
A Clinical Link Between PPARγ and the Renin-Angiotensin
System

Curt D. Sigmund
Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of
Iowa, Iowa City, IA

Abstract
A mechanistic link between PPARγ and the renin-angiotensin system (RAS) has been previously
proposed but clinical evidence supporting the relationship is incomplete. In the current issue of
Arteriosclerosis Thrombosis Vascular Biology, Caron-Debarle et al. show that four patients with
familial partial lipodystrophy associated with early-onset severe hypertension (FPLD3) carry
mutations in PPARγ that impair its ability to act as a ligand-activated transcription factor. Cells
isolated from these patients, and cells transfected with the same mutations in PPARγ exhibit
activation of the cellular RAS, increased production of reactive oxygen species and markers of
inflammation, all of which are dependent upon the angiotensin-II AT1 receptor. This translational
study further supports a role for PPARγ as a regulator of blood pressure through its ability to
modulate the RAS.

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand activated transcription
factor and target of the thiazolidinedione TZD class of anti-diabetes medications. PPARγ is
best recognized for its role in adipogenesis but is also a regulator of systemic metabolism as
evidenced by the pleiotropic abnormalities (lipodystrophy, insulin-resistance, and metabolic
syndrome) caused by PPARγ mutations.1-3 Clinical studies of TZD use in type 2 diabetes
including the PROactive (PROspective pioglitAzone Clinical Trial In macroVascular
Events) trial documented improved endothelial function and modest but significant
reductions in blood pressure.4 Some of the same mutations which cause lipodystrophy and
diabetes also cause severe hypertension and preeclampsia in human patients,3 and in knock-
in mice.5,6 Evidence suggests that PPARγ activity in the vascular endothelium and smooth
muscle are important regulators of endothelial function, smooth muscle contraction, and
systemic blood pressure.7,8

Data suggesting a role for PPARγ in regulating blood pressure led many to search for
downstream mediators. Early studies suggested that activation of PPARγ might antagonize
the renin-angiotensin system (RAS) by inhibiting expression of the angiotensin-II (Ang-II)
AT1 receptor (AT1R) in vascular smooth muscle cells (vSMC).9 PPARγ may also regulate
expression of the renin and angiotensinogen (AGT) genes.10,11 TZD administration to Ang-
II treated Sprague-Dawley rats blunts the development of hypertension, endothelial
dysfunction, and the induction of proinflammatory mediators.12 Similarly, TZD treatment of
hypertensive transgenic mice over-expressing the renin and AGT genes improved
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endothelial function and lowered arterial pressure.13 An association between PPARγ and the
RAS was also suggested by Tsai et al. 5 (and reviewed in 14) who reported that mice
carrying a mutant PPARγ allele equivalent to the mutation which causes hypertension in
humans, exhibited increased blood pressure and elevated expression of AGT and AT1R in
several adipose depots. That certain AT1R blockers (ARB) exhibit partial PPARγ agonist
activity suggests an unexpected yet physiologically uncertain link between PPARγ and the
RAS.15 What remained unclear is whether this association between PPARγ and the RAS is
clinically relevant?

In the current issue of Arteriosclerosis Thrombosis Vascular Biology, Caron-Debarle et al.16

explore this question in 4 members of 2 unrelated families with familial partial
lipodystrophy associated with early-onset severe hypertension (FPLD3). Blood pressure
control in these patients required aggressive treatment with multiple antihypertensive agents
(including ARBs) concurrent with treatment for hyperlipidemia, and in 3 of the 4 subjects,
diabetes. They identified two previously unreported mutations in PPARγ. R165T occurs in a
highly conserved residue in the DNA binding domain, whereas L339X truncates the protein
to lack a portion of the ligand binding domain. All 4 patients were heterozygous for one of
the mutations. In vitro studies of cultured fibroblasts and peripheral blood mononuclear cells
(PBMC) derived from the patients, as well as human vSMCs transfected with the PPARγ
mutants revealed that the mutant and wildtype alleles were equivalently expressed, but the
mutants lacked transactivation capability. Unlike other mutations in PPARγ which cause
hypertension, they do not act dominant negatively and most likely cause
haploinsufficiency.3 TZD treatment improved glycemic control and eliminated the need for
high dose insulin therapy in 2 subjects suggesting that the potential to activate the wildtype
PPARγ allele was preserved. Although untested in the current study, it is possible that the
activity of the wildtype PPARγ may have been impaired in these patients. Inflammation has
been reported to impair PPARγ activity by CDK5-mediated phosphorylation, an effect
prevented by TZDs.17 Indeed, hypertension and diabetes are commonly associated with
inflammation and fibroblasts isolated from these patients exhibited increased NFκB activity,
markers of inflammation, and increased reactive oxygen species (ROS). AT1R signaling is
well known to cause inflammation and oxidative stress, and interestingly, expression of
AT1R, renin, and AGT were all markedly increased in patient fibroblasts and PBMCs, cells
we do not immediately associate with the RAS. The increase in AT1R expression occurred
concomitantly with increased Ang-II-induced ERK phosphorylation, and AT1R silencing
prevented the induction of ROS and inflammation suggesting that some of the pathological
consequences of the mutations may be mediated by AT1R activation.

These data suggest a mechanism whereby impaired PPARγ activity induces AT1R
expression and signaling which promotes oxidative stress and inflammation. That the
silencing of AT1R in these cells also decreased expression of renin and AGT suggests their
increase may be secondary to increased AT1R signaling. We could therefore hypothesize the
existence (at least in the isolated cells from these patients) of a feed-forward mechanism
whereby elevated AT1R action augments further Ang-II production which may then amplify
the pathological response (see Figure). It is interesting to note that the induction of renin
expression by AT1R in fibroblasts and PBMCs is contrary to Ang-II-induced inhibition of
renin expression in kidney. Unfortunately, information regarding the status of the systemic
RAS in these patients before treatment was not available, whereas under therapy, 2 patients
had normal plasma renin activity (PRA), plasma and urinary aldosterone, and potassium.
Although the clinical relevance of the RAS in fibroblasts and PBMCs remains uncertain,
AT1R signaling in vSMC is of obvious importance in the regulation of vasomotor function.
A feed-forward mechanism as described above could potentially induce endothelial
dysfunction and smooth muscle contraction and exacerbate the hypertension.
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Regardless of the many strengths of this translational study a number of important questions
remain. First, did TZD treatment of the effected patients have an effect on arterial pressure;
or in a more general sense, does PPARγ activation lower blood pressure in humans by
antagonizing the RAS? We know that treatment of the patient fibroblasts with rosiglitazone,
which presumably activated wildtype PPARγ decreased expression of the RAS genes, and
blunted the increase in ROS, NFκB and IL-6 induced by the PPARγ mutations. Thus at the
cellular level, a normal phenotype could be rescued by activation of wildtype PPARγ by
TZD. Even with the declining clinical use of TZDs this may be important because new
PPARγ activators, which do not act as full PPARγ agonists are in development. At least one
of these new compounds prevents impairment of PPARγ activity by post-translational
mechanisms induced by inflammation, and importantly, this compound may lack some of
the detrimental side effects of TZDs.18 It's effect on the cardiovascular system has yet to be
explored. Second, is the AT1R gene the primary PPARγ target gene or are their other
PPARγ target genes in the relevant tissues which become dysregulated in response to mutant
PPARγ? We recently reported that PPARγ induces expression of a target gene in the aorta
which controls the activity of the Cullin-3 pathway, a regulator of RhoA/Rho kinase
signaling and vasomotor function.19 We also recently identified a physiological connection
between PPARγ and AT1R activity (but not AT1R expression) in mesenteric resistance
vessels through Regulator of G protein signaling 5 (RGS5), a novel PPARγ target gene that
functions as a small GTPase-activating protein to regulate AT1R signaling.20 Third, are all
the cardiovascular effects in these patients mediated by PPARγ and the RAS? This may be
important to consider because there are other inherited lipodystrophies which are not caused
by mutations in PPARγ yet are associated with hypertension.21,22 A common feature of all
these disorders is insulin resistance and a loss or redistribution of adipose tissue (e.g. loss of
subcutaneous adipose with accumulation of abdominal adipose).23 The mechanistic
contributions of these features to hypertension in these patients remains unclear.
Interestingly, as these patients often display evidence of inflammation (e.g. increased plasma
C-reactive peptide) a role for impaired PPARγ activity and thus increased RAS activity
should be considered.

In closing, there are other FPLD3 subjects that carry different mutations in PPARγ and
exhibit a much broader array of neurologic and hematologic symptoms in addition to severe
metabolic syndrome.24 It is therefore likely that PPARγ has far reaching effects which may
extend beyond the RAS. Studies of human patients and patient cells like Caron-Debarle et
al.16 combined with studies employing animal models will likely uncover other mechanistic
links between PPARγ, the RAS, and other important pathways that may lead to effective
therapies for the spectrum of disorders which encompass the metabolic syndrome.
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Figure. The PPARγ:RAS Relationship
Schematic showing that PPARγ mutations cause an increase in expression of the AT1R
which induces hypertension perhaps through ROS and inflammation. The increase in renin
and AGT elevates production of Ang-II, which in cells from the effected patients, causes a
feed-forward mechanism which may further increase AT1R signaling. TZD treatment
activates the wildtype PPARγ allele and blunts the effects of the mutation. A similar effect is
attained by blocking AT1R expression by an siRNA and presumably with an ARB.
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