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Abstract
We explored the etiology of individual differences in reading development from post-kindergarten
to post-4th grade by analyzing data from 487 twin pairs tested in Colorado. Data from three
reading measures and one spelling measure were fit to biometric latent growth curve models,
allowing us to extend previous behavioral genetic studies of the etiology of early reading
development at specific time points. We found primarily genetic influences on individual
differences at post-1st grade for all measures. Genetic influences on variance in growth rates were
also found, with evidence of small, nonsignificant, shared environmental influences for two
measures. We discuss our results, including their implications for educational policy.

In the first years of formal schooling, learning to read is one of the major academic
milestones children reach. A major goal of reading research, therefore, is to understand what
factors underlie individual differences in this period of reading development. While most
previous research has focused on predictors of early reading ability, either concurrently or
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longitudinally, researchers are increasingly exploring influences on the growth of reading
(e.g., Morgan, Farkas, & Wu, 2011; Parrila, Aunola, Leskinen, Nurmi, & Kirby, 2005;
Petrill et al., 2010; Sonnenschein, Stapleton, & Benson, 2010). The current study extends
this work by using latent growth models in conjunction with behavioral genetic approaches
(i.e., a biometric latent growth curve model, or biometric growth model, for short) to explore
the etiology of individual differences in the rate of early reading growth.

Most previous studies of early reading development have used either phenotypic or
behavioral genetic approaches separately. Previous phenotypic research has explored growth
in emergent reading ability by using statistical techniques such as latent growth curve
models, simplex models, or hierarchical linear modeling. These studies consistently show
that growth on most early reading tests is nonlinear, with high rates of growth in the first
year or two of instruction, which then decrease as children age (e.g., Bast & Reitsma, 1997;
Francis, Shaywitz, Stuebing, Shaywitz, & Fletcher, 1996; Leppanen, Niemi, Aunola, &
Nurmi, 2004; McCoach, O'Connell, Reis, & Levitt, 2006; Parrila et al., 2005; Sonnenschein
et al., 2010). How much and at what stage of reading development the rate declines will
vary, as Paris (2005) points out, depending on the reading skill being assessed as well as the
items used. In addition, the exact timing of reading acquisition can also vary across
orthographies; word reading accuracy, for example, is known to develop more quickly in
orthographies that are more transparent than English (e.g., Landerl & Wimmer, 2008).
Therefore, as Parrila et al. (2005) argue, models of reading development should not assume
linearity. Assuming linearity could conceal variability in growth, as developing readers will
grow and plateau along different trajectories depending on variance in their own ability, the
orthography, and the reading skills being assessed.

Previous behavioral genetic studies of the etiology of individual differences in reading in
kindergarten through 4th grade have generally found primarily genetic influences and much
lower estimates of environmental influences by the end of the first year of formal reading
instruction (e.g., Byrne et al., 2007; 2009; Harlaar, Spinath, Dale, & Plomin, 2005; Taylor &
Schatschneider, 2010). In addition, previous studies found strong genetic influences on the
longitudinal stability of early reading development (e.g., Byrne et al., 2007; 2009).

An important extension of previous phenotypic and behavioral genetic studies is the use of
biometric growth models. These models essentially combine phenotypic and behavioral
genetic statistical approaches and are able to decompose the extent to which individual
differences at a particular time point and in subsequent growth are driven by genetic and
environmental factors. For early reading development, these models test whether the same
genetic or environmental influences that make children different from each other as they
start to learn to read affect how well they continue to learn to read.

To date, only one published study has applied biometric growth models to early reading
development (Petrill et al., 2010). Petrill et al. used data from identical and fraternal twins
on reading and reading-related tests. The twins were assessed at mean ages 6.07, 7.16, and
8.24 years, roughly matching up to the end of kindergarten, 1st grade, and 2nd grade. After
fitting a linear biometric growth model to the data, Petrill et al. found mostly shared
environmental influences and smaller but significant genetic influences for individual
differences at the first wave (the intercept) for the three reading measures. Individual
differences in the subsequent rate of growth on these tests, however, were driven only by
shared environmental influences. In contrast, significant genetic influences for individual
differences for growth were found for two reading-related skills, rapid naming and
phonological awareness.
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The biometric growth model results for the three reading measures in Petrill et al. (2010)
appear inconsistent with previous behavioral genetic studies of reading development that
routinely show strong genetic influences on both the longitudinal stability over this age
range (e.g., Byrne et al., 2009; Petrill et al., 2007) as well as at each time point (e.g., Harlaar
et al., 2005; Petrill et al., 2007; Samuelsson et al., 2007). Indeed, studies have shown
primarily genetic influences at the end of first grade (Byrne et al., 2007; Taylor &
Schatschneider, 2010). While it is certainly possible that the etiology of individual
differences in the rate of growth could be different from the etiology at a particular time
point, the conclusion that variation in rate of reading acquisition was due to only shared
environmental influences seemed to be inconsistent with the current literature. Further
evidence appears to be needed before concluding that there are no genetic influences on rate
of growth.

Current Study
The current study was motivated by the fact that the etiology of individual differences in
early reading development remains poorly understood with only one published study (Petrill
et al., 2010). By fitting biometric growth models to our data collected from twins in
Colorado, we are able to estimate the extent to which genetic and environmental factors
influence variance in early reading growth amongst twins in our sample. In addition, our
biometric growth models expand upon those used in Petrill et al. by: (a) fitting nonlinear
functions, (b) allowing unique variances (i.e., residuals specific to each time point) to
correlate in order to limit twin similarity not related to reading development, and (c) adding
covariates to test potential sources of genetic and environmental influences. Taken together,
our results extend previous research findings regarding the etiology of early reading
development.

Methods
Participants

Participants in the current study are part of the ongoing International Longitudinal Twin
Study (ILTS; Byrne et al., 2009) that includes twins from Australia, Colorado, and
Scandinavia. Due to significant differences between countries in mean performance and
reading education in kindergarten prior to the first testing wave (Samuelsson et al., 2008),
only participants from Colorado with English as their first language, recruited based on birth
records, are included in the present analyses. The Colorado sample at the end of
kindergarten consisted of 225 monozygotic (MZ; i.e., identical) twin pairs and 262 same-sex
dizygotic (DZ; i.e., fraternal) twin pairs for a total of 487 pairs. By post-4th grade few pairs
had been lost to attrition; the sample consisted of 210 MZ and 254 DZ pairs. Zygosity was
determined from DNA collected via cheek swabs, or in a minority of cases from selected
items from the Nichols and Bilbro (1966) questionnaire. Mean ages in years (standard
deviation, range) were 6.27 (.31, 5.50–7.08), 7.42 (.32, 6.58–8.67), 8.45 (.31, 7.67–9.50),
and 10.45 (.32, 9.67–11.67) for the post-kindergarten, post-1st grade, post-2nd grade, and
post-4th grade waves, respectively. T-tests corrected for twin non-independence revealed
only one significant sex effect (p = .04 at post-4th grade Passage Comprehension).

Procedure and Measures
The measures included in the present analyses are from larger test batteries that were
administered in the ILTS in the summer after each school year. Testing at each time point
was conducted in a single session lasting about 1 hour in the twins' homes. Two testers
separately assessed each twin at the same time. For all measures, raw scores based on total
number correct were used.
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The Test of Word Reading Efficiency (TOWRE; Torgesen, Wagner, & Rashotte, 1999),
Form A was administered post-kindergarten, post-1st grade, post-2nd grade, and post-4th

grade. In the Sight Word Efficiency subtest (Sight) children read a list of difficulty-ordered
words as quickly as possible, with the score being the number correctly read in 45 seconds.
The Phonemic Decoding Efficiency subtest (Decode) is a list of pronounceable nonwords
administered in the same way. Test-retest reliability for children aged 6- to 9-years-old was
reported as .97 for Sight and .90 for Decode.

The Woodcock Passage Comprehension subtest from the Woodcock Reading Mastery Test
(Woodcock, 1987) was administered post-1st grade, post-2nd grade, and post-4th grade. This
test uses a cloze procedure; participants read short passages silently and are asked to provide
the missing word that completes the sentence. Split-half reliability 1st grade 1 is .94.

The Wide Range Achievement Test Spelling Production subtest (Spelling) (Jastak &
Wilkinson, 1984) was administered post-1st grade, post-2nd grade, and post-4th grade.
Participants generate written spellings of orally presented words. The test consists of 45
items administered in increasing order of difficulty, and the test is discontinued after 10
consecutive spelling errors. The published alternate form reliability is .90.

The ILTS Colorado dataset also includes measures of parental education, the averaged
maternal and paternal self-report of years of education and, for children attending public
school, school literacy, the school average reading and writing scores from the Colorado
Student Assessment Program (CSAP).

Analyses
To assess genetic, shared environmental, and non-shared environmental influences on initial
performance and on subsequent growth on the reading measures, we fitted biometric growth
models (see McArdle, Prescott, Hamagami, & Horn, 1998; Reynolds et al., 2005) using the
Mx software (Neale, Boker, Xie, & Maes, 2003). As shown in Figure 1, biometric growth
modeling is a combination of latent growth curve modeling (Byrne & Crombie, 2003;
Loehlin, 1998; Meredith & Tisak, 1990; Preacher, Wichman, MacCallum, & Briggs, 2008)
and the standard twin model that decomposes phenotypic variance into independent genetic
variance (a2), shared environmental variance (c2), and non-shared environmental variance
(e2). The latent Intercept factor represents ability level at a particular time point, while the
two growth latent factors, Slope and Quadratic, represent increases in scores over time
(Slope) and either acceleration or deceleration in Slope over time (Quadratic). The loadings
from Intercept are fixed to 1, while the loadings from Slope and Quadratic are scaled to the
interval between time points. Not displayed in Figure 1, but present in our analyses, is a
control for age at Time 1 modeled as a definition variable (Neale et al., 2003).

The two TOWRE measures, Sight and Decode, were given at four time points, allowing us
to fit them to biometric quadratic growth models. Passage Comprehension and Spelling were
only given at three time points. Therefore we were unable to fit quadratic growth and,
instead, fit the data to biometric unspecified growth models. Unspecified latent growth
models (Byrne & Crombie, 2003; Duncan, Duncan, Strycker, Li, & Alpert, 1999; Preacher
et al., 2008) refer to models wherein at least one loading from the growth latent factor is
estimated in the model, rather than fixing all loadings a priori to a linear function.1 In
unspecified growth models, the growth factor is sometimes referred to as “Shape” to

1Examination of our raw scores across time points showed nonlinear growth. For example, participants gained an average of 8.10 raw
score points on Passage Comprehension between the end of kindergarten and end of 1st grade, but only gained 8.14 raw score points
between the end of 2nd grade and the end of 4th grade (see Table 1). For Passage Comprehension we also have W-scores (i.e., IRT-
scaled scores). While in some cases using W-scores may correct nonlinearity, our results did not change with W-scores.
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highlight that it is different from a fixed linear pattern (i.e., “Slope”). The biometric
unspecified growth models fit to Passage Comprehension and Spelling are very similar to
the model shown in Figure 1, but without the Quadratic factor and with the third time point
loading estimated.

As in the twin model, the covariance between Twin 1 and Twin 2 on latent Intercept and the
latent growth variables is a combination of genetic influences (A) and shared environmental
influences (C). All Intercept, Slope, and Quadratic correlations between Twin 1 and Twin 2
for MZ twins are set to 1 as they share 100% of both their genes and shared environment
(see Figure 1). For DZ twin pairs, the correlations between Twin 1 and Twin 2 for Intercept
C, Slope C, and Quadratic C are also set to 1, as they also share 100% of shared
environment. However the twin correlations for Intercept A and latent growth A are set to .5
as DZ twins share 50% of their segregating genes. There are no correlations between twins
for non-shared environment (E), as that is independent for each member of the twin pair.
The square of the resulting loadings from each A, C, and E factor onto Intercept, Slope, and
Shape estimates the proportion of variance accounted for by genetic, shared environmental,
and non-shared environmental influences.

Finally, unique variance, also known as time-point-specific error, is denoted by the small u's
under each time point. The unique variances represent the extent to which each person's
observed score at a time point varies from the score estimated by the latent growth model.
As in any latent variable model, this variation can be caused by a variety of factors, most
notably measurement error, that will make a person's score at one time point diverge from
what would be expected based upon the other time points. Biometric growth models use
pair-level data with unique variances for each twin in the pair. By not allowing correlations
between the unique variances, all twin similarity in the model is assumed to be related to the
latent intercept and growth factors. However, these residuals could include meaningful twin
similarity that is unrelated to the latent factors due to poor fit or violation of model
assumptions. It is also possible that the factors driving unique variances may be related
within twin pair. Even in a well-fitting model, time-point-specific factors such as family
disruptions (e.g., divorce, moving, or a new baby), motivation, and tester effects could cause
errors to be related within-pair. In a model without unique variance correlations, therefore,
the biometric estimates for intercept and growth will be a decomposition of variance related
both to reading development and to other, time-point-specific, similarity. Depending on the
magnitude and nature of the relation between the unique variances, this could lead to
inaccurate genetic or shared environmental estimates for reading development. In line with
other researchers who included unique variance correlations in their biometric growth
models (e.g., McArdle & Plassman, 2009; Reynolds et al., 2005), we directly test the
significance of these correlations in our models.2

Results
Descriptive Statistics and Univariate Heritability Estimates

Table 1 presents the means and standard deviations for the two TOWRE measures, Passage
Comprehension, and Spelling. Note that the N's at each time point do not exactly match the
487 twin pairs (974 individuals) due to missing data. While we use raw scores to measure
growth in the biometric growth models, the standard scores allow us to compare our sample
to the standardizing population averages for the TOWRE measures, Passage
Comprehension, and Spelling. The means for the standard scores show that our sample is

2We tested three variations: allowing all correlations to vary, constraining all correlations equal across zygosity and time points, and
constraining all correlations equal within zygosity (i.e., one correlation for MZ twins and one correlation for DZ twins).
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very close to the standardizing population mean standard score of 100 at each of the time
points. The standard score standard deviations on Sight, Decode, and Passage
Comprehension are mostly lower than the standardizing population average of 15, especially
post-kindergarten on Sight and Decode, suggesting a floor effect the consequences of which
will be considered in the Discussion.

Also included in Table 1 are the results from univariate analyses that provide estimates of
what proportion of variance at each time point is due to genetic (a2), shared environmental
(c2), and non-shared environmental (e2) influences. Across all time points on the four tests,
individual differences are driven primarily by genetic influences. Shared environmental
influence is significant only at post-kindergarten on Sight. Non-shared environmental
influences, including measurement error, are significant for all time points.

Biometric Growth Models
Quadratic growth—Table 2 presents the biometric quadratic growth modeling results for
the Sight and Decode measures. For each measure, two different models were fit: one
assuming that unique variances were correlated within twin pair (Correl.) and one assuming
that unique variances were independent within twin pair (Indep.). Estimates of genetic (a2),
shared environmental (c2), and non-shared environmental (e2) influences were obtained by
squaring the loadings of latent Intercept, latent Slope, and latent Quadratic onto the A, C,
and E factors (shown in Figure 1). Due to the large floor effect at the first time point (post-
kindergarten) as well as to facilitate comparison with Passage Comprehension and Spelling,
the quadratic function was centered at the second time point (post-1st grade). The means,
variances, and biometric estimates reported for Intercept reflect children's scores on the
measure at the end of 1st grade. In all cases the Quadratic is negative, suggesting that rates
of growth declined over this period of reading development.

As discussed previously, our decision to test the correlations between the unique variances
was motivated by the fact that factors driving unique variance may be related within the twin
pair. The overall fit statistic for models using raw data in Mx, log likelihood (−2LL), is
sensitive to the scale of the data and is not, on its own, interpretable. Given that the
independent unique variances model is nested under the correlated unique variances model,
we tested the significance of including the correlations by calculating the change in −2LL,
which approximates a chi-square distribution. Assuming that the unique variances were not
correlated significantly decreased the fit of the model for both TOWRE measures (Sight: Δ
−2LL = 226.53, Δdf = 2, p < .01; Decode: Δ−2LL =76.36, Δdf = 2, p < .01). In addition, as
shown in Table 2, the monozygotic (MZ) twin correlations were roughly twice the size of
the dizygotic (DZ) twin correlations (Sight: rUnique = .53 and .32; Decode: rUnique = .39, .
14). Not only were the unique variances significantly correlated, therefore, but the pattern of
correlations (i.e., higher MZ correlations than DZ correlations) suggests that part of the
reason they are correlated is due to genetic influences. Because of better model fit, as well as
to account for twin similarity that is independent of the latent factors, we chose the
correlated model as our final model and will focus all subsequent results and discussion on
these results.

The biometric estimates for Sight and Decode at intercept show that variance at the end of
1st grade was driven primarily by large genetic influences (a2

Intercept = .83 and .88 for Sight
and Decode, respectively), with significant, but small, non-shared environmental influences
(e2

Intercept = .08 and .11), and small, nonsignificant shared environmental influences
(c2

Intercept = .09 and .01). Over 80% of the variance in post-1st grade Sight and Decode
scores, therefore, was due to genetic influences.
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Similar patterns of biometric estimates, with large, significant genetic influences and small
shared and non-shared environmental influences, were also found for linear Slope (Sight:
a2

Slope = .80, c2
Slope = .06, e2

Slope = .14; Decode: a2
Slope = .79, c2

Slope = .08, e2
Slope = .13).

Finally, the biometric estimates on the Quadratic factor also showed that deceleration in
growth rates were also primarily influenced by genetic factors (Sight: a2

Quadratic = .86,
c2

Quadratic = .01, e2
Quadratic = .13; Decode: a2

Quadratic = .81, c2
Quadratic = .03, e2

Quadratic = .
15). Individual differences in development of fluent and accurate word reading (Sight) and
nonword reading (Decode) in our sample, therefore, were driven largely by genetic
influences.

Unspecified growth—In addition to the two TOWRE measures, our participants were
tested on Passage Comprehension and Spelling. As discussed earlier, these two measures
were given post-1st grade, post-2nd grade, and post-4th grade; thus, we are unable to fit the
data to a latent quadratic model. In order to capture the nonlinear pattern of growth shown in
the raw variables (Table 1), these two measures were fit to biometric unspecified growth
models. Table 3 shows the results of these models. Table 3 is very similar to Table 2, with
one extra column (3rd loading) showing the estimated loading from Shape to the third time
point. This loading was estimated at 2.14 for Passage Comprehension and 2.45 for Spelling,
showing that participants gained a little over half as many raw score points between 2nd and
4th grade as they did between 1st and 2nd grade.

Identical to our approach with Sight and Decode, we tested whether the unique variances for
Passage Comprehension and Spelling were significantly correlated within twin-pairs. As in
the TOWRE models, allowing the unique variances to correlate significantly improved the
fit of the models (Passage Comprehension: Δ−2LL = 30.84, Δdf = 2, p < .01; Spelling: Δ
−2LL = 24.40, Δdf = 2, p < .01). The MZ twin correlations were, again, roughly twice the
size of the DZ twin correlations (Passage Comprehension: rUnique = .33 and .14; Spelling:
rUnique= .31, .12). This suggests that part of what the unique variance correlations are
capturing is due to genetic influences. As with the TOWRE measures, we chose the
correlated model as our final model and will focus all subsequent results and discussion on
the results from this model.

Individual differences at post-1st grade for Passage Comprehension and Spelling, like the
TOWRE measures, were largely due to genetic influences (a2

Intercept = .74 and.75 for
Passage Comprehension and Spelling, respectively). Shared and non-shared environmental
influences were small (c2

Intercept = .14 and .10; e2
Intercept = .12 and .15). Unlike Sight and

Decode, variance on growth rates (Shape) showed evidence of moderate, although not
significant, shared environmental influences in addition to significant genetic and nonshared
environmental influences (a2

Shape = .27 and .31; c2
Shape = .35 and .36; e2

Shape = .38 and .
32). Individual differences in our sample for reading comprehension and spelling
development from post-1st grade through post-4th grade, therefore, appear to be driven by
both genetic and environmental factors.

Estimating overlap of biometric influences between latent Intercept and latent
growth—In addition to estimating the proportion of variance in initial ability and growth
due to genetic and environmental influences, the biometric growth model also estimates the
extent to which the genetic and environmental influences on the latent Intercept were shared
with the latent Shape (in the unspecified model) or with the latent Slope and Quadratic
factors (in the quadratic model). In other words, are the factors that affect reading ability at
the end of 1st grade the same as the factors that affect reading growth through the end of 4th

grade?
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The biometric correlations in Table 4 estimate how much the genetic and environmental
influences overlap. For example, the genetic correlation between Intercept and Slope on
Decode was large and significant at .90, suggesting that nearly all of the genetic influences
on a child's rate of growth are shared with those influencing performance at Intercept. For
Sight, the genetic correlation between Intercept and Slope was smaller but significant at .48,
suggesting that some of the genetic influences on individual differences in Slope were
shared with Intercept, with some independent genetic influences for Slope as well. The
genetic correlations between Intercept and Quadratic were large and significant (−.74 for
Sight and −.98 for Decode). As with the correlation between Intercept and Slope, the
magnitude of correlation for Sight was significantly less than 1.00; thus, some genetic
influences for rates of growth were independent of intercept. For both variables, the genetic
correlations between Slope and Quadratic (i.e., how quickly growth rates declined) were
large (−.94 for Sight and −.97 for Decode). The negative signs on the correlations with the
Quadratic indicate that the genetic factors that made a child higher at the end of 1st grade
and have higher rates of growth resulted in more deceleration of growth rates. Finally, given
that we found small and non-significant shared environmental estimates for Intercept, Slope,
and Quadratic, it is not surprising that none of the shared environmental correlations were
significant.

The pattern of genetic and environmental correlations between Intercept and Shape for
Passage Comprehension tells a slightly different story. The genetic correlation was large and
significant at −.69 as was the shared environmental correlation at −.86, but the negative sign
suggests that the genetic and shared environmental influences that made a child higher at
Intercept also made the child grow at a slower rate over time. Conversely, on Spelling, the
genetic correlation between Intercept and Shape was significantly positive at .82. Genetic
influences on intercept that were shared with rates of growth, therefore, made children
higher both initially and on growth rates. The shared environmental correlation for Spelling
was not significant.

Testing potential sources of biometric estimates—We separately included two
covariates, parental education and school literacy. To the degree that parent education and
school differences account for shared environmental variance, their inclusion as covariates
should reduce the estimates of shared environment influence and increase estimates of
genetic influence. As Table 5 shows, the covariates were significant predictors of individual
differences in intercept and rates of growth in most cases, accounting for a maximum of 7
percent of the variance. While some of the biometric estimates differ between our main
results reported in Tables 3 and 4 and the subsample with available CSAP scores in Table 5,
the pattern of biometric estimates was similar with and without the covariates included,
suggesting that our measures of parental education and school literacy scores fail to account
for significant genetic or shared environmental influences on the reading and spelling
measures.

Discussion
The goal of the present study was to examine the etiology of individual differences in early
reading development by fitting biometric growth models to longitudinal twin data. Our
results suggest that individual differences in three measures of reading and one spelling
measure at the end of 1st grade as well as subsequent growth through the end of 4th grade are
driven primarily by genetic influences, with some differences arising from the measures
used and assumptions underlying the modeling. These results are discussed as follows: (a)
we briefly review the main findings; (b) we discuss how our results expand upon previous
early reading development research; (c) we highlight limitations of the current methodology
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that should be taken into account for our study and all similar studies; finally, (d) we discuss
the larger implications of our results.

Genetic and Environmental Influences on Early Reading
We tested our participants on two measures of fluent and accurate word reading and
decoding, Sight and Decode, at the end of kindergarten, 1st grade, 2nd grade, and 4th grade.
In addition, our participants were tested on a measure of reading comprehension and a
measure of spelling at the end of 1st grade, 2nd grade, and 4th grade. Within our sample,
genetic influences appear to be the primary source of variance both at the end of 1st grade
and on how quickly children continue to grow through the end of 4th grade. For all four
measures, estimates for intercept from the best-fitting biometric growth model (shown in
Tables 2 and 3) showed the same pattern as the univariate results (Table 1) for post-1st

grade: strong genetic influences with small and nonsignficant shared environmental
influences. The biometric growth models also tested the genetic and environmental
influences on individual differences in rate of growth. Variance in growth (both Slope and
Quadratic) on Sight and Decode was explained by strong genetic influences with small and
nonsignificant shared environmental influences.

Passage Comprehension and Spelling showed a different pattern for variance on growth
rates, with moderate genetic influences and, although not significant, also showed evidence
for shared environmental influences. The lack of significance is partially due to the large
confidence intervals on growth rates compared to Sight and Decode, a consequence of the
smaller amounts of variance in growth rates for Passage Comprehension and Spelling than
for Sight and Decode (see Tables 2 and 3). This lack of variance suggests that children in
our sample grew at similar rates for Passage Comprehension and Spelling over this
developmental window.

In addition to these variance differences, Sight and Decode differ from Passage
Comprehension and Spelling because they are timed, fluency-and accuracy-based measures
while Passage Comprehension and Spelling measure accuracy alone. This raises the
possibility that timed measures could have larger heritability estimates for growth than
untimed measures of reading. However, reading comprehension and spelling, as larger
constructs, are different from speeded word reading and decoding in more ways than simply
the speeded component. In addition, as shown in the univariate estimates, by the end of 4th

grade there are strong genetic influences for all measures. Given that individual differences
in timed and untimed reading measures are equally heritable by the time the twins finished
4th grade, it seems unlikely that the differences in genetic and environmental influences on
growth rates for these measures is due primarily to the speed requirements.

Finally, the results from the latent intercept and growth correlations (Table 4) showed that
genetic influences on individual differences in growth had significant overlap with genetic
influences on individual differences at the end of 1st grade. Given that our estimates of
shared environmental influences on growth rates were close to zero for Sight and Decode
and not significant for all of the measures, the shared environmental correlations between
intercept and growth rates were generally also not significant. The one exception, the shared
environmental correlation between Intercept and Shape for Passage Comprehension, was
significant but negative (−.86). Combined with the significant negative genetic correlation
between Intercept and Shape, it appears as though the genetic and shared environmental
influences that resulted in higher comprehension performance at the end of 1st grade are
associated with lower growth rates through the end of 4th grade, probably reflecting the
nonlinear nature of reading comprehension development.
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Extending Previous Research on the Etiology of Early Reading Development
Our results expand upon previous phenotypic studies of early reading development by
exploring the etiology of individual differences in growth. In addition, they expand upon
previous behavioral genetic studies of early reading by exploring growth instead of focusing
on specific time points. Finally, our models incorporate two major modifications to the
models presented in the only currently published biometric growth curve study of early
reading (Petrill et al., 2010): using unspecified models to capture nonlinear growth, even
with three time points, and allowing time-point-specific variances to correlate.

It is interesting that the current results contrast with Petrill et al. (2010) and show that
individual differences in growth are not driven primarily by environmental factors, but by
genetic factors. In addition to possible demographic and measure differences, we believe
that the discrepancy in results is likely due to three main ways our samples and models
differ. First, there was more uniformity in instructional exposure at each wave of our study.
Our twins were tested during the summers following each school year, whereas the first
wave in Petrill et al. included twins tested not just during kindergarten but also during 1st

grade; thus, their first wave included pairs with quite different amounts of shared
environment for formal reading instruction during the period of most rapid reading
development. Second, the present study used nonlinear growth models, in line with both our
own raw descriptive statistics and evidence from previous phenotypic latent growth
modeling (e.g., Bast & Reitsma, 1997; Francis et al., 1996; Parrila et al., 2005), whereas
Petrill et al. assumed linear growth. Indeed, recent results from Dr. Petrill and colleagues
using nonlinear growth models have indicated significant genetic influences on individual
differences in reading growth (Logan & Petrill, 2012). Finally, our models go beyond Petrill
et al. by including correlations between the unique variances. The fact that the unique
variance correlations were significant for all four measures shows that the latent intercept
and growth factors did not capture all of the twin similarity in our data. Including the unique
variance correlations, therefore, allowed us to limit non-growth-related twin similarity in our
biometric estimates.

Caveats for Biometric Growth Models of Early Reading Development
Biometric growth models share assumptions about the normality of the underlying variable
distributions with many other statistical methods for studying developmental processes. As
shown in Table 1, the descriptive statistics for the first wave, post-kindergarten, show a large
floor effect for both Sight and Decode. Some of our participants were initially unable to do
the tasks, due to the fact that they were non-readers at the end of kindergarten. While floor
effects are common in studies of young readers (e.g., Catts et al., 2009) and are nearly
impossible to avoid if one is interested in studying early reading ability, it is important to
note that our estimates of individual differences in growth are limited by insensitivity of the
measures to individual differences among pre-readers.

It is also important to keep in mind when interpreting analyses of individual differences in
reading growth that variance in growth tends to be much smaller than variance at intercept
(McCoach et al., 2006; Parrila et al., 2005; Phillips, Norris, Osmond, & Maynard, 2002;
Sonnenschein et al., 2010). The idea that growth rates would be less variable than initial
ability fits in with the consistent finding that children's reading ability relative to their peers
is largely stable throughout elementary school (Butler, Marsh, Sheppard, & Sheppard, 1985;
Francis et al., 1996; Juel, 1988; McNamara, Scissons, & Gutknecth, 2011; Morgan et al.,
2011; Scarborough, 1998; Torgesen, Rashotte, & Alexander, 2001). This is not to say that
reading growth is not happening, just that individual differences in growth rate are small.
Therefore, saying that individual differences in growth in reading are driven primarily by
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either genetic or environmental factors may not have large practical implications if the
magnitude of the effect is small.

Implications of Our Results
The finding that performance on our measures of early reading development is driven
primarily by genetic factors has important implications for education policy. Specifically,
these results refute the idea that differences amongst schools in general, and teachers in
particular, are the primary influence on individual differences in early reading achievement.
However, these results may be limited to populations with universal and relatively consistent
reading instruction; estimates of genetic and environmental influences could differ in
populations with more variation in instruction and reading practice. Of course children learn
to read largely from reading instruction and practice in school, but this study suggests that
variance in learning rates for reading in this environmental context is primarily due to
genetic differences. Consistent with this result, Byrne et al. (2010) showed that twin pairs
separated into different classrooms in kindergarten, 1st grade, or 2nd grade are only slightly
less similar than twin pairs in the same classrooms. Classroom effects accounted for only
8% of the variance, consistent with the only large experimental study of classroom effects
on early reading (Nye, Konstantopoulos, & Hedges, 2004).

It is important to note the types of conclusions that cannot be drawn from biometric growth
models. These models estimate the average genetic and environmental etiology of individual
differences for our sample and others like it, but they are not able to address the etiology of
reading development for a particular child. Also, estimates of genetic and environmental
influences are proportional and dependent on the amount of genetic and environmental
variance being sampled: increased environmental variance, due to a broader sampling of
socio-economic status, linguistic background, or differences in approaches to instruction,
could yield different results. For example, Samuelsson et al. (2007) found low genetic and
high shared environmental influences on reading at the end of kindergarten in Scandinavia,
where letter-sound and reading instruction in school was delayed until 1st grade. But by the
end of 1st grade, Samuelsson et al. found that individual differences in reading among the
Scandinavian children were mostly due to genetic influences. This result is consistent with
findings from other representative twin samples tested near the end of the first year of
formal reading instruction from Australia, Colorado, the U.K., and Florida (Byrne et al.,
2007; 2009; Harlaar et al., 2005; Taylor & Schatschneider, 2010).

Testing potential sources of genetic and shared environmental influences—
While the current results offer insight into the etiology of early reading development, an
important next step is to understand the sources of the genetic and shared environmental
influences. Because our shared environment estimates were so low, and the main effects of
the covariates were weak, although significant, we were unable to detect large changes in
our pattern of genetic and environmental influences. Regardless, we encourage researchers
to move from speculation regarding sources to data-supported claims by including potential
genetic and environmental covariates.

Conclusion
Although we recognize that extreme environmental variation in early reading development
may have large effects on individual and group differences, the small shared family and
school environment influences on variation in our twins' early reading and spelling
development seem inconsistent with current popular and political views in the United States,
as illustrated by the No Child Left Behind Act (NCLB; 2008), that individual differences in
children's early reading skills are primarily due to environmental differences related to
family environment and/or teacher and school quality. While there is considerable evidence
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that intensive intervention can significantly ameliorate reading difficulties in some children,
other children may still fall short of grade level due to their slower genetically influenced
learning rates in reading and related skills (Byrne et al., 2008; Byrne et al., in press).
Therefore, greater attention to the importance of genetic influences could lead to a more
nuanced and realistic understanding of individual differences in children's early reading
development.
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Figure 1.
Biometric quadratic growth model centered at second time point. Note that age at the 1st

time point has been controlled for as a definition variable in Mx and that correlations
between unique variances (u's) at each time point have been constrained equal within
zygosity.
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