc file.

Results

Our study of the structural plasticity of inhibitory neurons fol-
lowing retinal lesions involved a combination of cell type-specific
fluorescent labeling of inhibitory neurons and in vivo two-
photon imaging. We genetically engineered an AAV to label in-
hibitory neurons within primary visual cortex by placing EGFP
expression under the control of a portion of the GAD65 pro-
moter (AAV-GAD65.EGFP). The specificity of GFP expression
for inhibitory neurons was confirmed using a cocktail of antibod-
ies against calbindin, calretinin, and parvalbumin, which labels
90% of all inhibitory neurons (Fig. 1C). Of the neurons express-
ing GFP, 88% also expressed one of the three calcium-binding
proteins (N = 365). The soma size of the 12% of non-colocalized
neurons ranged from 9 to 15 wm in diameter, suggesting that they
were also inhibitory neurons (Kawaguchi, 1995; Liibke et al.,
1996). Since the GADG65 virus labels nearly all inhibitory neurons,
it does not permit one to differentiate the projections of different
subtypes of inhibitory neurons, and the density of labeling at the
injection site does not allow one to classify the labeled cells on
morphological grounds. However, the longest range axons,
which constitute the majority of the collaterals in the reconstruc-
tion, are likely to originate from basket cells, which form the
longest range axonal arbors among inhibitory neurons (Buzas et
al., 2001). The GAD65 virus was pressure injected in two rows of
three to four injections that were distributed along the medial—
lateral axis, parallel to the V1/V2 border (Fig. 1B). The first im-
aging session was performed at least 3 months after the injections
to ensure that all virally infected neurons were fully labeled. We
used two-photon microscopy to image labeled inhibitory neu-
rons before and after making focal binocular retinal lesions. We
mapped the RFs of neurons at multiple locations on the opercular
surface of Macaque V1 to guide the placement of lesions and
imaged regions. The same procedures were performed on two
different monkeys with similar results. To assess the stability of
axonal arbors under normal conditions, we imaged the same
region of cortex over multiple time points before making the
lesion. The retinal lesion was then placed such that half of the
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Figure 1.

Experimental design. A, Time line showing the experimental protocol. B, Diagram showing the location of injections for one representative monkey. V1/V2 border is depicted by a

dashed black line, and the future location of the lesion projection border is depicted by a white line. Scale bar, 4 mm. C, Representative injection site from a transverse section of macaque V1 with
neurons labeled with AAV-GAD65.EGFP (green) andimmunostained with antibodies against calbindin, calretinin, and parvalbumin (red). Neurons with both GFP expression andimmunostaining are

yellow. Scale bar, 15 m.

injections were in the LPZ and half in the peri-LPZ (the cortical
region surrounding the LPZ), which allowed us to directly com-
pare structural changes of inhibitory neurons lying in cortical
areas undergoing reorganization of retinotopic maps with those
that had retained visual input throughout the postlesion period

(Fig. 1).

Axonal dynamics during normal experience

Axonal arbors of inhibitory neurons were imaged repeatedly to
determine the basal level of axonal dynamics during normal vi-
sual experience. Selected cortical areas containing labeled inhib-
itory axons were imaged in two sessions separated by 1 week. A
total axon length of 8 mm was reconstructed in this region (Fig.
2). Over this period, axonal arbors of inhibitory neurons were
stable, showing no significant change in total length (p = 0.57,
paired ¢ test; 3% change between the two baseline sessions). The
total axonal length reconstructed for control injection sites at
baseline — 14 d was 4010 wm, and at baseline — 7 d was 3960 wm.
While the axonal arbors were stable under these conditions, there
was bouton turnover at a rate of 10% per week.

Axonal dynamics within the LPZ following retinal lesions

In contrast to their stability under normal conditions, inhibitory
axons underwent significant growth and pruning within the LPZ
following the making of retinal lesions (ANOVA, p = 0.03). In-
hibitory neurons located within the LPZ were imaged on the day
of and at 3 weeks following the making of the retinal lesion. We
reconstructed a total length of 160 mm of axonal arbors within
the LPZ of two monkeys. In monkey A, there was rapid axonal
growth and pruning of neurons located in the LPZ within hours
of making thelesion (Fig. 3B). Following the making of the lesion,

49% of the axonal arbor was pruned back. Considerable axonal
sprouting occurred even on the day on which the retinal lesion
was made (65% increase in length compared with baseline). Ax-
onal sprouting continued to occur for the duration of our imag-
ing sessions, which extended over 3 weeks (387% increase in axon
length at 3 weeks postlesion; Fig. 3A,B). At 3 weeks after the
lesion was made, monkey A had 57% of its original axons pruned
back while adding over twice the axonal length present at baseline
(223%). In monkey B at 3 weeks, 42% of the original axonal arbor
was pruned back, and there was considerable axonal growth
(550% increase in length compared with baseline). The axons
after the lesion was made induced changes that were longer than
those present at baseline and significantly increased the territory
that they occupied within the LPZ (baseline, 0.09 mm?; postle-
sion, 0.77 mm?; p < 0.001; Fig. 4A). The lateral extent was mea-
sured by measuring the axon arbors from tip to tip in the widest
dimension, though these arbors did not uniformly increase in all
directions. Instead, their greatest increase was directed toward
the LPZ border. The lateral extent of axonal arbors that we im-
aged went from 425 to 4490 um. For the injection sites that were
the closest to the LPZ border, 10% of the newly sprouted axons
extended on average 563 = 110 wm over the LPZ border into the
peri-LPZ. While axonal growth expanded the cortical territory
that these inhibitory neurons occupied, the overall axonal density
decreased to 43% of original baseline density at 3 weeks after the
lesion was made (Fig. 4B).

Axonal dynamics within the peri-LPZ following

retinal lesions

Axons of neurons located in the peri-LPZ were imaged at 2 and 3
weeks after making the retinal lesion. Sixty-five millimeters of
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axonal arbors were reconstructed from A
four injection sites for the peri-LPZ exper-
iments. Axons imaged at different time
points were compared against baseline
imaging sessions. Axons within the peri-
LPZ underwent axonal growth and axonal
pruning (Fig. 3). Axonal growth increased
substantially between week 2 (14% from
baseline) and week 3 (137% from base-
line; Fig. 3C). While there was axonal
growth within the peri-LPZ, it progressed
more slowly than in the LPZ, and none of
the new growth within the peri-LPZ ex-
tended over the LPZ border into the LPZ.
Thirty-seven percent of the original axons
imaged during baseline were prunedby2 B
weeks after the retinal lesion was made.
Compared with controls, axonal growth
and pruning were elevated within the
peri-LPZ (¢ test: retracted, p < 0.01;
added, p = 0.05). Axonal sprouting was
already evident at the earliest time that we
examined (2 weeks, 14%). Although there
was a significant amount of new axonal
growth within the peri-LPZ, the area that
the axons occupied did not significantly
increase (baseline, 0.2 mm?; postlesion,
0.4 mm? ¢ test, p = 0.69; Fig. 4A). The
new growth was counterbalanced with
axonal pruning since the axonal density
ofimaged axons did not significantly in-
crease within the peri-LPZ (¢ test, p =
0.64).

Figure 2.
Location in relationship to LPZ border
To determine the influence of the position
of the labeled peri-LPZ inhibitory neu-
rons with respect to the LPZ border on the
amount of axonal restructuring, the sites of LPZ injections were
grouped into one of two groups: those located <1 mm from LPZ
border and those located >1 mm from LPZ border. For each
group, we calculated the percentage change in axonal length.
Similar levels of pruning were seen for injection sites within 1 mm
of the LPZ border (mean distance, 0.8 mm) as for those >1 mm
from the LPZ border (mean distance, 1.7 mm). The amount of
axonal growth, however, depended on the distance of the project-
ing neurons from the LPZ border. Injections that were farther
from the LPZ border underwent more axonal growth (231% in-
crease in axonal length) than the injections that were closer
(146% increase in axonal length). The axons of neurons located
within 1 mm of the LPZ border sprouted over the border, extend-
ing several hundred micrometers into the peri-LPZ. The axons
that expanded into the peri-LPZ made up 10% of the newly
sprouted axons. Notably, inhibitory neuron axons within the
peri-LPZ, at an equivalent distance from the LPZ border, did not
extend beyond the LPZ border.

Discussion

The changes in the arbors of inhibitory neurons in the LPZ fol-
lowing the making of retinal lesions were rapid and extensive.
Previous work on excitatory axons showed similar effects, with
exuberant outgrowth and a parallel process of pruning (Yamaha-
chietal., 2009; Marik et al., 2010). Dendritic arbors also undergo

First baseline
-14 days
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Axons of inhibitory neurons during normal experience

Second baseline -7 days

Second baseline
-7 days

Axons of inhibitory neurons during normal visual experience. A, z-projection of inhibitory neurons labeled with
AAV-GAD65.EGFP in monkey V1 during two control imaging sessions. Note that the bright spots are boutons, a small percentage of
which are recycled over the course of a week. Scale bar, 25 pm. B, Reconstruction of one injection site on two different baseline
imaging sessions. Scale bar, 100 m.

anatomical changes in response to experience-dependent plastic-
ity (Hickmott and Steen, 2005; Cheetham et al., 2008). Numer-
ous in vivo studies have demonstrated changes at the synaptic
level. Experience-dependent plasticity is associated with an in-
crease in both dendritic spines and axonal boutons (Trachten-
berg et al., 2002; Holtmaat et al., 2006; Keck et al., 2008; Hofer et
al., 2009; Xu et al., 2009; Yang et al., 2009; Marik et al., 2010;
Wilbrecht et al., 2010; Fu et al., 2012). Together, these data sug-
gest that experience-dependent plasticity, especially that associ-
ated with remapping of cortical topography, is associated with
changes in both inhibitory and excitatory connections. We report
here at baseline, in the absence of modifications of sensory expe-
rience, both excitatory and inhibitory axonal arbors are relatively
quiescent, but show ongoing activity of synaptic turnover, as re-
flected by the formation and retraction of axonal boutons, turn-
ing over at a rate of 10% per week, without major changes in axon
collaterals. After placement of retinal lesions, axonal remodeling
becomes sharply and dramatically upregulated. Over time, the
density of excitatory axonal projections from the peri-LPZ to the
LPZ increases, which may account for the reorganization of
the retinotopic map and the shift in RFs among LPZ neurons.
Similarly, for inhibitory neurons, the most pronounced axonal
changes were seen within the LPZ, mirroring the effects observed
for peri-LPZ excitatory neurons. One difference, however, was
the increase in cortical area occupied by the inhibitory axons,
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Percent Change

Figure3.

yellow, added; red, retracted. Scale bar, 100 wm. B, Axons of inhibitory neurons within the LPZ. z-projections of labeled imaged
axons at baseline imaging sessions and 3 weeks following the retinal lesion. Arrows depict a couple of example axons that were
present at both time points. Note the decrease in the axonal density and the expansion of the area the axons occupy following
axonal sprouting. Scale bar, 50 wm. C, Quantification of LPZ dynamics; the percentage of axons that were added, retracted, or
remained stable compared with baseline imaging sessions for axons of inhibitory neurons located within the LPZ. D, Quantification
of peri-LPZ dynamics. Percentage of axons that were added, retracted, or remained stable compared with baseline imaging
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which extended far beyond their normal
territory, with many crossing the LPZ
boundary into the peri-LPZ. Our findings
complement earlier studies showing re-
modeling of inhibitory dendrites (chang-
ing 5-8% in length under conditions of
normal experience; Lee et al., 2006),
though here we showed that the axons
could change on the order of several hun-
dred percent. There is also precedent for
inhibitory neurons to undergo robust
structural changes following alteration in
experience. The whisker map of mouse
somatosensory cortex is remapped fol-
lowing whisker plucking, with the cortical
area originally responding to the plucked
whiskers becoming activated instead by
the adjacent row of whiskers. Under these
conditions, the axons of inhibitory neu-
rons located in the cortical area originally
representing the plucked whiskers (the so-
matosensory LPZ) undergo similar mas-
sive axonal reorganization (Marik et al.,
2010). This study demonstrates that the
axonal plasticity is conserved through
evolution and across sensory areas.
Several characteristics of the axonal
changes are reminiscent of the physiology
of the remapping of topography following
the making of lesions of the sensory pe-
riphery. On the same day that retinal le-
sions are made, RFs of neurons located
just within the LPZ boundary shift to po-
sitions outside the retinal scotoma (Gil-
bert and Wiesel, 1992). This is reflected in
the rapid initial changes in axonal arbors.
The map reorganization can extend for
~8 mm across the LPZ, approximating
the extent of long-range horizontal con-
nections (Gilbert, 1992). Over a period of
months, the recovery of visual responses
propagates toward the center of the LPZ,
which may reflect an enrichment of the
clusters of axon collaterals within the pre-
existing network of long-range horizontal
connections, which extend for many mil-
limeters from the cell bodies giving rise to
these connections. Some studies indicate
fill-in of LPZ activity over larger distances,
which is indicative of the sprouting of ex-
citatory horizontal connections that ex-
tend beyond the normal envelope of the
territory they cover (Florence et al., 1998).
Putting aside the capacity for excitatory
axons to change their range, in the current
study we saw a substantial increase in the
envelope of coverage by inhibitory axons.
Though there has been some question as
to the nature of the reorganization of
functional maps (Smirnakis et al., 2005),
the many physiological and anatomical
studies demonstrating the phenomenon
(Gilbert et al., 1990; Kaas et al., 1990; Hei-



1630 - J. Neurosci., January 29,2014 - 34(5):1625-1632

A 500 = = | PZ
= Peri-LPZ

Percent change in Area

Control Day of

% i week 3
Retinal Lesion

week 1 week 2

-30 LPZ

control per-LRa
3 weeks

3 weeks

Percent change in Axonal Density

Figure4. Areaoccupied by inhibitory neurons. 4, Graph depicting the percentage change in
the area occupied by axons of inhibitory neurons. LPZ, Black; peri-LPZ, gray. B, Bar graph
depicting the change in axonal density from baseline for control (both baseline sessions), as well
as, LPZ and peri-LPZ at 3 weeks after the making of the lesion.

nen and Skavenski, 1991; Chino et al., 1995; Calford et al., 2000,
2005; Baker et al., 2005, 2008; Giannikopoulos and Eysel, 2006;
Yamahachi et al., 2009; Marik et al., 2010), including the current
study, support the idea that the adult sensory cortex is capable of
undergoing substantial experience-dependent change, with LPZ
fill-in extending up to a maximum of 8—10 mm.

The changes in inhibitory connections are important for un-
derstanding the link between alterations of cortical activity and
changes in different elements of cortical circuits. In addition, the
changes may reflect the requirement for cortical circuits to main-
tain excitatory—inhibitory (E-I) balance (Giannikopoulos and
Eysel, 2006). During development, the maturation of inhibition
is associated with the duration and cessation of critical period
plasticity (Hensch and Fagiolini, 2005; Di Cristo et al., 2007;
Sugiyama et al., 2008). In early postnatal development, excitation
and inhibition become balanced as the cortex matures (Dorrn et
al., 2010). The balance between inhibition and excitation main-
tains network stability, with excitatory and inhibitory synaptic
inputs showing similar tuning (Ferster, 1986; Troyer et al., 1998;
van Vreeswijk and Sompolinsky, 1998; Anderson et al., 2000;
Wehr and Zador, 2003; Tan et al., 2004; Priebe and Ferster, 2005,
2006; Ozeki et al., 2009). In the auditory system, retuning of RFs
increases excitation to the paired stimulus and is followed over
time by an increase in inhibition that balances the excitation,
ultimately contributing to the changed preferred frequency (Fro-
emke et al., 2007). Previous retinal lesion studies have demon-
strated that there is a decrease in immunoreactivity to GAD
within the LPZ, while there is an increase in GAD and GABA in
the peri-LPZ (Rosier et al., 1995; Massie et al., 2003). Our study
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LPZ

peri-LPZ

Figure 5.  The reciprocal changes in inhibitory and excitatory arbors during experience-
dependent cortical plasticity maintains the E-I balance in cortical circuits. This schematic rep-
resentation of the current findings and those of our previous study on excitatory axons
(Yamahachi et al., 2009) shows excitatory neurons (triangles) within the peri-LPZ that extend
new axons (green) into the LPZ (shaded area) and inhibitory neurons (circles) within the LPZ,
extending axons in the reverse direction, toward the peri-LPZ.

corroborates these findings with the observation of extensive ax-
onal pruning at early time points within the LPZ along with ax-
onal growth that extends over the LPZ border. Axonal growth
increases the territory that the axons of inhibitory neurons oc-
cupy, but there is a decrease in density of their arbors. We hy-
pothesize that axons of inhibitory neurons that extend over the
LPZ/peri-LPZ border may target the peri-LPZ excitatory neurons
that send new axonal projections into the LPZ (Fig. 5). This re-
quires verification at the ultrastructural level. The change in in-
hibitory circuits seen in the current study may reflect the
requirement for maintaining E-I balance, whereby inhibitory
neurons project out of the LPZ to contact the peri-LPZ neurons
that provide the increased excitatory drive to the LPZ.

The functional remapping of cortical topography in response
to changes in experience is a ubiquitous phenomenon that is
observed across many different species, including humans (Rose
et al., 1960; Merzenich et al., 1983a,b, 1984; Simons and Land,
1987; Clark et al., 1988; Sanes et al., 1988, 1990; Robertson and
Irvine, 1989; Cusick et al., 1990; Gilbert et al., 1990; Kaas et al.,
1990; Heinen and Skavenski, 1991; Ramachandran and Gregory,
1991; Fox, 1992; Gilbert and Wiesel, 1992; Diamond et al., 1993;
Recanzone et al., 1993; Weinberger et al., 1993; Darian-Smith
and Gilbert, 1994, 1995; Chino et al., 1995; Das and Gilbert,
1995a; Elbert et al., 1995; Flor et al., 1995; Schmid et al., 1996;
Wallace and Fox, 1999; Calford et al., 2000, 2003; Mataga et al.,
2004; Baker et al., 2005, 2008; Giannikopoulos and Eysel, 2006;
Keck et al., 2008; Dilks et al., 2009; Makin et al., 2013). The
remapping seen following peripheral lesions may recruit pro-
cesses that operate under normal experience, such as that ob-
served during perceptual learning
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