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Composition at ON and OFF Bipolar Cell Synapses onto
Direction-Selective Retinal Ganglion Cells
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In the developing mouse retina, spontaneous and light-driven activity shapes bipolar3ganglion cell glutamatergic synapse formation,
beginning around the time of eye-opening (P12–P14) and extending through the first postnatal month. During this time, glutamate
release can spill outside the synaptic cleft and possibly stimulate extrasynaptic NMDA-type glutamate receptors (NMDARs) on ganglion
cells. Furthermore, the role of NMDARs during development may differ between ON and OFF bipolar synapses as in mature retina, where
ON synapses reportedly include extrasynaptic NMDARs with GluN2B subunits. To better understand the function of glutamatergic
synapses during development, we made whole-cell recordings of NMDAR-mediated responses, in vitro, from two types of genetically
identified direction-selective ganglion cells (dsGCs): TRHR (thyrotropin-releasing hormone receptor) and Drd4 (dopamine receptor 4).
Both dsGC types responded to puffed NMDA between P7 and P28; and both types exhibited robust light-evoked NMDAR-mediated
responses at P14 and P28 that were quantified by conductance analysis during nicotinic and GABAA receptor blockade. For a given cell
type and at a given age, ON and OFF bipolar cell inputs evoked similar NMDAR-mediated responses, suggesting that ON-versus-OFF
differences in mature retina do not apply to the cell types or ages studied here. At P14, puff- and light-evoked NMDAR-mediated
responses in both dsGCs were partially blocked by the GluN2B antagonist ifenprodil, whereas at P28 only TRHR cells remained ifenprodil-
sensitive. NMDARs contribute at both ON and OFF bipolar cell synapses during a period of robust activity-dependent synaptic develop-
ment, with declining GluN2B involvement over time in specific ganglion cell types.
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Introduction
Neural circuit development depends, in part, upon activity-
dependent mechanisms (Bleckert and Wong, 2011). In the
retina, activity contributes to the formation of glutamatergic
bipolar3ganglion cell synapses. Around the time of eye-opening
in mice [postnatal day (P) 12–14], the retina becomes light-
responsive as bipolar cell synaptic release transitions from spon-
taneous to light-driven (Fisher, 1979; Tian and Copenhagen,
2001; He et al., 2011). This release is detected by both AMPA-type
receptors (AMPARs) and NMDA-type receptors (NMDARs) on
postsynaptic ganglion cell dendrites (Bansal et al., 2000; Wong et
al., 2000; Blankenship et al., 2009; He et al., 2011). Perturbation
of bipolar cell glutamate release alters the number and strength of
these synapses, and may also influence the stratification of gan-

glion cell dendrites under certain conditions (Kerschensteiner et
al., 2009; Xu et al., 2010; Soto et al., 2012). Thus, activation of
glutamate receptors clearly contributes to the development of
retinal circuitry.

It is less clear whether these developing synapses incorporate
NMDARs composed of specific subunits. NMDARs typically
contain two GluN2 subunits (GluN2A-D), and during develop-
ment, NMDARs containing GluN2B subunits can regulate the
number and strength of developing synapses in the hippocampus
(Gambrill and Barria, 2011; Gray et al., 2011; Tovar et al., 2013).
In the mature retina, GluN2B-containing NMDARs are report-
edly localized extrasynaptically and preferentially near ON bipo-
lar synapses (Sagdullaev et al., 2006; Zhang and Diamond, 2009).
During development, extrasynaptic receptors may be activated
around eye-opening, when spontaneous activity evokes gluta-
mate spillover (Blankenship et al., 2009). However, the subunit
composition of the NMDARs activated by spontaneous activity
has not been evaluated. Moreover, it is not known whether light-
evoked glutamate release activates NMDARs in the developing
retina, or whether activation and/or subunit composition of
these receptors differs between ON and OFF bipolar synapses.
Our study examined two types of genetically identified direction-
selective ganglion cells (dsGCs) across the first month of postna-
tal life to determine the role of NMDARs and GluN2B subunits in
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encoding glutamate release during this period of robust synaptic
maturation.

Materials and Methods
Mouse strains. Mice of either sex from two strains were used: TRHR
(thyrotropin-releasing hormone receptor)-GFP (Rivlin-Etzion et al., 2011)
and Drd4 (dopamine receptor 4)-GFP (Huberman et al., 2009). Both
mouse lines were kindly provided by Dr. Marla Feller (University of
California, Berkeley, CA) and were backcrossed to C57BL/6 for �5 gen-
erations before establishing a colony.

Tissue preparation. All procedures conformed to the NIH guidelines
for use and care of animals in research, and were approved by the Uni-
versity Committee on Use and Care of Animals at University of Michigan
or Yale University. Procedures were similar to those described previously
(Wang et al., 2011; Borghuis et al., 2013). Briefly, retinas were harvested
and dissected in gassed (95% O2 and 5% CO2) Ames medium (Sigma-
Aldrich) under infrared illumination, and cut along the dorsal–ventral
axis (Wei et al., 2010; Wang et al., 2011). For NMDA application exper-
iments, both dorsal and ventral pieces were used; for light-stimulation,
only ventral pieces were used.

Electrophysiology. A piece of retina was placed in a chamber on an
upright microscope and superfused (�5 ml/min) with gassed (95% O2

and 5% CO2) Ames medium heated to 33–35°C, as described previously
(Wang et al., 2011; Borghuis et al., 2013). The retina and electrode were
visualized at 60� (0.9 or 1.0 NA) under IR illumination. In some experi-
ments, green-fluorescent-protein-expressing (GFP�) ganglion cells were
visualized by attenuated mercury light passed through a GFP dichroic
mirror (Chroma). A GFP� soma was localized and targeted for record-
ing under IR illumination. In other experiments, GFP� cells were tar-
geted by two-photon imaging, as described previously (Borghuis et al.,
2013).

Cells were recorded with borosilicate glass pipettes (4 – 6 M�) filled
with intracellular solution containing the following (in mM): 110 Cs-
methanesulphonate, 5 TEA-Cl, 10 HEPES, 3 NaCl, 10 BAPTA, 2 QX-
314-Cl, 2– 4 ATP-Mg 2�, and 0.3– 0.4 GTP-Na, titrated to pH 7.3.
Chemicals were purchased from Sigma-Aldrich, Invitrogen, or Tocris
Bioscience. Voltage-clamp recordings were performed as described pre-
viously (Manookin et al., 2010). For voltage-step protocols, initial Vhold

(�100 to �75 mV) was stepped up every 8 s (10 –20 mV increments)
followed by a return to the initial level.

Puff-evoked NMDA response. Responses to
puffed NMDA were measured with synaptic
transmission strongly attenuated by bath ap-
plying the following (in �M): the L-type Ca 2�

channel blocker isradipine (30); antagonists to
glycine (strychnine, 2), GABAA (gabazine, 20),
and AMPA/kainate (CNQX, 100) receptors;
and the NMDAR coagonist D-serine (200). A
puffer pipette (3–5 M�) containing NMDA
(10 mM) dissolved in Ames medium with
D-serine (200 �M) and isradipine (30 �M) was
connected to a Pico-spritzer (Parker Han-
nafin) and positioned near the soma. NMDA
was applied via 10 –30 ms puffs at 10 –15 psi.

Light stimulation. The retina was stimulated
by the combined output of 12 UV LEDs (peak
365 nm, LZC-70U600, LEDEngin). Flashes
were triggered by pClamp 9 software, and in-
tensity was controlled by a pulse generator
(WPI) via a custom noninverting voltage-to-
current converter using an operational ampli-
fier. In most experiments, stimuli (2 mm
diameter) were 1 s flashes from a dark back-
ground at �10 4 photoisomerizations (R*)/S-
cone/s (assuming a 1 �m 2 cone collecting area;
Wang et al., 2011) presented through a 4� ob-
jective (0.13 NA). In some experiments, inten-
sity was attenuated (to 2–5 � 10 3 R*/S-cone/s)
to reduce the response at Vhold � �40 mV by

�50%. In other experiments, contrast-modulated UV spots (peak, 395
nm; mean luminance, �0.5 � 10 4 photoisomerizations/S-cone/s) were
presented through the condenser, as described previously (Borghuis et
al., 2013).

Assessing the impact of GFP epifluorescence on UV light responses. Epi-
fluorescence for identifying GFP� dsGCs did not substantially bleach
S-cone photopigment. GFP-negative ON � cells (n � 3) targeted under
IR illumination were recorded in ventral retina (van Wyk et al., 2009;
Estevez et al., 2012), where cones express primarily S-opsin with peak
sensitivity at �360 nm (Jacobs et al., 1991; Wang et al., 2011). These
cones should be relatively insensitive to the GFP excitation wavelength
(�488 nm). ON � cell conductance (i.e., slope of the linear current–
voltage relationship) to a 365 nm UV stimulus was similar before (44 	
10 nS) and after either one (43 	 8 nS) or 2 min (43 	 6 nS) of 488 nm
exposure. In typical dsGC recordings, we exposed ventral tissue to

30 s of 488 nm light, which should minimally impact cone-mediated
responses.

Analysis. Responses were analyzed using custom MATLAB routines
(version 7.10). A conductance analysis was performed on leak-subtracted
responses, as described previously (Manookin et al., 2010). Input resis-
tance for representative samples was 207 	 17 M� (TRHR; n � 39) and
226 	 16 M� (Drd4; n � 28), and the uncompensated series resistance
was 16 	 1 M�. Current–voltage (I–V ) relationships were modeled as
the weighted sum of three ligand-gated currents (Iligand) mediated
by AMPA, NMDA, and GABA/glycine receptors (least-squares fit;
Manookin et al., 2010):

Itotal � WAMPA � IAMPA � WNMDA � INMDA � WGABA/glycine � IGABA/glycine

The weights estimate the ligand-gated conductances that combine to
generate the measured I–V relationship. The NMDA weights, which are
strongly voltage-dependent, represent the conductance at �60 mV (i.e.,
around the resting potential).

For the data in Figure 3 (ON or OFF responses at P14 or P28), the
AMPAR- and NMDAR-mediated conductances measured were each
similar between the two cell types, and there was no evidence for bimo-
dality between cell types ( p � 0.1; Hartigan’s dip test); data from the two
types were therefore combined. Statistical comparisons were performed
using one-sample, two-tailed Student’s t tests. Results are reported as
mean 	 SEM.
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Figure 1. NMDA receptor subunit composition changes during early postnatal development. A, Responses to puffed NMDA
(left) in a P7 Drd4 ganglion cell at a series of Vholds. The response, averaged within the rectangle, generated a J-shaped I–V plot
(middle) that was reduced (right) in the presence of ifenprodil (10 �M). B, Ratio of the current measured at Vhold near �40 mV
(INMDA �40 mV) in the presence of ifenprodil relative to the control condition. Numbers of cells for each point are shown in
parentheses. Error bars indicate 	SEM. Ratios significantly less than one are indicated (*p 
 0.01, **p 
 0.001). C1, Ifenprodil
reversibly attenuated the NMDA puff response in a P7 Drd4 cell (left; Vhold ��55 mV). C2, Ifenprodil reversibly attenuated INMDA

�40 mV in a population of P7 and P14 Drd4 and TRHR cells.
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Results
NMDA receptor subunit composition changes during early
postnatal development
Puffing NMDA evoked responses in GFP� dsGCs in both TRHR
and Drd4 mice at four ages (P7, P14, P21, P28). These responses
reflected opening of NMDA channels, because synaptic transmis-
sion and multiple receptors (AMPA/kainate, GABAA, and gly-
cine) were blocked (see Materials and Methods); and the I–V
relationship showed the characteristic J-shape of an NMDAR-
mediated response (Traynelis et al., 2010). In both cell types, the
GluN2B antagonist ifenprodil (10 �M; Fig. 1A) suppressed �50%
of the response at P7, as quantified by the ifenprodil:control re-
sponse ratio measured at Vhold near �40 mV (INMDA �40 mV)
where NMDAR conductance is maximal (Fig. 1B). During devel-
opment, ifenprodil’s effect diminished, and differences between
the cell types emerged. In Drd4 cells, the ifenprodil:control re-
sponse ratio was significantly 
1 at P7 (0.55 	 0.06; p 
 0.001)
and P14 (0.71 	 0.07; p 
 0.01), but not at P21 (0.83 	 0.10; p �
0.2) or P28 (1.03 	 0.08; p � 0.2). In TRHR cells, the ratio was 
1
at all four ages: P7 (0.47 	 0.03; p 
 0.001), P14 (0.58 	 0.08; p 

0.005), P21 (0.63 	 0.09; p 
 0.01), and P28 (0.72 	 0.05; p 

0.005). Ifenprodil’s effect could be reversed upon washout (Fig.
1C1,C2). These results suggest that Drd4 and TRHR dsGCs differ
in GluN2B subunit expression by P28.

Glutamatergic inputs onto dsGCs could be
isolated pharmacologically
Puff-evoked NMDA activates all membrane-bound receptors,
including nonsynaptic receptors distant from release sites;
whereas light-evoked glutamate release specifically activates syn-
aptic, and possibly, extrasynaptic receptors near release sites
(Zhang and Diamond, 2009). UV light responses were studied in
targeted GFP� dsGCs in the ventral retina (see Materials and
Methods). We tested whether NMDARs were activated by light-
evoked glutamate release at P14 and P28, which spans much of
the period of bipolar3ganglion cell synapse formation.

In a P14 Drd4 cell, a UV flash (1 s; 2 mm diameter) evoked
robust responses at light-onset and light-offset that were domi-

nated by inhibition, resulting in linear I–V relationships that re-
versed near the chloride equilibrium potential (ECl; �67 mV; Fig.
2A). Data from the two cell types were qualitatively similar and
were combined to generate averaged I–V plots at P14 and P28
(Fig. 2A). The large inhibitory input obscured the relatively small
excitatory input (Poleg-Polsky and Diamond, 2011).

Glutamatergic excitatory responses were subsequently iso-
lated by applying antagonists to nictotinic acetylcholine (hexa-
methonium, 100 �M) and GABAA (gabazine, 20 �M) receptors.
Transient responses at light-onset and light-offset (Fig. 2B)
showed J-shaped I–V relationships reversing near Ecation (0 mV;
Fig. 2B). Data from the two cell types were qualitatively similar
and were combined to generate averaged I–V plots at P14 and
P28; a J-shaped I–V relationship was apparent at both ages (Fig.
2B). The J-shape was blocked by the NMDAR antagonist D-AP5
(100 �M; Fig. 2C; Manookin et al., 2010), and the ON response
was blocked by the group III mGluR agonist L-AP4 (50 �M; Fig.
2D), which suppresses ON bipolar cells. Thus, ON and OFF bi-
polar release onto NMDARs could be individually evaluated by
light-ON and light-OFF responses in the presence of nicotinic
and GABAA receptor antagonists.

NMDARs on ON and OFF dsGC dendrites can be activated by
light-evoked glutamate release in dsGCs
Light responses were modeled as the weighted sum of three basis
functions (Fig. 3A; see Materials and Methods) where the weights
describe each receptor’s conductance (Manookin et al., 2010).
The AMPAR basis function was assumed to be linear and reverse
at 0 mV. The NMDAR basis function was derived from puff-
evoked NMDA responses (Fig. 1), and the inhibitory (GABA/
glycine) receptor basis function was derived from the light-ON
response under control conditions, which was dominated by in-
hibition (Fig. 2). Population analysis was performed on normal-
ized conductances, and fits were converted to I–V basis functions
(Fig. 3B) as described previously (Manookin et al., 2010).

At P14, TRHR cell responses showed J-shaped I–V relation-
ships that were well fit by the basis functions (Fig. 3C). Data from
the two cell types showed similar patterns of excitatory conduc-
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tance and were combined (see Materials and Methods; data from
individual cell types are shown in Fig. 4). Both cell types showed
significant AMPAR- and NMDAR-mediated conductances at
light-onset and light-offset (p 
 0.001 in each case; Fig. 3E). A
low-intensity flash that reduced responses by approximately two-
fold (see Materials and Methods) also generated significant
AMPAR- and NMDAR-mediated conductances (p 
 0.001 in
each case; Fig. 3E). Here, and in all subsequent experiments using
hexamethonium and gabazine, the inhibitory conductance was
not significantly greater than zero for either response in either cell
type (data not shown; p � 0.1 in all cases). To determine whether
spatially restricted stimuli also elicited NMDAR-mediated con-
ductances, GFP� cells were targeted by two-photon microscopy,
and a smaller stimulus (0.17 mm diameter; 100% contrast) was
presented against a uniform background at mean luminance (see
Materials and Methods). In some cases, the nicotinic antagonist
curare (50 �M) replaced hexamethonium. This stimulus generated

smaller responses overall, but still showed significant AMPAR- and
NMDAR-mediated conductances at both light-onset and light-
offset in both cell types (p 
 0.001 in each case; Fig. 3D,E). Thus, at
P14, light-evoked glutamate release activates NMDARs at ON and
OFF bipolar terminals in Drd4 and TRHR cells.

Recordings at P28 showed similar results. The UV flash generated
significant AMPAR- and NMDAR-mediated components at light-
onset and light-offset in both cell types at both stimulus intensities
(p 
 0.05 in each case; Fig. 3F,H), as did the contrast-reversing spot
(p 
 0.001 in each case; Fig. 3G,H). Thus, at P14 and P28, light-ON
and light-OFF responses reliably activate NMDARs.

NMDARs activated by light-evoked glutamate release contain
GluN2B subunits at P14 but show cell-type-specific
composition at P28
At P14, the UV flash response showed sensitivity to ifenprodil,
demonstrating a GluN2B subunit contribution (Fig. 4A). We
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quantified ifenprodil’s effect by the ratio of the fitted conduc-
tances in ifenprodil relative to control conditions (i.e., hexame-
thonium and gabazine only). For Drd4 and TRHR cells,
ifenprodil significantly reduced NMDAR ratios below one (p 

0.005 in each case), whereas the AMPAR ratios were not affected
(p � 0.1; Fig. 4B,C). Thus, GluN2B-containing NMDARs were
activated by light-evoked glutamate release at ON and OFF syn-
apses onto Drd4 and TRHR dsGCs.

The same experiment at P28 showed differences between the
cell types. For Drd4 cells, AMPAR and NMDAR ratios were un-
affected by ifenprodil (p � 0.1 in all cases; Fig. 4E). In TRHR cells,
ifenprodil significantly reduced the NMDAR ratios (p 
 0.05 in
each case), but not the AMPAR ratios (p � 0.2; Fig. 4D,F). To
test whether the TRHR cells were simply delayed in their loss of
ifenprodil sensitivity, we performed experiments at P35. Ifen-
prodil continued to reduce the NMDAR ratios (p 
 0.005 in each
case), but not the AMPAR ratios (p � 0.9; Fig. 4F) at P35. Thus,
by P28, NMDARs on TRHR cells continue to incorporate
GluN2B subunits at ON and OFF bipolar synapses, whereas those
of Drd4 cells do not.

Discussion
Here, we evaluated functional NMDAR-mediated responses in
two types of genetically identified dsGCs during the first postna-
tal month (Huberman et al., 2009; Rivlin-Etzion et al., 2011). Our
main findings are as follows: (1) GluN2B-containing NMDARs
are activated by light-evoked glutamate release at synaptic and
possibly extrasynaptic locations on ON and OFF layer dendrites
during a period of bipolar3ganglion cell synapse formation
(Figs. 2– 4), and (2) GluN2B subunits are developmentally down-
regulated from functional NMDARs in a cell-type-specific fash-
ion; through P14, both cell types express GluN2B-containing
NMDARs, whereas at P28, only TRHR cells continued to express
GluN2B subunits (Figs. 1, 4).

The functional downregulation of GluN2B subunits sup-
ports anatomical studies in rodent suggesting that ganglion
cell GluN2B expression peaks before P21 (Hartveit et al., 1994;
Watanabe et al., 1994; but see Guenther et al., 2004). Further,
spontaneous glutamate release activates NMDARs around eye-
opening (Bansal et al., 2000; Wong et al., 2000; Blankenship et al.,
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Figure 4. NMDARs activated by light-evoked glutamate release contain GluN2B subunits at P14 but show cell-type differences at P28. A, Synaptic currents and I–V plots in a P14 Drd4 cell in
response to 1 s of UV light (2 mm diameter) in the presence of hexamethonium (100 �M) and gabazine (20 �M; left). Adding ifenprodil (10 �M, right) reduced the response. B, Conductance analysis
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2009). However, it was not known whether GluN2B subunits
incorporate into functional NMDARs that are activated by spon-
taneous activity. Our data show, by P7, functional GluN2B-
containing NMDARs on ganglion cells that could be activated by
spontaneous release before eye opening.

NMDARs would apparently contribute to light-evoked re-
sponses in vivo. Direction selectivity is present by P11 (Chen et
al., 2009), and preferred-direction motion depolarizes the mem-
brane potential by �10 –20 mV to drive spiking (Chen et al.,
2009; Dhande et al., 2013). We found some NMDAR-mediated
conductance at rest (��65 to �60 mV), which should grow
larger with depolarization toward spike threshold (Fig. 1). Thus,
it is likely that dsGCs commonly experience light-evoked gluta-
mate release that generates sufficient depolarization to activate
NMDARs on their dendrites.

Our data suggest that light stimulation evokes release onto
synaptic NMDARs and possibly onto extrasynaptic NMDARs as
well. Bright UV flashes evoked a strong inhibitory conductance
that coincided with excitation (Fig. 2), and prevented quantifica-
tion of the excitatory conductance. Glutamate conductance was
instead measured under nicotinic/GABAA receptor blockade
(Fig. 3), which may have caused or augmented glutamate spill-
over. Two findings suggested that spillover is not essential to
activate NMDARs. First, NMDARs contributed to weak re-
sponses to dim or small stimuli (Fig. 3), which likely limited
spillover. Second, ifenprodil-insensitive, presumed GluN2A sub-
unit contributions to the light-evoked responses suggested that
some NMDARs reside at both ON and OFF bipolar synapses
(Zhang and Diamond, 2009). The additional contribution of ex-
trasynaptic NMDARs to light-evoked responses during develop-
ment deserves further study.

In the retina, bipolar cell3ganglion cell synapse formation
peaks between P14 and P28 (Morgan et al., 2008, 2011; Kerschen-
steiner et al., 2009; Soto et al., 2011). GluN2B subunits could play
a role in controlling synapse number during this period, although
the duration of this role would apparently vary by cell type (Fig.
4). Further, we found no evidence for differential localization of
GluN2B subunits at ON and OFF synapses, as suggested in ma-
ture retina (Zhang and Diamond, 2009). Thus, GluN2B subunits
may regulate the development of glutamate receptor density, ac-
cording to models proposed in other systems (Gambrill and Bar-
ria, 2011; Gray et al., 2011), but their precise role in retinal
synaptic development requires further investigation.

Drd4 and TRHR dsGCs both respond preferentially to the
same (posterior) direction of motion, and therefore, appeared to
be the same dsGC type. However, their axonal projection pat-
terns, and directional tuning properties differ, suggesting that
they are, in fact, distinct types (Rivlin-Etzion et al., 2011). This
interpretation is supported by our data showing different
GluN2B subunit expression at P28.
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