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Abstract
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the
delicate and unique specificity characteristic of such interactions. The accessory long gland-
reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like
particles. Upon delivery, venom components delay host larval development and completely block
host immune responses. The host range of this Drosophila endoparasitoid notably includes the
highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using
similarity as an indicator of putative homology, reveals that approximately 25% are novel or
classified as hypothetical proteins. Most of the remaining unigenes are related to processes
involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis,
and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins
demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp
and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants).
Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may
contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the
first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help
explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis
of a natural arms race between these insects.
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1.0 INTRODUCTION
The order Hymenoptera comprises approximately 130,000 insect species, with as many as
20% of these estimated to be parasitoid wasps in the Apocrita (Pennacchio, 2006). The
reproductive strategies within this group target host development and viability, and
contribute to community structure and ecology. Venom protein bioactivity has been studied
since the early twentieth century, when the first snake (Noguchi, 1909) and scorpion venoms
were investigated (Todd, 1909). The venom studies for pain-inflicting social insects such as
bees, bumblebees, yellow jackets, and ants, have clarified the ontology of venom proteins
and provided treatment applications (Hoffman, 1977; Peiren, 2005; deGraaf, 2009). In
contrast to social insects, parasitoid wasps must apprehend and physiologically control their
hosts to assure the success of their offspring. Early indications suggest that the venom
pharmacopeia of these insects will prove to be richer (Danneels, 2010), paralleling the
specific demands of host-parasite interactions.

Venom factors provide the armament for success in the host/parasitoid arms race. Venom
proteins target host physiology and development to provide the developing parasitoid with a
secure and nutrient-rich environment that will optimize its consumption of host resources
(Rivers, 1994; Rivers, 1995). Hosts often are subdued through neuro-active venom
components that may cause prolonged paralysis, particularly in ectoparasitic wasp attack
(Rivers, 2002). Additionally, parasitic wasps protect their progeny either by passively
evading the host immune system (e.g., Asobara tabida, (Prevost, 2009)) or by actively
suppressing host immunity (e.g., Leptopilina spp. (Dubuffet, 2009; Lee, 2009)). Many
studies in D. melanogaster have found that the cellular and humoral responses are
predominantly under the control of Toll/NF-kappa B and JAK-STAT signaling pathways.
Melanization of wasp egg also contributes to the host defense response (Lemaitre, 2007;
Schlenke, 2007; Govind, 2008). These molecular mechanisms appear to be active in other
insects as well (Bitra, 2012), and are targets of inhibitors arising from venoms, polydnavirus
gene expression, and calyx fluid (Nappi, 2009; Strand, 2012).

Leptopilina heterotoma (Lh), a member of a moderately sized genus (Schilthuizen, 1998;
Allemand, 2002), successfully parasitizes most Drosophila species tested (Carton, 1986;
Schlenke, 2007). It has been known for over fifty years that Lh strains must produce venom
factors (Walker, 1959). The majority of the virulence activity is attributed to the action of
virus-like particles (VLPs) that are produced and assembled in the long gland-reservoir
complex (Rizki, 1992; Morales, 2005; Chiu, 2006; Ferrarese, 2009). The long gland is a
simple cylindrical organ lined peripherally with large, polyploid secretory cells. Internal and
concentric to this cell layer is a single-celled layer of intimal cells, which lines the long
gland lumen. A supracellular canal system of individual secretory units, one per secretory
cell, feeds into the long gland lumen (Ferrarese, 2009). Antibody staining experiments have
revealed that some VLP proteins are produced in the secretory cells; they enter the long
gland lumen via secretory units and appear associated with small membranous structures.
These structures undergo morphogenesis and assemble 3–6 spikes to assume unique stellate
morphologies. Stellate VLPs and their constituent proteins block hemocyte-mediated wasp
egg encapsulation by inducing cell lysis and apoptosis (Rizki, 1992; Chiu, 2002; Morales,
2005; Chiu, 2006; Ferrarese, 2009).

Leptopilina heterotoma attack delays larval host development (Schlenke, 2007). The
biological activities of venom components that contribute to the alteration of Drosophila
development and immunity are largely unknown. We are interested in understanding not
only the nature of bioactive molecules in the venom and those associated with VLPs, but
also the process of VLP assembly and morphogenesis that occurs in the unique long gland-
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reservoir environment. We also want to know if the venom factors can contribute to immune
suppression via an activating or adjuvant-type role, and whether VLPs have a viral origin.

To address these questions, we have initiated a cDNA-based transcriptome analysis of the
venom gland. The enzymatic profile and KEGG terms of our Blast-based protein predictions
suggest that in addition to conserved signaling, cell cycle, and housekeeping proteins, the Lh
venom gland expresses hypothetical and unknown proteins that may help maintain the
glandular environments for VLP and venom activities. Many enzymes with predicted
biological activities that have been reported in studies of other parasitoid wasps, and in the
stinging Aculeata, also appear to be utilized by Lh. Given the conservation among immune
pathways in insects, of which Drosophila has been the classic model (Schmid-Hempel,
2005; Tanji, 2005; Cherry, 2006; Govind, 2008), we predict that Lh venom factors with
inhibitory functions in the D. melanogaster host will also modulate immune physiologies of
other Drosophila species. A comprehensive understanding of the molecular strategies
underlying the success of this natural Drosophilia parasitoid can potentially be used to target
economically significant insect pests and pathogens.

2.0 METHODS
2.1 Insect stocks

L. heterotoma strain New York USA (Chiu, 2006; Schlenke, 2007) were raised in house at
25 °C on the y w strain of D. melanogaster on standard corn meal and yeast diet.

2.2 Transcriptome library preparation and sequencing
500 Lh females were anaesthetized by CO2 and washed with 70% alcohol. Their long gland-
reservoir-ovipositor complexes (called venom glands here), were removed simply by pulling
the ovipositor, and frozen at −70°C. Eight μg of total RNA were extracted and used to
prepare a standard cDNA library (Evrogen) in the pAL17.3 vector using the SMART
approach (Zhu, 2001). The library was amplified by PCR. SMART-Sfi1A oligonucleotide
5′-AAGCAGTGGTATCAACGCAGAGTGGCCATTACGGCCrGrGrG-3′ CDS-Sfi1B
primer 5′-AAGCAGTGGTATCAACGCAGAGTGGCCGAGGCGGCCd(T)20-3′ SMART
PCR primer 5′-AAGCAGTGGTATCAACGCAGAGT-3′ pAL 17 dir primer 5′-
CCAGGGTTTTCCCAGTCACGA-3′ pAL 17 rev primer 5′-
CACAGGAAACAGCTATGACCA–3′ More than 950 randomly selected clones in ten 96-
well plates were sequenced by Sanger method (Genewiz, New Jersey).

2.3 Sequencing confirmation
A dozen clones were re-sequenced. Transformed E. coli were grown for 12 hours at 37°C in
5 ml of Luria Broth-ampicillin cultures. Approximately 500 ng of the associated pAL 17.3
plasmids were obtained from 1 ml Luria Broth-ampicillin cultures grown for 12 hrs at 37°C.
QIAprep Spin Miniprep Kit (http://www.qiagen.com) procedure was followed to obtain the
cloned inserts that were then sequenced using a T7 sequencing primer (Genewiz, New
Jersey). T7 Universal 20mer Primer: 5′-TAA TAC GAC TCA CTA TAG GG-3′ The
sequences were compared to the originals using EBI (http://www.ebi.ac.uk/Tools/)
Needleman pairwise alignment (Needleman, 1970). The average percent identity of the
nucleotide sequences was 98.8%, calculated as the number of indels and mismatches.

2.4 Raw EST processing
The raw Sanger nucleotide sequences were processed with the standard methodologies of
(1) phred/phrap/consed (Ewing, 1998b; Ewing, 1998a) and (2) Cap3 (Huang, 1999). For
phredPhrap, base calls and quality assignments were made; cloning elements and terminal
N’s were trimmed, and sequence assemblies were compiled with the highest stringency
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(phrap 1.090518 http://phrap.org): (1) Minimum of 40 bp in common (minmatch 40); (2)
Minimum of 95% sequence identity (penalty 95); (3) 95% identity within joint overlaps
(repeat stringency 0.95). This analysis of 960 unigenes resulted in 90 contigs assembled
from 223 clones.

The results were validated by submitting the original singlet unigene sequences to Cap3 via
the Mobyle Pasteur webserver (http://mobyle.pasteur.fr). 65 contigs (72% of total) were
identified by both phrap and Cap3. Individual clones from contigs assembled from phrap but
not confirmed by Cap3 were Blasted. In all cases, the individual Blasts supported the
assembled Blast results. The E values of the unique contig Blasts were significant, averaging
10−41, supporting their quality. In addition six randomly chosen phrap-identified contigs
were selected and manually aligned. Overlapping regions were 99% identical. These
alignments confirmed the phrap-assembled results in addition to manual consed reviews.
The assemblies are referred to simply by a contig number while singlet unigenes are referred
to by their plate number.

2.5 Characterizations and annotations of sequences based on similarities and potential
homologies

Clean, base-called nucleotide sequences and contigs were submitted to the NCBI website
(http://blast.ncbi.nlm.nih.gov/) BlastX algorithm (S. Altschul, 1997). Default parameters
were utilized (Alignment scoring: Word length = 3; Expect threshold = 10; BLOSUM62;
Existence = 1; Extension = 1) and searches were conducted against the RefSeq nr database
(Pruitt, 2004). An E-value of 10−5 was applied as criterion for the identification of the most
distant similarity and putative homology for consideration. Alignments were inspected for
sufficient length of 75 contiguous residues or 25% of the putative best homolog. Further
investigations were conducted as necessary by translation to the appropriate reading frame
and BlastP or PSI-Blast (Altschul, 1997) using the default parameters. Results are presented
in Supplementary Tables S1 and S2. The San Diego Supercomputer (SDSC) Biology
Workbench 3.2 webserver (http://workbench.sdsc.edu/) was used for ORF analysis and
translations. Rarely identified similarities with higher level eukaryotic sequences did not
surpass those with insect species and likely arise due to extreme conservation in sequences
that are not necessarily specific only to insects.

Alignments were created using Needleman pairwise (Needleman, 1970), ClustalOmega
(Sievers, 2011), and/or MUSCLE (Edgar, 2004b; Edgar, 2004a) algorithms with default
parameters via the EBI webserver. Domain annotation was used when the evolutionary
relationship was not fully resolved and limited to motifs and/or folds. The NCBI Conserved
Domains Database (CDD) (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml)
(Marchler-Bauer, 2004; Marchler-Bauer, 2010), SMART (http://smart.embl-heidelberg.de/)
(Letunic, 2012), and PFAM 26.0 (http://pfam.sanger.ac.uk/) (Finn, 2010) were utilized.
Criteria for the domain identification included primarily an E-value of no more than 10−5. E-
values of 10−3 were accepted only with support from an additional source that provided
concurrent sequence groupings within motifs, domains, and/or superfamilies. Annotations
found in UniProt (http://www.uniprot.org/) (Magrane, 2011) were frequent starting points
for transcript annotation.

Sequence characterizations include the terms “novel” and “hypothetical.” A sequence was
considered novel if blast searches yielded no significant alignments at Evalues of less than 1.
Sequences were defined as hypothetical when their most similar significant blast results
were annotated as hypothetical in the nr database.
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2.6 KEGG and EC number annotations
WebMGA (http://weizhong-lab.ucsd.edu/metagenomic-analysis/) (Wu, 2011), KAAS
(http://www.genome.jp/tools/kaas/) (Moriya, 2007), and PRIAM (http://priam.prabi.fr/
REL_JUL06/index_jul06.html, database profil_ENZYME_SEP12) (Claudel-Renard, 2003)
webservers were utilized to collect the Enzyme Commission (E.C.) and KEGG
classifications. EC/KEGG annotations were collected to supplement and organize the
primary sequence-specific assignments from the NCBI Blast analyses. A significance
criterion of a maximum of 10−5 was utilized. Priority was placed on predictions with smaller
E-values when multiple KEGG or EC numbers were predicted. The results of the EC
analyses are presented in Tables 1 and S4 and Figure 2. The KEGG results are presented in
Table S5 and Figure 3.

3.0 RESULTS AND DISCUSSION
3.1 The transcripts

3.1.1 Overview—More than 950 original clone sequences from Lh venom gland
expression were cleaned and assembled using pred/phrap methodology (Ewing, 1998b;
Ewing, 1998a) to yield 827 preliminary unigenes. 153 (145 singlets and 8 contigs) of the
827 are novel, lacking reliable domain identifications and/or significant similarity to
published sequences. An additional 42 sequences (37 singlets and 5 contigs) are similar to
hypothetical proteins that lack annotation. Here, we present 281 unique putative identities
within standard limits of similarity and homology searches (see Methods and Supplemental
Tables S1 and S2). The unigene singlet sequences (characterized, novel, and hypothetical),
have been deposited in the NCBI expressed sequence tag database, dbEST
(LIBEST_028179, submitted 04/15/2013, http://www.ncbi.nlm.nih.gov/dbEST/ (Boquski,
1993), see Supplemental Table S6). These sequences have been submitted in their raw
forms, with no base-calling, and have been trimmed of ligation sites, polyA tails, and base-
call ambiguity of greater than 5%.

Of the 281 sequences presented here, we have classified 261 unigenes as part of venom
gland cellular function, metabolism, and physiology (Supplementary Table S1) and also into
more specific functional subclasses (e.g. cell cycle, energetics). At least some of these
proteins may contribute to the venom gland physiology and may be important in producing
or maintaining functional venom components. Noteworthy molecules include those similar
to proteins in MAP kinase signaling (Figure 3) and to immunity proteins such as a NF-κB
inhibitor-interacting Ras-like protein, and a Drac1 Ras-related protein (Table S1).
Significant similarities to cytoskeletal regulators include a kalirin-like (Rho GEF) protein
and rasputin CG9412-PB (Table S1). Proteins with pleiotropic effects ranging from
apoptosis to developmental cascades were found among the Blast results, including Roadkill
and an enhancer of sevenless 2B-like protein (Table S1).

The remaining unigenes are categorized as putative venom-effector proteins that may target
host cells (Supplementary Table S2) and are divided into putative venomic bioactivities
possibly affecting behavior, reproduction, or metabolism. Specific proteins are discussed in
Sections 3.2, 3.3, and 3.4, including examples that affect the development and nutritional
status of the host partner in other parasite-host systems.

3.1.2 Taxonomic relationships predicted via protein similarity—Taxonomic
binning of 281 unigenes conducted according to the most similar sequences is presented in
Figure 1 and Supplementary Table S3. 90% of the most closely related sequences originate
in Apocrita species. Of this number, half have been sequenced from ants (e.g. Florida
carpenter ant, Camponotus floridanus, and Jerdon’s jumping ant, Harpegnathos saltator),
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while the remaining are almost evenly split between bees (e.g. A. mellifera) and parasitic
wasps (e.g. N. vitripennis). These numbers are likely biased because of limited sequence
availability; as more Apocrita genomes become sequenced, closer relationships between the
genes of these individual Hymenoptera will become more evident. We also found one
sequence each with some similarity to viral and bacterial proteins. A domain (PF00740)
from the Parvovirus VP2 coat protein, associated with viral assembly, was identified by
Pfam (E = 1.7e-6) in one transcript with high identity to the Maverick capsid-like p31.10
protein from Cotesia congregata bracovirus [GenBank CBZ06032.1]. Maverick elements
are integrated in the chromosomes of a number of related insects (Dupuy, 2011). Another
transcript is similar [E = 1e-126, 82% identity] to a conserved outer membrane protein from
Acetobacter pasteurianus and other acetic-acid bacteria. A bacterial intein domain [Pfam
Hint_2 PF13403, at E = e-18, or better] is present in the same transcript suggesting that the
encoded protein is self-splicing. Both these sequences merit verification and analysis and
further details will be reported elsewhere.

3.1.3 Enzyme Profiling—The PRIAM webserver was used to predict the enzymatic
character of the Lh venom gland transcriptome (See Figure 2, Supplementary Table S4).
Table 1 lists the EC number classes found within the profile. The major classes include the
EC 2.7.- transferases and the EC 3.1.-, 3.4.-, and 3.6.- hydrolases. Phosphorus group
transferases are part of the dominant EC 2.7.- group (21%), which includes kinases,
enzymes that are expected in high concentration given their prominent roles in cell signaling
and energy metabolism. The EC 3.6.- subclass, the other major predicted group (also 21%),
are enzymes that hydrolyze acid anhydrides, such as the DNA and RNA helicases (3.6.12.-
and 3.6.13.-). The next largest groups are the esterases (EC 3.1.-, 8%) and peptidases (EC
3.4.-, 9%).

Within the EC 2.7.- group there is heavy representation of enzymes such as mitogen-
activated (EC 2.7.11.24) and Ser/Thr (EC 2.7.11.1) kinases. The esterases (EC 3.1.-) are
most highly represented by the phosphatases (EC 3.1.3.-), while the peptidases (EC 3.4.1.-)
most frequently predicted are related to de-ubiquitination (EC 3.4.19.12) and the proteasome
(EC 3.4.25.1). These profiles fall within normal cellular function, but are also suggestive of
higher levels of protein trafficking and secretion.

3.1.4 Functional KEGG Profiling—Figure 3 presents the major functional groupings
classified by KEGG numbers (Supplementary Table S5). The largest transcript group,
accounting for 12% of the total, is associated with ribosome assembly and protein synthesis.
Also related to protein production are the functional groups of translation factors (5%) and
post-translation modifications (PTM) (5%). KEGG pathways associated with energy
production, including the TCA cycle, glycolysis, and oxidative phosphorylation, accounted
for 10% of the total. Also significant, were transcriptional functionalities (15%), cytoskeletal
proteins (4%), and the ubiquitination pathway (4%).

3.2 Host hormone/pheromone and metabolism modulation
3.2.1 Host maturation
3.2.1.1 Pupation: Juvenile hormone: Pupation is controlled by juvenile hormone (JH) with
high levels inhibiting metamorphosis (Nijhout, 1974; Beckage, 1982). JH titer increases in
the Lepidoptera Pieris rapae upon parasitism by the endoparasitic wasp Pteromalus
puparum (Zhu, 2009). An impressive increase in JH titer of 100 times has been detected in
the Lepidoptera Lacanobia oleracea upon parasitism, leading to the arrest of its maturation
(Bell, 2010). Most commonly, these effects are a result of JH esterase inhibition in
parasitism by PDV wasps such as Glyptapanteles liparidis and Microplitis demolitor
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(Dover, 1995; Schafellner, 2007). The more recent venomic studies notably have not
identified proteins that effect JH titers (Crawford, 2008; deGraaf, 2010; Vincent, 2010).

Methyltransf_FA, a domain closely associated with enzymes of the JH biosynthetic
pathway, has been identified in the transcript 5A01 (Table S2) at high levels of significance
[Pfam 12248, Methyltransf_FA; E = 3.3e-20]. Although the top scoring BlastX results
(Altschul, 1997) are unannotated, they contain this domain and are encoded in closely
related Hymenoptera. Also found within these hits, are Drosophila spp. sequences. The D.
melanogaster homolog to 5A01 is CG10527 [GenBank NP_611544; E = 9e-55; 49%
identity], a gene that is not necessary for JH production, but may be involved with JH
pathways (Zhang, 2010). CG10527 mutants are resistant to the effects of JH (Zhang, 2010).

As an additional potential source of developmental control, Contig88 (Table S2), aligns with
high significance and identity to a N. vitripennis sequence [GenBank: E = 7e-59; 38%
identity] with putative methyltransferase 235L-like function. This Nasonia gene is
associated with the JH biosynthetic pathway [KEGG ko00981]. However, Contig88 shows
slightly higher sequence similarity to a putative malonyl-CoA O-methyltransferase BioC-
like protein [GenBank XP_003708425.1; E = 3e-61; 40% identity]. Domain identification
within this transcript cannot at present be narrowed to a specific methyltransferase due to
multiple borderline CDD database hits.

3.2.1.2 Host molting and eclosion: Transcript 9C12 (Table S2) demonstrates strong
similarity (E-value = e-82; 56% identity) to the N-terminus of a N. vitripennis [GenBank
XP_001604327] protein containing an ecdysteroid kinase domain (CDD: E-value = e-11).
Molting, which involves both cuticle loosening and peristaltic contractions, is under the
control of a hormone and neuropeptide cascade: eclosion hormone ecdysis-triggering
hormone and crustacean cardioactive peptide (Gammie, 1999). Phosphorylation of
ecdysteroids inactivates these molecules, suppressing morphogenesis until it is appropriate
(Makka, 2002). In silkworm Bombyx mori ovaries, ecdysteroids are sequestered and then
reactivated, or synthesized de novo, often through the opposing actions of the specific kinase
and phosphates (Sonobe, 1999). Venomic modulation of ecdysteroid levels, and repression
of host metamorphosis, has been recorded in multiple wasp-host pairs (Beckage, 2004).

LARK RNA-binding protein mutants show a disruption in circadian clock-related events, in
particular, eclosion (Newby, 1993). LARK is a RNA Recognition Motif (RRM) domain-
containing protein with multiple circadian associated protein binding partners (Huang,
2007). RRM domains perform various RNA-binding events (Maris, 2005). In D.
melanogaster, levels of Ecdysone-induced-protein 74EF (E74), a repressor of eclosion,
positively correlate with LARK expression levels (Huang, 2007). These results suggest that
LARK controls Drosophila metamorphosis via translational modulation of eclosion
effectors (Huang, 2007) and that exogenously-supplied LARK could suppress pupation. A
Lh venom gland transcript (6B05, Table S1) with very high identity (93%) to the New
World ant Acromyrmex echinatior, GenBank EGI70876 ortholog suggests yet another
mechanism by which host development is retarded.

3.2.2 Xenobiotic detoxification and hormone synthesis—Commonalities in the
enzymes in xenobiotic detoxification and hormone synthesis has complicated the
understanding of host-parasite interactions; it is difficult to tease out the evolutionary
importance in favor of one pathway or the other. These oxidative enzymes (e.g. cytochrome
P450s, various esterases, glutathione S-transferases) detoxify and catalyze hormone/
pheromone biosynthesis (Scott, 2008); functions that are potentially advantageous within a
parasite’s chemical strategy (Oakenshott, 2010).
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Multiple transcripts (e.g. 2D05, 7E01, 3F11, Table S2) associated with detoxification and/or
hormone/pheromone biosynthesis have been annotated in the Lh venom gland. This
functional group includes sequences similar to Glu—Cys ligase [GenBank XP_001605407],
cytochrome P450 [GenBank NP_001165992], and epoxide hydrolase 1 precursor [GenBank
NP_001128399]. The presence of such enzymes within the venom gland of a parasitic wasp
suggests either hormone biosynthetic or detoxification functions, both potentially
contributing to the ultimate goal of parasite survival within its host.

3.2.3 Energy balance modulation—cGMP-dependent protein kinases (PKG) catalyze
the addition of a phosphate group to serine or threonine in the presence of the secondary
messenger molecule cGMP. Leptopilina heterotoma venom modulation of host energetics is
suggested by a transcript (2H01, Table S2) with similarity to the kinase domain from the
leafcutter bee, Megachile rotundata [GenBank XP_003704405]. Identity is at 86% within
their predicted STKc_PKA domains. Interestingly, M. rotundata XP_003704405 is
orthologous to the product of the D. melanogaster foraging gene, for (CG10033). In
Drosophila, polymorphism in for creates two modes of food seeking behavior in larvae with
“rovers” showing higher sucrose responsiveness (Osborne, 1997; Belay, 2007). These
behavioral phenotypes are correlated to allele-specific PKG enzymes with higher catalytic
activity (Osborne, 1997). Acceleration of carbohydrate and lipid catabolism is a well-known
parasitic strategy (Vinson, 1980). An increase in PKG catalytic activity in the venom via the
expression of a for ortholog could possibly raise nutrient levels in the host.

3.3 Modulation of host behavior and environmental interactions
3.3.1 Yellow protein—The major royal jelly proteins (MRJPs), or yellow proteins, have
been investigated in the venoms of both the honey bee (Apis mellifera) (Peiren, 2005;
Peiren, 2008) and the Chelonus inanitus wasp (Vincent, 2010). MRJP genes show extensive
duplication and diversification (Albert, 2004; Drapeau, 2006; Ferguson, 2011). The largest
currently-known MRJP gene family is in the Nasonia genomes (The Nasonia Working
Group, 2010), suggesting that they are important to both caste-dependent and -independent
insects (Drapeau, 2006; Ferguson, 2011).

Yellow proteins function both in Drosophila male courtship behaviors, starting in the third
instar (Drapeau, 2003), and in melanization (Brehme, 1941; Biessmann, 1985), although
their exact roles in either process are not clear (Han, 2002; Drapeau, 2003; Ferguson, 2011).
Melanin is used in wound healing and encapsulation and its expression is up-regulated upon
immune challenge (De Gregori, 2001).

Sequence 3C06 (Table S2) shows similarity (percent identity = 26% and similarity = 45%)
to yellow-like proteins from at least 100 other Drosophila species [e.g. D. subobscura
GenBank CAC16206] and may indicate specific host targeting. Although 3C06 is certainly
related to many Apocrita yellow proteins (approximately 50% identity), the well-studied
MRJP 8- and 9-related sequences from the honeybee (Peiren, 2005; Peiren, 2008) and
Chelonus (Vincent, 2010) venoms were notably absent from the top 100 Blast hits.
Experimental data is needed to test if 3C06 can disrupt melanization, delay egg
encapsulation, or modulate sexual maturation in their larval hosts.

3.3.2 Chemosensory and hormone/pheromone-binding proteins—Odorant-
binding and other chemosensory-binding proteins (OBPs and CBPs, respectively) are
significant to communication in insects. These small (14 to 20 kD) extracellular proteins
possibly aid in the solubilization and transport of small hydrophobic odorant molecules and
pheromones (Pelosi, 1994; Pelosi, 1996; Pelosi, 2005). The functions of OBPs in insect
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olfaction are crucial to the environmental, reproductive, and social success of insects. The
largest class of OBPs, to date, has been found in N. vitripennis (Vieira, 2012).

One transcript and two predicted contigs show putative homology to proteins within this
hydrophobic sequence binding class. Notable identity exists between Contig46 (Table S2)
and a predicted N. vitripennis sequence, a B1-like protein [GenBank XP_001601068.1;
5e-43, 57% identity]. Contig46 is characterized by a pheromone-binding protein/general
odorant-binding protein (PBP_GOBP) six cysteine-containing domain [Pfam 01395: E =
1.2e-23]. Additionally, significant similarity has been found between Contig84 (Table S2)
and the predicted ant Harpegnathos saltator sequence GenBank EFN85227.1: Ejaculatory
bulb-specific protein 3 [GenBank: E = 2e-23, 62% identity]. A slightly different insect-
specific pheromone-binding A10/OS_D domain [Pfam 03392, E = 2.2e-25], is found in this
contig. Transcript 9F05 (Table S2) shows enough sequence similarity with the predicted N.
vitripennis PBP_GOBP domain-containing general odorant-binding 56d-like protein
(OBP08) to suggest homology, but at a distant level [GenBank XP_001600573; E = 1e-09,
33% identity]. The presence of multiple transcripts and multiple pheromone/odorant-binding
domains in the Lh venom proteins suggests that they may be associated with host selection
(e.g., superparasitism) or oviposition behavior.

3.4 Venom Proteins with Enzymatic Activity: Proteases, Phosphatases, and Lipases
3.4.1 Evidence of protease activity in parasites—Cysteine proteases are well-
established as components of parasitic wasp venoms (Parkinson, 2002a; Parkinson, 2002b;
Crawford, 2008; deGraaf, 2010; Vincent, 2010), but are also utilized by other parasites,
including helminthes and protozoa such as Anisakis and Leishmania (McKerrow, 2006a).
Lysosomal-type proteases, which include cathepsin and aspartic proteases, facilitate parasite
entry through tissue degradation, immune activation and/or repression, and nutrient release
from host proteins (McKerrow, 2006b).

3.4.1.1 Cathepsin D-Like Aspartic Protease: Cathepsin-D is a lysosomal protease active at
acidic pH (Lee, 1998; Fusek, 2005). It is an aspartic endopeptidase in the pepsin family (EC.
3.4.23). The active site is characterized by two catalytic aspartate residues in a conserved
triad of Asp-Tyr-Asp, separated by approximately 200 residues (Baldwin, 1993; Fusek,
2005).

The transcript 10A02 (Table S2) is most similar to, at no less than 65% identity, (1) a N.
vitripennis protein, tentatively annotated as a lysosomal aspartic protease-like protein
[GeneBank XP_001600543; E = 3e-77], and (2) a beetle Tribolium castaneum protein
similar to cathepsin D isoform 1 [GenBank XP_966517; E = 9e-76]. Additionally, a
cathepsin_D_like domain [CDD domain cd05485] is identified between nucleotides 107 and
260 of 10A02 at E = 7e-63.

The presence of cathepsin D in the midgut of Hymenoptera has long been established
(Houseman, 1983) and an increase in its expression has been correlated to breakdown of
cysteine protease inhibitors such as the cystatins, in particular phytocystatins (Ahn, 2009).
Cathepsin D has also been found to cleave antimicrobial peptide precursors such as
prohemocidins in ticks (Rhipicephalus (Boophilus) microplus) (Cruz, 2010) and pro-
antimicrobial peptides in social insects (Camponotus pennsylvanicus) (Hamilton, 2010).
Ecdysone-induced expression of cathepsin D is necessary for tissue remodeling during
metamorphosis in the silkworm, Bombyx mori (Gui, 2006).

Degradation of the vitellogenin production cellular machinery in the fat body of the
mosquito (Aedes aegypti) has been linked to cathepsin D, E, and similar proteins (Cho,
1991; Cho, 1992). Permeabilization of the lysosomal membrane and the subsequent release
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of various proteases, particularly cathepsin D, activate intrinsic apoptotic pathways in
multiple cell types (Roberg, 1999; Stoka, 2007). Although the role of cathepsin D in
parasitic Hymenoptera remains elusive, Lh 10A02 may play a role in venom production or
in blocking host immunity and supporting wasp egg development.

3.4.2 Phosphatases—Acid phosphatases are commonly known components of the
Hymenoptera venoms of Apis mellifera (Grunwald, 2006), N. vitripennis (deGraaf, 2010),
Pimpla hypochondriaca (Dani, 2005), and Pteromalus puparum (Zhu, 2008). These
enzymes cleave phosphoric acid monoester bonds to yield free protein and phosphate ions.
Potential functions of phosphatases as components of venom include nutrient release and
modulation of immune signaling (Xia, 2000; Xia, 2001; Dani, 2005).

Transcript 9B06 (Table S2) shows similarity to multiple histidine phosphatases and the
highest levels of identity (34–35%) to acid phosphatase sequences from (1) N. vitripennis
[GenBank XP_001605452; PREDICTED: venom acid phosphatase Acph-1-like isoform 1],
(2) Harpegnathos saltator [GenBank EFN76082.1; Testicular acid phosphatase-like
protein], and (3) the well-known Apis mellifera Api m 3 protein [GenBank
ACPH1_APIME]. The significance levels (E-values) are comparable for all and are no
greater than 2e-21. In the honeybee, the presumably homologous phosphatases Api m 3 and
Api m 5, are known to be important antigens (Hoffman, 1977; Grunwald, 2006). Api m 3 is
significant to honey bee stings as the major antigen with multiple epitopes that interact with
human IgE and induce histamine release (Barboni, 1987; Grunwald, 2006; Georgieva,
2009). In the endoparasitic wasp Pteromalus puparum, expression of phosphate hydrolases
have been localized to the long gland nuclei and secretory cells, but show activity in a range
centered around pH 4.8 (Zhu, 2008), well below the alkaline to neutral pH of their host
hemolymphs. In Pimpla hypochrondriaca, specific phosphatase inhibitors failed to show a
reduction of antihemocytic activities (Dani, 2005).

3.4.3 Lipases—Transcript 3H06 (Table S2) shows similarity, and perhaps homology, to
the C-termini of phospholipase B (PLB) orthologs from ants and bees: Megachile rotundata
(alfalfa leafcutting bee) [GenBank XP_003704073; 1e-40, 41% identity], Solenopsis invicta
(red fire ant) [GenBank EFZ13332; 6e-37, 41% identity], and Acromyrmex echinatior
(Panamanian leafcutter ant) [GenBank EGI65669; 7e-37, 42% identity]. PLB is a novel
enzyme with both Phospholipase A1- and A2-like activities. It is widely encoded, except in
yeast (Morgan, 2004). PLB is established as an important component of many venoms and
was reported as early as 1964 for bee and various snake venoms (Doery, 1964).

PLB is thought to be the second most concentrated component in the ichneumonid
endoparasitoid wasp Pimpla turionelle venom (Uckan, 2006). A lipase-like protein has been
detected both by ESTs and mass spectrometry in the braconid endoparasitoid Chelonus
inanitus (Vincent, 2010). Lipases have also been found in the venoms of Pimpla
hypochondriaca (Dani, 2005) and N. vitripennis (deGraaf, 2010). The exact role of these
lipases is unknown, but positive correlation between parasite success and opportunistic
modulation of host metabolism is available (Rivers, 1995). N. vitripennis venom alters lipid
content in host hemolymph and fat bodies upon envenomation in its host, Sarcophaga
bullata (Rivers, 1995). Ectoparasitoid Euplectrus separatae (previously Euplectrus sp near
plathypenae) envenomation of its host oriental armyworm Pseudaletia separata also causes
an increase in lipid content in the hemolymph which is possibly related to concurrent lysis of
fat body cells (Nakamatsu, 2003a; Nakamatsu, 2003b; Nakamatsu, 2004).
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4.0 CONCLUDING REMARKS
Parasitism requires bioactive venom proteins and peptides for immune evasion or immune
suppression, to facilitate nutrient acquisition, and to cause some level of host subdual
(Rivers, 2002). The most critical determinants of venom protein profiles in relation to host
strategy and host range have remained intractable until recently. Powerful transcriptomic
and venom proteomic approaches (deGraaf, 2009) are now providing thorough
characterizations to understand the roles of individual venom components in wasp
parasitism.

The goal of this study was to pilot an analysis of venom gland components of a natural
parasite of the most-highly studied insect host. Enzymatic and KEGG profiles of a limited
number of molecules has revealed that the transcriptome contains a significant number of
novel proteins whose functions may be unique to the parasitoid life history or to the function
of the venom gland organ, including VLP biogenesis. The novel sequences found in this
study must be addressed by future works in other Leptopilina species. Transcripts with
similar sequence expressed in the same tissues will establish sequence and promote
functional studies. The transcriptome contains numerous sequences for augmented protein
production and robust secretion, which support the largely secretory function of the venom
gland and its contribution to active venom production.

The sequence similarities reveal a set of putative effectors with predicted enzymatic
activities (protease Cathepsin-D, acid and histidine phosphatases, and phospholipase B)
conserved among other parasitoids and eusocial Hymenoptera. We have identified specific
candidate molecules that might perturb host development (e.g., JH biosynthesis), host
energetics, behavior, and nutrient availability (e.g, Drosophila foraging homolog, odorant-
binding proteins), or host immune physiology (e.g., NF-κB inhibitor-interacting Ras-like
protein, yellow family proteins, cytochrome P450s, various esterases, glutathione S-
transferases) to support parasite progeny. The roles of these predicted proteins in the Lh
venom remain to be tested. Prokaryotic and viral sequences are present in this dataset; their
quantities are however too low to reveal the nature of this species’ VLPs. We have
undertaken proteomic analysis of purified VLPs to address this question more directly.

Parasitoid wasps are known agents for biological control of insect pests. The cDNA clones
and sequences reported here can be used to examine specific gene expression patterns, to
develop physical maps of the wasp genome (Gokhman, 2011), and to confirm DNA
assemblies derived from deep sequencing methods. Drosophila genetics will facilitate the
analysis of specific Lh venom proteins with potential effects on host physiology in vivo.
These studies will have a bearing on understanding similar host-parasite interactions. The
characterization of inhibitory factors in the Lh venom has the potential to improve
agriculture and human health as some proteins of this Drosophila parasite may also
modulate physiologies of economically significant insect pests.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A pilot transcriptome of the L. heterotoma venom gland complex yields 827
unigenes.

• More than 150 novel transcripts revealed, lacking significant known similarities.

• The remaining unigenes support conservation with venomous and stinging
Hymenoptera.

• A subset of these reported unigenes likely contribute to venom and host control.

• A leading report of a figitid venom transcriptome targeting Drosophila hosts.
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Figure 1. Sequence classifications using taxonomic binning
Sequences are classified (a) by order, and (b) by species among Apocrita based on highest
similarity between proteins
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Figure 2. Enzymatic function profile
Predicted functionality by Enzyme Commission (E.C.) number. Number descriptions given
in Table 1.
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Figure 3. KEGG profile
Predicted functionality by KEGG descriptions for the major pathways, systems, and
functions. Only those groups with more than three transcripts are shown. (Ub:
Ubiquitination; PTM: Post-Translational Modification; Ox: Oxidative).
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Table 1
Unigene E.C. profile results

Numbers assigned via enzyme PSSM-oriented Blast. Percentages <1% have been omitted in this table, but are
shown in Figure 2.

Represented Classes & Subclasses Class Functions Contribution to Total Profile

EC 1 Oxidoreductases 13.4%

 EC 1.1.- Acts on –OH groups 2.7%

 EC 1.5.- Acts on CH-NH groups 1.8%

 EC 1.9.- Acts on heme groups 1.8%

 EC 1.14.- Acts on paired donors, incorporating/reducing O2 2.7%

EC 2 Transferases 30.4%

 EC 2.1.- Transfers 1C groups 1.8%

 EC 2.3.- Acyltransferases 1.8%

 EC 2.4.- Glycosyltransferases 3.6%

 EC 2.5.- Alkyl- or aryltransferases, excluding CH3 transfer 1.8%

 EC 2.7.- Phosphotransferases 21.4%

EC 3 Hydrolases 43.7%

 EC 3.1.- Esterase 8.0%

 EC 3.3.- Acts on ether bonds 2.7%

 EC 3.4.- Peptidases 8.9%

 EC 3.5.- Acts on non-peptide C-N bonds 1.8%

 EC 3.6.- Acts on acid anhydrides 21.4%

EC 4 Lyases 3.6%

 EC 4.2.- Carbon-oxygen lyases 1.8%

 EC 4.3.- Carbon-nitrogen lyases 1.8%

EC 5 Isomerases 4.5%

 EC 5.2.- Cis-trans isomerases 2.7%

 EC 5.3.- Intramolecular isomerase 1.8%

EC 6 Ligases 3.6%

 EC 6.3.- Forms C-N bonds 3.6%
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