
Anaplastic Thyroid Carcinoma: Pathogenesis and Emerging
Therapies

R.C. Smallridge and J.A. Copland
Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic,
Jacksonville, Florida, USA

Abstract
Anaplastic thyroid carcinoma ranges from 1.3 to 9.8% of all thyroid cancers globally. Mutations,
amplifications, activation of oncogenes and silencing of tumour suppressor genes contribute to its
aggressive behaviour, and recent studies (e.g. microarrays, microRNAs) have provided further
insights into its complex molecular dysregulation. Preclinical studies have identified numerous
proteins over- or underexpressed that affect critical cellular processes, including transcription,
signalling, mitosis, proliferation, cell cycle, apoptosis and adhesion, and a variety of agents that
effectively inhibit these processes and tumour growth. In clinical studies of 1771 patients, 64%
were women, the median survival was 5 months, and 1-year survival was 20%. The variables
associated with survival in some series included age, tumour size, extent of surgery, higher dose
radiotherapy, absence of distant metastases at presentation, co-existence of differentiated thyroid
cancer and multimodality therapy. However, considerable bias exists in these non-randomised
studies. Although more aggressive radiotherapy has reduced locoregional recurrences, the median
overall survival has not improved in over 50 years. Newer systemic therapies are being tried, and
more effective combinations are needed to improve patient outcomes.
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Statement of Search Strategies Used and Sources of Information
This overview will summarise the current understanding of the molecular pathogenesis of
anaplastic thyroid carcinoma, preclinical studies identifying promising new therapies, the
impact of surgery and radiotherapy on outcomes, and new systemic therapies under
investigation. It was prepared from articles obtained from PubMed using the search words
‘anaplastic thyroid carcinoma’. The search was limited to English and yielded 1882 articles.

Introduction
Thyroid cancers comprise 2.5% of all malignancies in the USA. The incidence continues to
increase, and was estimated to be 37 200 in 2009, whereas death rates remain low at ~1630
[1]. The increased detection, mostly of small papillary thyroid cancers, in part reflects earlier
identification from imaging the head/neck and upper chest for other reasons [2], although
early detection may not fully explain the rising incidence [3,4]. Anaplastic thyroid
carcinoma (ATC) is the least common type, occurring in only 1.7% of thyroid cancers in the
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USA [5]. Frequencies in other countries, based on either tumour registries or single centre
experience, are: Australia (1.3%) [6], Luxembourg (1.9%) [7], Austria (2.0%) [8], Italy
(2.9%) [9], Japan and Jordan (3.6%) [10,11], New Zealand (4.2%) [12], India (4.7%) [13],
Israel (7.5%) [14] and the Netherlands (7.9%) [15]. In Germany, the incidence decreased
dramatically by decades from 35% to 19% to 7% from 1965 to 1997. The change was
attributed to iodised salt for goiter prevention and to more aggressive management of
differentiated thyroid cancer [16]. Similar reductions by decade from 1970 to 1999 were
also observed in Dublin, Ireland (24.3%; 18.3%; 9.8%, respectively), and attributed to an
increase in dietary iodine [17].

Risk factors for ATC are not well understood, but patients may have a history of goiter,
prior co-existing differentiated (or rarely, medullary) thyroid cancer or the patient may
present with no known thyroid disease history and prior ATC on histological examination.
Transformation from differentiated thyroid cancer is usually identified in the primary
tumour, but may be found only in lymph nodes [18]. A case–control study of 126 patients,
using benign goiter surgery patients as controls, found that ATC patients were more likely to
have less education, other malignancies, late menarche, early first pregnancy, and blood
group B [19]. These risk factors have also been associated with other thyroid malignancies
[19].

Pathogenesis
Differentiated thyroid cancers (papillary, follicular, Hürthle cell) comprise most
malignancies, and each tends to have a single mutation. As the tumours dedifferentiate,
more mutations develop, with ATCs commonly having multiple genetic abnormalities.

Mutations in ATC have been reported in the following genes: p53 = 12/22 (55%); RAS =
37/166 (22%); BRAF = 61/231 (26%); β-catenin = 20/53 (38%); PIK3CA = 27/156 (17%);
Axin = 18/22 (82%); APC = 2/22 (9%); PTEN = 10/84 (12%) [20]. In a recent study of 18
patients, 38% had BRAF, 17% NRAS, 6% HRAS, 6% BRAF/PIK3CA, and 33% had
unknown mutations [21].

Abnormalities in chromosome numbers or integrity are gains, losses, amplifications and
deletions affecting virtually every chromosome. Recent reports using array-comparative
genomic hybridization (CGH) have found abnormalities in regions containing EGFR, MET,
BRAF, K-RAS [22], CCND1, FOSL1, UBE2C, CDKN2A [23]. Liu and Xing [24] detected
copy number gains in EGFR, VEGFR1/2, PDGFRA/B, PIK3Cα/β, KIT, PDK1, AKT1 and
MET. This high level of genomic disarray illustrates the challenge in identifying targets for
therapy.

MicroRNAs, recently identified small (~22 nucleotide) non-coding RNAs, seem to provide
an additional posttranscriptional level of protein regulation, and can act as either tumour
suppressors or oncogenes [25]. Although microRNAs are often underexpressed in cancers,
they are frequently overexpressed in thyroid cancers. It is interesting, too, that each thyroid
histological type has a different set of microRNAs that are preferentially altered, although
overlap exists. Table 1 illustrates some of the microRNAs that have been examined.

In papillary thyroid cancers, the overexpression of microRNAs-221 and -222 can reduce
p27kip1 and affect the cell cycle [26]. The same investigators [27] found four microRNAs
downregulated in ATC that may target proteins involved in the transformation of thyrocytes.
Other micro- RNA targets include E2F (apoptosis and cell cycle), PTEN and hTERT [28].
Antisense inhibitors to several microRNAs have reduced cell growth, supporting their
oncogenic role and providing evidence that microRNAs may be therapeutic targets [29].
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Gene microarrays have dramatically altered the field of cancer cell biology, identifying
many genes heretofore unsuspected to play a role in carcinogenesis, and providing fertile
preliminary observations that have led to testable hypotheses. In thyroid cancer, Griffith et
al. [30] carried out a meta-analysis of 21 studies, but only one included ATC patients. Onda
et al. [31] studied 10 patient samples and 11 ATC cell lines. They identified 56
underexpressed and 31 overexpressed genes in their cell lines, including ones regulating cell
structure and endocytosis (destrin), microtubules (stathmin), RaF inhibition (PBP), and Rab
protein localisation (GD12). Recently, Montero-Conde et al. [32] identified several
pathways altered in both poorly differentiated and anaplastic tissues, including cell cycle,
focal adhesion, MAPK, cytoskeleton and TGFB1.

Although identifying which genes are altered in malignancies is important, understanding
which proteins are affected, and how, may be more critical to developing therapeutic
interventions. A large number of studies have examined proteins in ATC and cell lines [20],
as summarised in Table 2.

These proteins participate in a broad spectrum of cellular events that, when dysregulated,
initiate or promote carcinogenesis and its progression. Their identification provides the
substrate for investigating their potential roles in ATC, and many have been the subject of
such investigations, both in vitro and in vivo.

Therapeutics: Preclinical
In vitro studies have been conducted in a variety of ATC cell lines (Table 3), with some
agents having more than one target. It should be noted that some long-established ATC cell
lines may be derived from other tumours [33], and studies using only these lines are not
included in this review.

We have determined that transcriptional activation of the transcription factor, PPAR-γ,
inhibits cell growth in ATC cells, and the response is inhibited by PPAR-γ shRNA [34].
This effect is mediated via induction of mRNA and protein of the small GTPase, RhoB and
was observed both in cell culture and in the nude mice xenograft model. Subsequent to
RhoB activation, the cyclin kinase inhibitor, p21waf1/cip1, mRNA and protein are induced.
The essential role of RhoB in this signalling pathway was shown by using either RhoB
siRNA or a dominant negative RhoB to inhibit PPAR-γ induced RhoB, p21 and cell growth.
Furthermore, we found that the histone deacetylase inhibitor, depsipeptide, induces RhoB
and p21 and inhibits cell growth, and that RhoB siRNA also silences the histone deacetylase
inhibitor effects. Thus, we have identified a novel pathway in ATC cells in which RhoB is a
critical signalling node that can be upregulated by multiple agents and that may offer
additional therapeutic strategies.

There is a broad spectrum of potential druggable targets for which drugs are either in clinical
trials or commercially available for other malignancies. These include EGF, VEGF, Akt/
mTOR, Ras/Raf/Mek/Erk receptors and pathways. Other important targets include anti-
apoptic genes and proteins, cell cycle and mitosis inhibitors, and epigenetic regulators
(Table 3).

Further support for the continued development of therapeutics comes from preclinical in
vivo studies. In ATC reports, these experiments are principally carried out using a xenograft
model of human ATC cell lines injected ectopically into nude mice (Table 4).

These studies have been primarily monotherapy, although a few included two drug
combinations. The results showed inhibitory effects on a variety of targets, including EGFR,
VEGFR, MAPK, microvessel density, neovascularisation, apoptosis, MEK, ERK, tubulin,

Smallridge and Copland Page 3

Clin Oncol (R Coll Radiol). Author manuscript; available in PMC 2014 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



farnesyl transferase and NF-κB. Furthermore, re-expression of the suppressor of cytokine
signalling 3 can sensitise ATC cells and tumours to chemotherapy agents [35]. Many
potential targets remain to be explored (Tables 2, 3), and multi-drug combinations will
almost certainly be needed to provide long-term control of this highly aggressive and
biologically genetically unstable tumour.

Clinical Management
The rarity of ATC means that no single institution sees a large number of patients. Published
series often extend over one or more decades, during which the radiation and chemotherapy
regimens change. Table 5 summarises the clinical features and outcomes of 1771 patients
(36% men; 64% women) treated between 1949 and 2007. The median survival of all series
was only 5 months, and the median 1-year survival was 20%. A reviewof 516 patients (33%
men) in the Surveillance Epidemiology and End Results (SEER) database revealed a 19.3%
1-year survival [36].

All ATC patients are TNM stage IV, with IVA being surgically resectable, IVB being
confined to the neck but unresectable, and IVC having distant metastases. Several variables
have been associated with length of survival when examined by uni- or multivariate
analyses, including patient age, tumour size, extent of surgery, radiotherapy, presence of
distant metastases at presentation, co-existing differentiated thyroid carcinoma and
chemotherapy. Several investigators concluded that younger patients fared better [37–40],
whereas two did not [41,42]. A smaller tumour size, as would be expected, also carried a
better prognosis [38,43,44].

Impact of Surgery
The extent of surgery is summarised in Table 6.McIver et al. [45] found that the median
survivalwas3.5months inpatients undergoing surgery versus 3 weeks in those receiving
palliative care. Of 13 patients surviving more than 1-year, eight had complete resections and
one had only minimal residua. One patient had positive lymph nodes and lived 23 years with
surgery as the only therapy. Passler et al. [16] reported that patients with an R0 versus R1/
R2 resection had a median survival of 6.1months versus 2.2 months and a 3-year survival of
50% versus 4%,whereas Tan et al. [43] obtained a 60% 5-year survival in five patients with
complete resection. Pierie et al. [38] noted a 1-year survival of 92% if resection was
complete, 35% if incomplete and 4% if no resection.

Swaak-Kragten et al. [46] observed a 1-year survival of 32% in patients with locoregional
complete resection versus 9% overall, whereas Haigh et al. [47] produced a median survival
of 43 months versus 3 months and 2-year survival of 75% versus 6% in patients who had
R0/R1 versus less surgery. Goutsouliak and Hay [48] showed that patients with more radical
therapy (at least partial thyroidectomy) had a longer median survival (9.7 months versus 3
months), whereas Brignardello et al. [49] reported that maximum surgery extended 6-month
survival (58% versus 10%). Kihara et al. [11] showed 1-year survival rates of 75, 17 or 0%
in patients having complete, incomplete or no resection, respectively. Several other authors
have supported the benefits of surgery [50–53], whereas one report found no correlation of
the extent of surgery with progression-free rate [54]. An analysis of the SEER database also
confirmed longer median- and long-term survivals in patients who had surgery and whose
tumour was confined to the thyroid or invaded only locally (Table 7).

Although in general, patients with resectable neck disease fared better than those whose
disease was unresectable, unfortunately the tumour size and local extension make R0 and R1
resections feasible in only a minority of patients (Table 6). These results have, therefore,
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resulted in extensive use of external beam radiotherapy to improve locoregional control of
the disease.

Impact of Radiotherapy
McIver et al. [45] found that patients receiving radiotherapy had a median survival of 2.3
months versus 3.5 months if surgery could be carried out, but only 3 weeks if palliative care
was provided. However, their conclusionwas that radiotherapy had no effect on local
recurrence. Junor et al. [50] found an initial response in 77 of 91 patients, but local relapses
in 50. Tan et al. [43] found more partial and complete responses when patients received >40
Gy, Pierie et al. [38] noted a 1-year survival of 54% (versus 17%) if >45 Gy was delivered,
and Swaak-Kragten et al. [46] noted improved survival from 1.7 to 5.4 months if total dose
>40 Gy.

Because patients historically had local recurrences, Kim and Leeper [55] added doxorubicin
to enhance radiosensitivity, and they administered hyperfractionated radiotherapy (Table 6)
to reduce late injury to normal tissue and to shorten the therapy time in treating a rapidly
dividing tumour. Nineteen patients (nine of whom had only a biopsy) had a median survival
of 1-year and a long-term local control rate of 68%, with most patients succumbing to
distant metastases [55]. Wang et al. [54] treated 23 patients with > 40 Gy radiotherapy,
whereas 24 received palliative therapy (<40 Gy). The former group were healthier (Eastern
Cooperative Oncology Group score ≤2 and no distant metastases) and had a longer median
survival (11.1 months versus 3.2 months). They also found a trend towards longer survival
in patients who received twice-daily fractionation [54].

Tennvall et al. [56] tried three radiotherapy delivery protocols in 55 patients to see if
hyperfractionated accelerated radiotherapy would improve response. All protocols delivered
a total dose of 46 Gy (dose/fraction and days of therapy varied) and all had surgery and
radiotherapy (varying sequence). Hyperfractionated accelerated radiotherapy reduced
treatment time and improved local control, but did not improve median survival (Table 8).
Other reports have also supported the use of radiotherapy, at least for local tumour control
[44,48,51,57].

In contrast, Dandekar et al. [41] used hyperfractionated accelerated radiotherapy in 31
patients, found no improvement in survival and discontinued the approach due to increased
toxicity. Wong et al. [58] also tried hyper-fractionated accelerated radiotherapy, using only
1 Gy/fraction, treating every 6 h (Table 6), but two patients developed myelopathy.

Newer methods of delivering radiotherapy may also improve local tumour control by
delivering higher doses to the planning tumour volume while sparing adjacent structures.
Nutting et al. [59] compared conventional radiotherapy, three-dimensional conformal
radiotherapy and intensity-modulated radiotherapy. Intensitymodulated radiotherapy
successfully delivered a higher dose to the thyroid bed and locoregional lymph nodes, with
lower spinal cord exposure. Bhatia et al. [42] used both three-dimensional radiotherapy and
intensitymodulated radiotherapy, with no significant differences noted. All four patients
surviving more than 2 years had no distant metastases and received aggressive radiotherapy
with median and 1-year survivals of 7 months and 29% versus 1.5 months and 4.5% in those
receiving palliative radiotherapy.

Systemic Therapies
Many studies over the past half century have used a variety of chemotherapeutic agents,
mostly in an uncontrolled manner in individual series that span many years or decades. In
general, most reports concluded that chemotherapy did not improve survival
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[37,38,45,50,56,57,60], although some studies reported benefits as part of multimodal
therapy [40,55,61]. One randomised Eastern Cooperative Oncology Group trial compared
doxorubicin ± cisplatin and found one partial response in 21 patients receiving the single
agent, but three complete responses and three partial responses (P = 0.03) in 18 patients with
combination therapy [62]. There were two prolonged complete responses of 41.3 and 34.7
months, with one of the patients having concomitant thyroidectomy and radiotherapy, and
the other having biopsy only.

Although surgery and radiotherapy have improved locoregional tumour control, and in a
minority have prolonged survival, the overall survival has changed little in more than 50
years, due to distant metastases.

Newer Therapies
Newer strategies involving systemic treatment are desperately needed. Few recent
prospective studies have been conducted in ATC patients. Ain et al. [63] carried out a phase
II trial with Taxol and reported progressive disease in 42% of patients; stable disease in 5%;
a partial response in 47%; and a complete response in 5%. The median survival was longer
in responders (n = 10) at 32 weeks, versus non-responders (n = 8) at 7 weeks. A phase II
trial of axitinib in thyroid cancer included two ATC patients; one had a partial response, the
other, progressive disease [64].

A phase II trial of fosbretabulin in 26 patients demonstrated stable disease in 27%, but no
partial responses [65]. As part of phase II trials enrolling patients with multiple thyroid
histologies, axitinib produced a partial response in one of two ATC patients [64] and
sorafenib produced stable disease in one of four ATC patients [66]. Two recent abstracts
were presented at the American Society of Clinical Oncology: Nagaiah et al. (ASCO 6-09)
reported that sorafenib produced a partial response in two and stable disease in four of 15
patients, whereas Ha et al. (ASCO 6-09) demonstrated a partial response in two and stable
disease in four of eight patients with imatinib. In a phase I clinical trials programme, six
ATC patients received one of a variety of newer agents; one patient had a partial response
(17%) [67].

Several individual cases have also been published. Shinohara et al. [68] had a stage IVB
patient who received multimodal therapy with extensive surgery, hyper-fractionated
radiotherapy and combination chemotherapy (cisplatin, doxorubicin, peplomycin and
granulocyte colony-stimulating factor (G-CSF)) and was alive for more than 2 years. Hogan
et al. [69] observed neck and mediastinal tumour reduction from erlotinib (150 mg daily) in
a patient whose tumour had focal strong membrane staining for EGFR, whereas Noguchi et
al. [70] gave a stage IVB patient neoadjuvant valproic acid (a histone deacetylase inhibitor),
doxorubicin, cisplatin and radiotherapy, producing 50% tumour reduction and permitting
subsequent surgery. The patient was disease free 2 years later. Gefitinib and docetaxel in a
phase I trial included one ATC patient, with a partial response of 4 months [71].

A number of thyroid trials are listed on www.clinicaltrials.gov. As of 8 November 2009, the
following trials were recruiting ATC patients in the USA: com-bretastatin, sorafenib,
pazopanib, and AG-013736 (phase II), and PPAR-γ agonist (CS-7017) + paclitaxel (phase I/
II). Three trials were open in Europe (sunitinib, pemetrexed + paclitaxel, and bevacizumab +
doxorubicin).

There are numerous genetic and epigenetic abnormalities detected by mutations and
methylation analyses, array-CGH, microarray, microRNA, and protein expression, providing
ample opportunities for drug discoveries. The success of treating ATC will probably require
building upon knowledge recently obtained, and integrating evolving technologies with
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systems biology. Approaches may involve a comprehensive molecular analysis combining
genome-wide screening with high throughout screens for drug-gable targets. Individualised
combination therapies that maximally inhibit major pathways and signalling nodes at
multiple genetic and epigenetic levels, possibly incorporating developing delivery systems
such as gene and virus therapies, and nanoparticles, will hopefully improve the outcome for
patients with ATC.

Palliative Care
Given the overall bleak prognosis, and extremely short survival time, careful attention to the
extent of treatment should be given as quickly as possible. For many patients, palliative care
should be instituted to manage symptoms of pain, nausea, anxiety, fatigue, dyspnoea,
depression, constipation and decreased appetite. In patients with oesophageal/ tracheal
compression, bleeding or pain, selective embolisation of thyroid arteries was shown to
improve swallowing, pain and breathing in one small series [72]. Throughout this arduous
ordeal, both the patient and their family may benefit from emotional, psychological, spiritual
and medical support. Ideally, a palliative care team, consisting of medical specialists, nurses,
pharmacists, a social worker, physical and occupational therapists, a chaplain and an ethics
consultant will be available.
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Table 1

Thyroid carcinoma and microRNAs [20,73,74]

MicroRNA

Tumour Increase Decrease Effect Gene(s) targeted

PTC 221; 222 138; 219 ↓ growth KIT; p27kip1

146; 155; 181b 26a; 345 HOX B2;TRAF6; IRAK1

FTC 197; 34b – – EFEMP2; ACVR; TSPAN3

192; 328

ATC 17–92; 106a,b 26a; 125b ↓ growth HMGA1

221; 222 138 hTERT

30a,d Rb; PTEN

146b; 21 let7c

ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; PTC, papillary thyroid carcinoma.
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Table 2

Anaplastic thyroid carcinoma and protein expression [20,35,75–77]

Function Overexpressed Underexpressed

Transcription PPAR-γ; HNF-1α; Id1; YBX1; HMG1(Y); Fra1; c–myc NKX2-1; FOXE1; Pax8; CBX7

Signalling EGFR; CXR4; pAKt1; pERK; JAK/STAT SOCS 1,3,5

Mitosis Aurora kinases; kα1 tubulin; topoisomerase-11 TACC3

Proliferation MKI67; OEATC-1; RBBP4; SPAG9

Cell cycle Cyclins D1, D3, E p21; p27

Apoptosis IAPs; DJ-1; NF-κβ; LCN2 Bcl2; αB-crystallin

Adhesion β-catenin; ILK1; FAK E-cadherin

Tumour suppressor p53 Rb; p16; PTEN
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Table 3

In vitro studies in anaplastic thyroid carcinoma [20,35,77–83]

Agonists Antagonists

Transcription

PPAR-γ Thiazolidinediones GW9662; siRNA

HMGI(Y) Adenoviral antisense

Signalling pathways

EGFR Gefitinib; cetuximab

VEGF Erlotanib; triptolide

EGFR/VEGFR AEE788

BCR-ABL; c-KIT Imatinib

BRAF Sorafenib

MAPKK(MEK) PD0325901; AZD6244

CXCR4 siRNA; AMD3100

PTEN/Akt TZD (↑PTEN) TZD (↓p-Akt); Akt1 inhibitor IV; SOCS

mTOR RAD001

JNK SP600125

Farnesyl transferase Manumycin

JAK/STAT SOCS siRNA

Mitosis

Aurora kinases Aurora kinase inhibitor; VX-680

Microtubules Paclitaxel; combretastatin; valproic acid

Proliferation

OEATC-1; RBBP4 siRNA

Oncolytic viruses ONYX-015; ONYX-411; mutant vaccinia; adenovirus HSV-TK; p53-regulated;
etoposide

SPAG9 siRNA

Cell cycle

Cell cycle Gemcitabine; opioid growth factor/OGF receptor

Cyclins CCND1 siRNA; imatinib; plitidepsin; triptolide

CdK inhibitors P53 adenovirus; BMP-7;
TZDs; SOCS

siRNA; mithramycin

Apoptosis

IAPs siRNA; Smac

NF-κB DHMEQ; triptolide

IGF-1 aIR3 antibody

DJ-1; LCN2 siRNA

PLK-1; DUSP26 siRNA

PPAR-γ TZDs

EGFR/VEGFR AEE788

BCR-ABL1; c-KIT Imatinib

Aurora kinase VX-680

Integrin-linked kinase QLT0267

Clin Oncol (R Coll Radiol). Author manuscript; available in PMC 2014 January 29.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Smallridge and Copland Page 15

Agonists Antagonists

STAT3 Mutant p53 Mutant p53 antisense

Hdm2 Nutlin-3

Migration

Autotaxin Autotaxin IL1β;IL4;TGFB1

VEGFR2 VEGFR-2 inhibitor1

Protein degradation

Proteosomes Bortezomib; nutlin-3

Epigenetic

Histone acetylation Valproic acid; depsipeptide

Methylation 5-aza-dCR
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Table 4

Anaplastic thyroid carcinoma in vivo xenograft studies [20,80]

Agent Percentage inhibition Agent Percentage inhibition

Imatinib 44–67% Manumycin ~100%

Gefitinib 53–>90% Mutant vaccinia ~96%

AEE788 58% Lovastatin –

Paclitaxel 44– ~100% dl1520 (ONYX-015)   23%

AZD6244 ~75% Lovastatin + ONYX-015 ~55%

Combretastatin A4P ~60% NGAL siRNA ~97%

AMD3100 92% DHMEQ >90%

Triptolide ~60%
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Table 6

Treatments for anaplastic thyroid carcinoma

Reference No. Surgery Radiotherapy Chemotherapy

[45] 134 Debulk =48; ‘cure’ = 35; biopsy=13 (residua:
none = 29; minimal = 35; gross = 42)

41/42 with gross residua; 38/54 with
near total resection

Alone in 4; postop adjuvant in
12; combination in 13

[40] 121 R0/R1=61; R2 = 45; R3 =25 58 64

[84] 38 23 12 3

[14] 48 R0/R2=34; R3 = 14 5000–6500 rads in 38; ≤ 4000 in 5 Adriamycin, cisplatin,
vincristine, 5-FU or endoxan in
17

[50] 91 R0/R1=5; R2 =28; R3 = 58 Daily (30–60 Gy in most); CR = 34;
PR = 36; SD =7; PD =9

18

[16] 120 R0 = 29; R1/R2 = 76; RX = 15 – –

[85] 17 R0/R1=8 12 11

[37] 50 Total = 34 (curative intent in 16) 23 (46%) 18 (36%) – alone or with
radiotherapy

[51] 33 R0 = 1; R1 = 2; R2 = 12; R3 = 18 NA NA

[43] 21 R0/R1=5; R2 =5; R3 = 11 <40 Gy in 4 (PR = 1); 40–60 Gy in 5
(PR = 2, CR = 1); 60 + Gy in 9 (PR
= 3, CR = 2)

6 (adriamycin ± other agent in
all)

[38] 67 R0/R1=12; R2 = 32; R3 =23 >45 Gy in 27; ≤ 45 Gy in 29 21

[57] 51 R0/R1=15; biopsy = 8; R3 =28 <40 Gy in 25; 40–60 Gy in 21;> 60
Gy in 5

13 (adriamycin in 9)

[86] 14 TTX = 7; debulk = 6; biopsy =1 2 5

[44] 37 R0/R1=19; R2 = 5 >30 Gy in 21; < 30 Gy in 7; 1971–
1983 = 200 cGy/d; 1984 HRT =
(130 cGy BID)

Adriamycin (30 mg/m2);
mitomycin C; cyclophosphamide;
cisplatin (70 mg/m2) in 32

[46] 75 R0/R1=19 (12 local CR); R2/R3=56 (7 CR) Radiotherapy in 72//Pre-1988: many
schedules (30–60 Gy total; fractions
= 2–3 Gy) 1988 protocol: TD = 50.6
Gy; 1.1 Gy BID 5 × /week

Pre-1988: some adjuvant
(doxorubicin; endoxan; 5-FU;
cisplatin) 1988: (a) doxorubicin
(15 mg/m2 week with
radiotherapy); (b) prophylactic
lung (1.5 Gy × 5 days +
doxorubicin); (c) adjuvant
doxorubicin – (50 mg/m2 3 week)
after radiotherapy

[39] 188 R0 = 16; R1 =15; R2 = 27; R3 =130 ≤20 Gy in 15; 20–45 Gy in 69;> 45
Gy in 71 (daily in 104; BID in 51);
TD =45–64 Gy

Adriamycin (20 mg/week) +
vinblastine (2 mg), then HRT
before surgery 124

[47] 33 R0/R1=8; R2 =16; R3=9 TD = 45–75 Gy Doxorubicin; paclitaxel;
cisplatin; carboplatin; VP-16;
cyclophosphamide; melphalan;
bleomycin

[58] 32 R2 = 10 HART (1 Gy, QID); TD=30–45 Gy Adriamycin (40 mg q 3 weeks)

[55] 19 R0/R1=0; R2 =10; R3 = 9 HRT (TD =5760 rad; 160 rad BID,
TIW) CR = 84%

Adriamycin (10 mg/m2 week)
with HRT

[87] 18 TTX = 3; TTX (3) + lobe (1) with
radiotherapy

Single modality = 6 (6–40 Gy);
multimodal = 7 (5–60 Gy)

4

[52] 20 12 total surgery; R0/R1 = 4 17.5 Gy in 7 fractions; days 10–20
of first 4 chemotherapy cycles; local
CR in 5; PR in 7.

Doxorubicin (60 mg/m2) +
cisplatin (90 mg/m2) q4wk in 12
≤ 65 years; mitoxantrone (14 mg/
m2) q4wk in 8 ≥ 61 years

[54] 47 TTX/partial = 22; debulk = 4; biopsy =21 ≤40 Gy in 24; > 40 Gy in 23 (daily
in 14; 1.5 Gy BID in 9)

Adriamycin ± cisplatin,
bleomycin in 4
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Reference No. Surgery Radiotherapy Chemotherapy

[56] 16 A (1984–1988) R0/R1=7 R2 = 2 A Preop = 30 Gy; postop = 16 Gy (1
Gy BID, 5 days/week)

Doxorubicin (20 mg/week), start
before radiotherapy

17 B (1989–1992) R0/R1 = 12 R2 =2 B Preop = 30 Gy; postop = 16 Gy
(1.3 Gy BID, 5 days/week)

22 C (1993–1999) R0/R1 = 15 R2 =2 C Preop = 46 Gy (1.6 Gy BID)

[11] 19 R0/R1=4; R2 =6; R3=9 TD≥45 Gy in 9; <45 Gy in 4 Adriamycin, cisplatin, etoposide,
paclitaxel alone or combination
in 12

[48] 75 R0/R1=4; R2 =9; R3 = 49 Radiotherapy<40 Gy = 26 (+
surgery = 7); ≥40 Gy = 10 (+
surgery = 5);≥ 40 Gy +
chemotherapy =7 (+ chemotherapy/
surgery = 2)

Platinum based = 9

[60] 40 R0 = 11; R1/R2 = 15; R3 =14 1.5–2 Gy qd; TD = 45–60 Gy in 14;
1.2 Gy BID, TD = 50–60 Gy in 5

Adriamycin ± cisplatin, etoposide

[53] 30 R0 = 3; R1 = 11; R2 =10; R3=6 TD = 40 Gy in 29 and 30 Gy in 1
(1.25 Gy BID 5 days/week) (boost
to 50–55 Gy in 7)

Doxorubicin (60 mg/m2) +
cisplatin (120 mg/m2): 2 cycles
before radiotherapy, 4 cycles
after radiotherapy

[41] 31 TTX = 2; lobe = 1; debulk = 7 HART (TD =60.8 Gy; 1.8 and 2.0
Gy BID; spinal cord <40 Gy)

None

[88] 15 R0/R1=7 2 Gy/day, 5 days/week (TD goal =
45–50 Gy)

Cisplatin (40 mg/m2, day 1)+
adriamycin (60 mg/m2, day 1) +
etoposide (100 mg/m2, days 1–3)
+ peplomycin (5 mg/day, days 1–
5) q3 week; G–CSF

[61] 39 16 (+ radiotherapy/chemotherapy) 16 with surgery; 4 radiotherapy
alone

16 with surgery; 9 chemotherapy
alone Adriamycin; bleomycin;
cisplatin

[42] 53 R0/R1=19; R2 = 12; R3 =22 IMRT = 13; 3DRT =40; 31
definitive, 22 palliative; fractions/
day = daily in 38, BID in 15

39 concurrent; 9 sequential; 5
none

[63] 19 TTX = 8; lobectomy = 3; biopsy = 8 5 Paclitaxel: 120 mg/m2 (n = 7);
140 mg/m2 (n = 12) over 96 h q3
week CR = 1; PR=9; SD =1; PD
=8

[89] 16 Inoperable stage IV B Neck: 2 Gy qd 5 days/week to 45
Gy (15 Gy boost); 45 Gy upper
mediastinum; TD = 60 Gy

After radiotherapy: adriamycin
=60 mg/m2 + cisplatin 40 mg/m2

q3 week CR = 1; PR=3; SD =4;
PD =8

[49] 27 R0/R1 (+ minimal residua) = 14; R2 = 6; R3
=10

1.8–2 Gy qd · 5 days/week to 36–40
Gy; neoadjuvant in 5

Adriamycin 20 mg/m2 + cisplatin
20 mg/m2 q week with
radiotherapy, then 60 mg/m2 q3
week (n = 22) or paclitaxel 80–
120 mg/m2/week 6 week if no
radiotherapy (n = 5)

Resectability: R0, intrathyroidal; R1, extrathyroid, macroscopically resectable; R2, partially resectable; R3, non-resectable.
NA, information not available; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; TD, total dose; BID,
twice daily; HRT, hyperfractionated radiotherapy; HART, hyperfractionated accelerated radiotherapy TTX = total thyroidectomy; IMRT, intensity-
modulated radiotherapy.
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