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Abstract
In this paper, we propose a new method remMap — REgularized Multivariate regression for
identifying MAster Predictors — for fitting multivariate response regression models under the
high-dimension-low-sample-size setting. remMap is motivated by investigating the regulatory
relationships among different biological molecules based on multiple types of high dimensional
genomic data. Particularly, we are interested in studying the influence of DNA copy number
alterations on RNA transcript levels. For this purpose, we model the dependence of the RNA
expression levels on DNA copy numbers through multivariate linear regressions and utilize proper
regularization to deal with the high dimensionality as well as to incorporate desired network
structures. Criteria for selecting the tuning parameters are also discussed. The performance of the
proposed method is illustrated through extensive simulation studies. Finally, remMap is applied to
a breast cancer study, in which genome wide RNA transcript levels and DNA copy numbers were
measured for 172 tumor samples. We identify a trans-hub region in cytoband 17q12–q21, whose
amplification influences the RNA expression levels of more than 30 unlinked genes. These
findings may lead to a better understanding of breast cancer pathology.

Keywords
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1 Introduction
In a few recent breast cancer cohort studies, microarray expression experiments and array
CGH (comparative genomic hybridization) experiments have been conducted for more than
170 primary breast tumor specimens collected at multiple cancer centers (Sorlie et al. 2001;
Sorlie et al. 2003; Zhao et al. 2004; Kapp et al. 2006; Bergamaschi et al. 2006; Langerod et
al. 2007; Bergamaschi et al. 2008). The resulting RNA transcript levels (from microarray
expression experiments) and DNA copy numbers (from CGH experiments) of about 20K
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genes/clones across all the tumor samples were then used to identify useful molecular
markers for potential clinical usage. While useful information has been revealed by
analyzing expression arrays alone or CGH arrays alone, careful integrative analysis of DNA
copy numbers and expression data are necessary as these two types of data provide
complimentary information in gene characterization. Specifically, RNA data give
information on genes that are over/under-expressed, but do not distinguish primary changes
driving cancer from secondary changes resulting from cancer, such as proliferation rates and
differentiation state. On the other hand, DNA data give information on gains and losses that
are drivers of cancer. Therefore, integrating DNA and RNA data helps to discern more
subtle (yet biologically important) genetic regulatory relationships in cancer cells (Pollack et
al. 2002).

It is widely agreed that variations in gene copy numbers play an important role in cancer
development through altering the expression levels of cancer-related genes (Albertson et al.
2003). This is clear for cis-regulations, in which a gene’s DNA copy number alteration
influences its own RNA transcript level (Hyman et al. 2002; Pollack et al. 2002). However,
DNA copy number alterations can also alter in trans the RNA transcript levels of genes from
unlinked regions, for example by directly altering the copy number and expression of
transcriptional regulators, or by indirectly altering the expression or activity of
transcriptional regulators, or through genome rearrangements affecting cis-regulatory
elements. The functional consequences of such trans-regulations are much harder to
establish, as such inquiries involve assessment of a large number of potential regulatory
relationships. Therefore, to refine our understanding of how these genome events exert their
effects, we need new analytical tools that can reveal the subtle and complicated interactions
among DNA copy numbers and RNA transcript levels. Knowledge resulting from such
analysis will help shed light on cancer mechanisms.

The most straightforward way to model the dependence of RNA levels on DNA copy
numbers is through a multivariate response linear regression model with the RNA levels
being responses and the DNA copy numbers being predictors. While the multivariate linear
regression is well studied in statistical literature, the current problem bears new challenges
due to (i) high-dimensionality in terms of both predictors and responses; (ii) the interest in
identifying master regulators in genetic regulatory networks; and (iii) the complicated
correlation relationships among response variables. Thus, the naive approach of regressing
each response onto the predictors separately is unlikely to produce satisfactory results, as
such methods often lead to high variability and over-fitting. This has been observed by many
authors, for example, Breiman et al. (1997) show that taking into account of the relation
among response variables helps to improve the overall prediction accuracy. More recently,
Kim et al. (2008) propose a new statistical framework to explicitly incorporate the
relationships among responses by assuming the linked responses depend on the predictors in
a similar way. The authors show that this approach helps to select relevant predictors when
the above assumption holds.

When the number of predictors is moderate or large, model selection is often needed for
prediction accuracy and/or model interpretation. Standard model selection tools in multiple
regression such as AIC and forward stepwise selection have been extended to multivariate
linear regression models (Bedrick et al. 1994; Fujikoshi et al. 1997; Lutz and BÄuhlmann
2006). More recently, sparse regularization schemes have been utilized for model selection
under the high dimensional multivariate regression setting. For example, Turlach et al.
(2005) propose to constrain the coefficient matrix of a multivariate regression model to lie
within a suitable polyhedral region. Lutz and BÄuhlmann (2006) propose an L2 multivariate
boosting procedure. Obozinskiy et al. (2008) propose to use a ℓ1/ℓ2 regularization to identify
the union support set in the multivariate regression. Moreover, Brown et al. (1998, 1999,
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2002) introduce a Bayesian framework to model the relation among the response variables
when performing variable selection for multivariate regression. Another way to reduce the
dimensionality is through factor analysis. Related work includes Izenman (1975), Frank et
al. (1993), Reinsel and Velu (1998), Yuan et al. (2007) and many others.

For the problem we are interested in here, the dimensions of both predictors and responses
are large (compared to the sample size). Thus in addition to assuming that only a subset of
predictors enter the model, it is also reasonable to assume that a predictor may affect only
some but not all responses. Moreover, in many real applications, there often exist a subset of
predictors which are more important than other predictors in terms of model building and/or
scientific interest. For example, it is widely believed that genetic regulatory relationships are
intrinsically sparse (Jeong et al. 2001; Gardner et al. 2003). At the same time, there exist
master regulators — network components that affect many other components, which play
important roles in shaping the network functionality. Most methods mentioned above do not
take into account the dimensionality of the responses, and thus a predictor/factor influences
either all or none responses, e.g., Turlach et al. (2005), Yuan et al. (2007), the L2 row
boosting by Lutz and Bühlmann (2006), and the ℓ1/ℓ2 regularization by Obozinskiy et al.
(2008). On the other hand, other methods only impose a sparse model, but do not aim at
selecting a subset of predictors, e.g., the L2 boosting by Lutz and Bühlmann (2006). In this
paper, we propose a novel method remMap — REgularized Multivariate regression for
identifying MAster Predictors, which takes into account both aspects. remMap uses an ℓ1
norm penalty to control the overall sparsity of the coefficient matrix of the multivariate
linear regression model. In addition, remMap imposes a “group” sparse penalty, which in
essence is the same as the “group lasso” penalty proposed by Bakin (1999), Antoniadis and
Fan (2001), Yuan and Lin (2006), Zhao et al. (2006) and Obozinskiy et al. (2008) (see more
discussions in Section 2). This penalty puts a constraint on the ℓ2 norm of regression
coefficients for each predictor, which controls the total number of predictors entering the
model, and consequently facilitates the detection of master predictors. The performance of
the proposed method is illustrated through extensive simulation studies.

We apply the remMap method on the breast cancer data set mentioned earlier and identify a
significant trans-hub region in cytoband 17q12–q21, whose amplification influences the
RNA levels of more than 30 unlinked genes. These findings may shed some light on breast
cancer pathology. We also want to point out that analyzing CGH arrays and expression
arrays together reveals only a small portion of the regulatory relationships among genes.
However, it should identify many of the important relationships, i.e., those reflecting
primary genetic alterations that drive cancer development and progression. While there are
other mechanisms to alter the expression of master regulators, for example by DNA
mutation or methylation, in most cases one should also find corresponding DNA copy
number changes in at least a subset of cancer cases. Nevertheless, because we only identify
the subset explainable by copy number alterations, the words “regulatory network” (“master
regulator”) used in this paper will specifically refer to the subnetwork (hubs of the
subnetwork) whose functions change with DNA copy number alterations, and thus can be
detected by analyzing CGH arrays together with expression arrays.

The rest of the paper is organized as follows. In Section 2, we describe the remMap model,
its implementation and criteria for tuning. In Section 3, the performance of remMap is
examined through extensive simulation studies. In Section 4, we apply the remMap method
on the breast cancer data set. We conclude the paper with discussions in Section 5.
Technical details are provided in the supplementary material.

Peng et al. Page 3

Ann Appl Stat. Author manuscript; available in PMC 2014 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2 Method
2.1 Model

Consider multivariate regression with Q response variables y1, ⋯, yQ and P prediction
variables x1, ⋯, xP:

(1)

where the error terms ε1, ⋯, εQ have a joint distribution with mean 0 and covariance Σε. In
the above, we assume that, all the response and prediction variables are standardized to have
zero mean and thus there is no intercept term in equation (1). The primary goal of this paper
is to identify non-zero entries in the P × Q coefficient matrix B = (βpq) based on N i.i.d
samples from the above model. Under normality assumptions, βpq can be interpreted as
proportional to the conditional correlation Cor(yq, xp|x−(p)), where x−(p) ≔ {xp′ : 1 ≤ p′ ≠ p ≤

P}. In the following, we use  to denote the
sample of the qth response variable and that of the pth prediction variable, respectively. We
also use Y = (Y1 : ⋯: YQ) to denote the N × Q response matrix, and use X = (X1 : ⋯: XP) to
denote the N × P prediction matrix.

In this paper, we shall focus on the cases where both Q and P are larger than the sample size
N. For example, in the breast cancer study discussed in Section 4, the sample size is 172,
while the number of genes and the number of chromosomal regions are on the order of a
couple of hundreds (after pre-screening). When P > N, the ordinary least square solution is
not unique, and regularization becomes indispensable. The choice of suitable regularization
depends heavily on the type of data structure we envision. In recent years, ℓ1-norm based
sparsity constraints such as lasso (Tibshirani 1996) have been widely used under such high-
dimension-low-sample-size settings. This kind of regularization is particularly suitable for
the study of genetic pathways, since genetic regulatory relationships are widely believed to
be intrinsically sparse (Jeong et al. 2001; Gardner et al. 2003). In this paper, we impose an
ℓ1 norm penalty on the coefficient matrix B to control the overall sparsity of the multivariate
regression model. In addition, we put constraints on the total number of predictors entering
the model. This is achieved by treating the coefficients corresponding to the same predictor
(one row of B) as a group, and then penalizing their ℓ2 norm. A predictor will not be
selected into the model if the corresponding ℓ2 norm is shrunken to 0. Thus this penalty
facilitates the identification of master predictors — predictors which affect (relatively)
many response variables. This idea is motivated by the fact that master regulators exist and
are of great interest in the study of many real life networks including genetic regulatory
networks. Specifically, for model (1), we propose the following criterion

(2)

where Cp is the pth row of , which is a pre-specified P × Q 0–1
matrix indicating the coefficients on which penalization is imposed; Bp is the pth row of B; ‖
· ‖F denotes the Frobenius norm of matrices; ‖ · ‖1 and ‖ · ‖2 are the ℓ1 and ℓ2 norms for
vectors, respectively; and “ ·” stands for Hadamard product (that is, entry-wise
multiplication). The indicator matrix C is pre-specified based on prior knowledge: if we
know in advance that predictor xp affects response yq, then the corresponding regression
coefficient βpq will not be penalized and we set cpq = 0 (see Section 4 for an example).
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When there is no such prior information, C can be simply set to a constant matrix cpq ≡ 1.
Finally, an estimate of the coefficient matrix B is B̂(λ1, λ2) ≔ arg minB L(B; λ1, λ2).

In the above criterion function, the ℓ1 penalty induces the overall sparsity of the coefficient
matrix B. The ℓ2 penalty on the row vectors Cp · Bp induces row sparsity of the product
matrix C · B. As a result, some rows are shrunken to be entirely zero (Theorem 1).
Consequently, predictors which affect relatively more response variables are more likely to
be selected into the model. We refer to the combined penalty in equation (2) as the MAP
(MAster Predictor) penalty. We also refer to the proposed estimator B̂(λ1, λ2) as the remMap
(REgularized Multivariate regression for identifying MAster Predictors) estimator. Note
that, the ℓ2 penalty is a special case (with α = 2) of the more general penalty form:

 for a vector υ ∈ ℛQ and α > 1. In
Turlach et al. (2005), a penalty with α = ∞ is used to select a common subset of prediction
variables when modeling multivariate responses. In Yuan et al. (2007), a constraint with α =
2 is applied to the loading matrix in a multivariate linear factor regression model for
dimension reduction. In Obozinskiy et al. (2008), the same constraint is applied to identify
the union support set in the multivariate regression. In the case of multiple regression, a
similar penalty corresponding to α = 2 is proposed by Bakin (1999) and by Yuan and Lin
(2006) for the selection of grouped variables, which corresponds to the blockwise additive
penalty in Antoniadis and Fan (2001) for wavelet shrinkage. Zhao et al. (2006) propose the
penalty with a general α > 1. However, none of these methods takes into account the high
dimensionality of response variables and thus predictors/factors are simultaneously selected
for all responses. On the other hand, by combining the ℓ2 penalty and the ℓ1 penalty together
in the MAP penalty, the remMap model not only selects a subset of predictors, but also limits
the influence of the selected predictors to only some (but not necessarily all) response
variables. Thus, it is more suitable for the cases when both the number of predictors and the
number of responses are large. Lastly, we also want to point out a difference between the
MAP penalty and the ElasticNet penalty proposed by Zou et al. (2005), which combines
the ℓ1 norm penalty with the squared ℓ2 norm penalty. The ElasticNet penalty aims to
encourage a group selection effect for highly correlated predictors under the multiple
regression setting. However, the squared ℓ2 norm itself does not induce sparsity and thus is
intrinsically different from the ℓ2 norm penalty discussed above.

In Section 3, we use extensive simulation studies to illustrate the effects of the MAP penalty.
We compare the remMap method with two alternatives: (i) the joint method which only
utilizes the ℓ1 penalty, that is λ2 = 0 in (2); (ii) the sep method which performs Q separate
lasso regressions. We find that, if there exist large hubs (master predictors), remMap
performs much better than joint in terms of identifying the true model; otherwise, the two
methods perform similarly. This suggests that the “simultaneous” variable selection
enhanced by the ℓ2 penalty pays off when there exist a small subset of “important”
predictors, and it costs little when such predictors are absent. Moreover, by encouraging the
selection of master predictors, the MAP penalty explicitly makes use of the correlations
among the response variables caused by sharing a common set of predictors. We make a
note that there are methods, such as Kim et al. (2008), that make more specific assumptions
on how the correlated responses depend on common predictors. If these assumptions hold, it
is possible that such methods can be more efficient in incorporating the relationships among
the responses. In addition, both remMap and joint methods impose sparsity of the
coefficient matrix as a whole. This helps to borrow information across different regressions
corresponding to different response variables. It also amounts to a greater degree of
regularization, which is usually desirable for the high-dimension-low-sample-size setting.
On the other hand, the sep method controls sparsity for each individual regression
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separately and thus is subject to high variability and over-fitting. As can be seen by the
simulation studies (Section 3), this type of “joint” modeling greatly improves the model
efficiency. This is also noted by other authors including Turlach et al. (2005), Lutz and
Bühlmann (2006) and Obozinskiy et al. (2008).

2.2 Model Fitting
In this section, we propose an iterative algorithm for solving the remMap estimator B̂(λ1,
λ2). This is a convex optimization problem when the two tuning parameters are not both
zero, and thus there exists a unique solution. We first describe how to update one row of B,
when all other rows are fixed.

Theorem 1 Given {Bp}p≠p0 in (2), the solution for minBp0 L(B; λ1, λ2) is given by B̂p0 =
(β̂p0,1, ⋯, β̂p0,Q) which satisfies: for 1 ≤ q ≤ Q

i. If cp0,q = 0,  (OLS), where Ỹq = Yq − ∑p≠p0 Xpβpq;

ii. If cp0,q = 1,

(3)

where

and

(4)

The proof of Theorem 1 is given in the supplementary material (Appendix A).

Theorem 1 says that, when estimating the  row of the coefficient matrix B with all other

rows fixed: if there is a pre-specified relationship between the  predictor and the qth

response (i.e., cp0,q = 0), the corresponding coefficient βp0,q is estimated by the (univariate)
ordinary least square solution (OLS) using current responses Ỹq; otherwise, we first obtain

the lasso solution  by the (univariate) soft shrinkage of the OLS solution (equation (4)),
and then conduct a group shrinkage of the lasso solution (equation (3)). From Theorem 1, it
is easy to see that, when the design matrix X is orthonormal: XTX = Ip and λ1 = 0, the
remMap method amounts to selecting variables according to the ℓ2 norm of their
corresponding OLS estimates.

Theorem 1 naturally leads to an algorithm which updates the rows of B iteratively until
convergence. In particular, we adopt the active-shooting idea proposed by Peng et al.
(2008) and Friedman et al. (2008), which is a modification of the shooting algorithm
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proposed by Fu (1998) and also Friedman et al. (2007) among others. The algorithm
proceeds as follows:

1. Initial step: for p = 1, …, P; q = 1, …, Q,

(5)

2. Define the current active-row set Λ = {p : current ‖B ̂p‖2,C ≠ 0}.

1. For each p ∈ Λ, update B̂p with all other rows of B fixed at their current
values according to Theorem 1.

2. Repeat (2.1) until convergence is achieved on the current active-row set.

3. For p = 1 to P, update B̂p with all other rows of B fixed at their current values
according to Theorem 1. If no B ̂p changes during this process, return the current B̂

as the final estimate. Otherwise, go back to step 2.

It is clear that the computational cost of the above algorithm is in the order of O(NPQ).

2.3 Tuning
In this section, we discuss the selection of the tuning parameters (λ1, λ2) by v-fold cross
validation. To perform the v-fold cross validation, we first partition the whole data set into V
non-overlapping subsets, each consisting of approximately 1/V fraction of total samples.
Denote the ith subset as D(i) = (Y(i), X(i)), and its complement as D−(i) = (Y−(i), X−(i)). For a

given (λ1, λ2), we obtain the remMap estimate:  based on the ith training

set D−(i). We then obtain the ordinary least square estimates  as

follows: for 1 ≤ q ≤ Q, define . Then set  if p ∉ Sq;

otherwise, define  as the ordinary least square estimates by regressing

. Finally, prediction error is calculated on the test set D(i):

(6)

The v-fold cross validation score is then defined as

(7)

The reason for using OLS estimates in calculating the prediction error is because the true
model is assumed to be sparse. As noted by Efron et al. (2004), when there are many noise
variables, using shrunken estimates in the cross validation criterion often results in over
fitting. Similar results are observed in our simulation studies: if in (6) and (7), the shrunken
estimates are used, the selected models are all very big which result in large numbers of
false positive findings. In addition, we also try AIC and GCV for tuning and both criteria
result in over fitting as well. These results are not reported in the next section due to space
limitation.
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In order to further control the false positive findings, we propose a method called cv.vote.
The idea is to treat the training data from each cross-validation fold as a “bootstrap” sample.
Then variables being consistently selected by many cross validation folds should be more
likely to appear in the true model than the variables being selected only by few cross
validation folds. Specifically, for 1 ≤ p ≤ P and 1 ≤ q ≤ Q, define

(8)

where Va is a pre-specified proportion. We then select edge (p, q) if spq(λ1, λ2) = 1. In the
next section, we use Va = 0.5 and thus cv.vote amounts to a “majority vote” procedure.
Simulation studies in Section 3 suggest that, cv.vote can effectively decrease the number
of false positive findings while only slightly increase the number of false negatives.

An alternative tuning method is by a BIC criterion. Compared to v-fold cross validation,
BIC is computationally cheaper. However it requires much more assumptions. In particular,
the BIC method uses the degrees of freedom of each remMap model which is difficult to
estimate in general. In the supplementary material, we derive an unbiased estimator for the
degrees of freedom of the remMap models when the predictor matrix X has orthogonal
columns (Theorem 2 of Appendix B in the supplementary materials). In Section 3, we show
by extensive simulation studies that, when the correlations among the predictors are
complicated, this estimator tends to select very small models. For more details see the
supplementary material, Appendix B.

3 Simulation
In this section, we investigate the performance of the remMap model and compare it with
two alternatives: (i) the joint model with λ2 = 0 in (2); (ii) the sep model which performs
Q separate lasso regressions. For each model, we consider three tuning strategies, which
results in nine methods in total:

1. remMap.cv, joint.cv, sep.cv: The tuning parameters are selected through
10-fold cross validation;

2. remMap.cv.vote, joint.cv.vote, sep.cv.vote: The cv.vote procedure
with Va = 0.5 is applied to the models resulted from the corresponding * .cv
approaches;

3. remMap.bic, joint.bic, sep.bic: The tuning parameters are selected by a
BIC criterion. For remMap.bic and joint.bic, the degrees of freedom are
estimated according to equation (S-6) in Appendix B of the supplementary
material; for sep.bic, the degrees of freedom of each regression is estimated by
the total number of selected predictors (Zou et al. 2007).

We simulate data as follows. Given (N, P, Q), we first generate the predictors (x1, ⋯, xP)T ~
NormalP (0, ΣX), where ΣX is the predictor covariance matrix (for simulations 1 and 2,

). Next, we simulate a P × Q 0–1 adjacency matrix A, which specifies
the topology of the network between predictors and responses, with A(p, q) = 1 meaning that
xp influences yq, or equivalently βpq ≠ 0. In all simulations, we set P = Q and the diagonals
of A equal to one, which is viewed as prior information (thus the diagonals of C are set to
zero). This aims to mimic cis-regulations of DNA copy number alternations on its own
expression levels. We then simulate the P × Q regression coefficient matrix B = (βpq) by
setting βpq = 0, if A(p, q) = 0; and βpq ~ Uniform([−5, −1] ∪ [1, 5]), if A(p, q) = 1. After
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that, we generate the residuals (ε1, ⋯, εQ)T ~ NormalQ(0, Σε), where .

The residual variance  is chosen such that the average signal to noise ratio equals to a pre-
specified level s. Finally, the responses (y1, ⋯, yQ)T are generated according to model (1).
Each data set consists of N i.i.d samples of such generated predictors and responses. For all
methods, predictors and responses are standardized to have (sample) mean zero and standard
deviation one before model fitting. Results reported for each simulation setting are averaged
over 25 independent data sets.

For all simulation settings, C = (cpq) is taken to be cpq = 0, if p = q; and cpq = 1, otherwise.
Our primary goal is to identify the trans-edges — the predictor-response pairs (xp, yq)
with A(p, q) = 1 and C(p, q) = 1, i.e., the edges that are not pre-specified by the indicator
matrix C. Thus, in the following, we report the number of false positive detections of
trans-edges (FP) and the number of false negative detections of trans-edges (FN) for
each method. We also examine these methods in terms of predictor selection. Specifically, a
predictor is called a cis-predictor if it does not have any trans-edges; otherwise it is
called a trans-predictor. Moreover, we say a false positive trans-predictor (FPP) occurs
if a cis-predictor is incorrectly identified as a trans-predictor; we say a false
negative trans-predictor (FNP) occurs if it is the other way around.

Simulation I
We first assess the performances of the nine methods under various combinations of model
parameters. Specifically, we consider: P = Q = 400, 600, 800; s = 0.25, 0.5, 0.75; ρx = 0, 0.4,
0.8; and ρε = 0, 0.4, 0.8. For all settings, the sample size N is fixed at 200. The networks
(adjacency matrices A) are generated with 5 master predictors (hubs), each influencing 20 ~
40 responses; and all other predictors are cis-predictors. We set the total number of
tran-edges to be 132 for all networks. Results on trans-edge detection are summarized
in Figures 1 and 2. From these figures, it is clear that remMap.cv and remMap.cv.vote
perform the best in terms of the total number of false detections (FP+FN), followed by
remMap.bic. The three sep methods result in too many false positives (especially
sep.cv). This is expected since there are in total Q tuning parameters selected separately,
and the relations among responses are not utilized at all. This leads to high variability and
over-fitting. The three joint methods perform reasonably well, though they have
considerably larger number of false negative detections compared to remMap methods. This
is because the joint methods incorporate less information about the relations among the
responses caused by the master predictors. Finally, comparing cv.vote to cv, we can see
that the cv.vote procedure effectively decreases the false positive detections and only
slightly inflates the false negative counts.

As to the impact of different model parameters, signal size s plays an important role for all
methods: the larger the signal size, the better these methods perform (Figure 1 (a)).
Dimensionality (P, Q) also shows consistent impacts on these methods: the larger the
dimension, the more false negative detections (Figure 1 (b)). With increasing predictor
correlation ρx, both remMAP.bic and joint.bic tend to select smaller models, and
consequently result in less false positives and more false negatives (Figure 2 (a)). This is
because when the design matrix X is further away from orthogonality, (S-6) tends to
overestimate the degrees of freedom and consequently smaller models are selected. The
residual correlation ρε seems to have little impact on joint and sep, and some (though
rather small) impacts on remMap (Figure 2 (b)). Moreover, remMap performs much better
than joint and sep on master predictor selection, especially in terms of the number of false
positive trans-predictors (results not shown). This is because the ℓ2 norm penalty is
more effective than the ℓ1 norm penalty in excluding irrelevant predictors.
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Simulation II
In this simulation, we study the performance of these methods on a network without big
hubs. The data are generated similarly as before with P = Q = 600, N = 200, s = 0.25, ρx =
0.4, and ρε = 0. The network consists of 540 cis-predictors, and 60 trans-
predictors with 1 ~ 4 trans-edges. This leads to 151 trans-edges in total. As can be
seen from Table 1, remMap methods and joint methods now perform very similarly and
both are considerably better than the sep methods. Indeed, under this setting, λ2 is selected
(either by cv or bic) to be small in the remMap model, making it very close to the joint
model.

Simulation III
In this simulation, we try to mimic the true predictor covariance and network topology in the
real data discussed in the next section. We observe that, for chromosomal regions on the
same chromosome, the corresponding copy numbers are usually positively correlated, and
the magnitude of the correlation decays slowly with genetic distance. On the other hand, if
two regions are on different chromosomes, the correlation between their copy numbers
could be either positive or negative and in general the magnitude is much smaller than that
of the regions on the same chromosome. Thus in this simulation, we first partition the P
predictors into 23 distinct blocks, with the size of the ith block proportional to the number of
CNAI (copy number alteration intervals) on the ith chromosome of the real data (see Section
4 for the definition of CNAI). Denote the predictors within the ith block as xi1, ⋯, xigi,
where gi is the size of the ith block. We then define the within-block correlation as:

 for 1 ≤ j, l ≤ gi; and define the between-block correlation as Corr(xij,
xkl) ≡ ρik for 1 ≤ j ≤ gi, 1 ≤ l ≤ gk and 1 ≤ i ≠ k ≤ 23. Here, ρik is determined in the following
way: its sign is randomly generated from {−1, 1}; its magnitude is randomly generated from

. In this simulation, we set ρwb = 0.9, ρbb = 0.25 and use P = Q = 600, N
= 200, s = 0.5, and ρε = 0.4. The heatmaps of the (sample) correlation matrix of the
predictors in the simulated data and that in the real data are given by Figure S-2 in the
supplementary material. The network is generated with five large hub predictors each having
14 ~ 26 trans-edges; five small hub predictors each having 3 ~ 4 trans-edges; 20
predictors having 1 ~ 2 trans-edges; and all other predictors being cis-predictors.

The results are summarized in Table 2. Among the nine methods, remMap.cv.vote
performs the best in terms of both edge detectiion and master predictor prediction.
remMAP.bic and joint.bic result in very small models due to the complicated
correlation structure among the predictors. While all three cross-validation based methods
have large numbers of false positive findings, the three cv.vote methods have much
reduced false positive counts and only slightly increased false negative counts. These
findings again suggest that cv.vote is an effective procedure in controlling false positive
rates while not sacrificing too much in terms of power.

We also carried out an additional simulation where some columns of the coefficient matrix
B are related, and the results are reported in Table S-1 of Appendix C. The overall picture of
the performances of different methods remains similar as other simulations.

4 Real application
In this section, we apply the proposed remMap method to the breast cancer study mentioned
earlier. Our goal is to search for genome regions whose copy number alterations have
significant impacts on RNA expression levels, especially on those of the unlinked genes,
i.e., genes not falling into the same genome region. The findings resulting from this analysis
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may help to cast light on the complicated interactions among DNA copy numbers and RNA
expression levels.

4.1 Data preprocessing
The 172 tumor samples were analyzed using cDNA expression microarray and CGH array
experiments as described in Sorlie et al. (2001), Sorlie et al. (2003), Zhao et al. (2004), Kapp
et al. (2006), Bergamaschi et al. (2006), Langerod et al. (2007), and Bergamaschi et al.
(2008). In below, we outline the data preprocessing steps. More details are provided in the
supplementary material (Appendix D).

Each CGH array contains measurements (log2 ratios) on about 17K mapped human genes. A
positive (negative) measurement suggests a possible copy number gain (loss). After proper
normalization, cghFLasso (Tibshirani and Wang 2008) is used to estimate the DNA copy
numbers based on array outputs. Then, we derive copy number alteration intervals (CNAIs)
— basic CNA units (genome regions) in which genes tend to be amplified or deleted at the
same time within one sample — by employing the Fixed-Order Clustering (FOC) method
(Wang 2004). In the end, for each CNAI in each sample, we calculate the mean value of the
estimated copy numbers of the genes falling into this CNAI. This results in a 172 (samples)
by 384 (CNAIs) numeric matrix.

Each expression array contains measurements for about 18K mapped human genes. After
global normalization for each array, we also standardize each gene's measurements across
172 samples to median= 0 and MAD (median absolute deviation) = 1. Then we focus on a
set of 654 breast cancer related genes, which is derived based on 7 published breast cancer
gene lists (Sorlie et al. 2003; van de Vijver et al. 2002; Chang et al. 2004; Paik et al. 2004;
Wang et al. 2005; Sotiriou et al. 2006; Saal et al. 2007). This results in a 172 (samples) by
654 (genes) numeric matrix.

When the copy number change of one CNAI affects the RNA level of an unlinked gene,
there are two possibilities: (i) the copy number change directly affects the RNA level of the
unlinked gene; (ii) the copy number change first affects the RNA level of an intermediate
gene (either linked or unlinked), and then the RNA level of this intermediate gene affects
that of the unlinked gene. Figure 3 gives an illustration of these two scenarios. In this study,
we are more interested in finding the relationships of the first type. Therefore, we first
characterize the interactions among RNA levels and then account for these relationships in
our model so that we can better infer direct interactions. For this purpose, we apply the
space (Sparse PArtial Correlation Estimation) method to search for associated RNA pairs
through identifying non-zero partial correlations (Peng et al. 2008). The estimated
(concentration) network (referred to as Exp.Net.664 hereafter) has in total 664 edges — 664
pairs of genes whose RNA levels significantly correlate with each other after accounting for
the expression levels of other genes.

Another important factor one needs to consider when studying breast cancer is the existence
of distinct tumor subtypes. Population stratification due to these distinct subtypes might
confound our detection of associations between CNAIs and gene expressions. Therefore, we
introduce a set of subtype indicator variables, which later on is used as additional predictors
in the remMap model. Specifically, following Sorlie et al. (2003), we divide the 172 patients
into 5 distinct groups based on their expression patterns. These groups correspond to the
same 5 subtypes suggested by Sorlie et al. (2003) — Luminal Subtype A, Luminal Subtype
B, ERBB2-overexpressing Subtype, Basal Subtype and Normal Breast-like Subtype.
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4.2 Interactions between CNAIs and RNA expressions
We then apply the remMap method to study the interactions between CNAIs and RNA
transcript levels. For each of the 654 breast cancer genes, we regress its expression level on
three sets of predictors: (i) expression levels of other genes that are connected to the target
gene (the current response variable) in Exp.Net.664; (ii) the five subtype indicator variables
derived in the previous section; and (iii) the copy numbers of all 384 CNAIs. We are
interested in whether any unlinked CNAIs are selected into this regression model (i.e., the
corresponding regression coefficients are non-zero). This suggests potential trans-
regulations (trans-edges) between the selected CNAIs and the target gene expression.
The coefficients of the linked CNAI of the target gene are not included in the MAP penalty
(this corresponds to cpq = 0, see Section 2 for details). This is because the DNA copy
number changes of one gene often influence its own expression level, and we are less
interested in this kind of cis-regulatory relationships (cis-edges) here. Furthermore, based
on Exp.Net.664, no penalties are imposed on the expression levels of connected genes either.
In another word, we view the cis-regulations between CNAIs and their linked expression
levels, as well as the inferred RNA interaction network as “prior knowledge” in our study.

Note that, different response variables (gene expressions) now have different sets of
predictors, as their neighborhoods in Exp.Net.664 are different. However, the remMap
model can still be fitted with a slight modification. The idea is to treat all CNAI (384 in
total), all gene expressions (654 in total), as well as five subtype indicators as nominal
predictors. Then, for each target gene, we force the coefficients of those gene expressions
that do not link to it in Exp.Net.664 to be zero. We can easily achieve this by setting those
coefficients to zero without updating them throughout the iterative fitting procedure.

We select tuning parameters (λ1, λ2) in the remMap model through a 10-fold cross validation
as described in Section 2.3. The optimal (λ1, λ2) corresponding to the smallest CV score
from a grid search is (355.1, 266.7). The resulting model contains 56 trans-regulations in
total. In order to further control false positive findings, we apply the cv.vote procedure
with Va = 0.5, and filter away 13 out of these 56 trans-edges which have not been
consistently selected across different CV folds. The remaining 43 trans-edges correspond
to three contiguous CNAIs on chromosome 17 and 31 distinct (unlinked) RNAs. Figure 4
illustrates the topology of the estimated regulatory relationships. The detailed annotations of
the three CNAIs and 31 RNAs are provided in Table 3 and Table 4. Moreover, the Pearson-
correlations between the DNA copy numbers of CNAIs and the expression levels of the
regulated genes/clones (including both cis-regulation and trans-regulation) across
the 172 samples are reported in Table 4. As expected, all the cis-regulations have much
higher correlations than the potential trans-regulations. In addition, none of the subtype
indicator variables is selected into the final model. We also apply the remMap model while
forcing these indicators in the model (i.e., not imposing the MAP penalty on these variables).
Even though this results in a slightly different network, the hub CNAIs remain the same as
before. These imply that the three hub CNAIs are unlikely due to the stratification of tumor
subtypes.

The three CNAIs being identified as trans-regulators sit closely on chromosome 17,
spanning from 34811630bp to 35699243bp and falling into cytoband 17q12–q21.2. This
region (referred to as CNAI-17q12 hereafter) contains 24 known genes, including the
famous breast cancer oncogene ERBB2, and the growth factor receptor-bound protein 7
(GRB7). The over expression of GRB7 plays pivotal roles in activating signal transduction
and promoting tumor growth in breast cancer cells with chromosome 17q11–21
amplification (Bai and Louh 2008). In this study, CNAI-17q12 is highly amplified
(normalized log2 ratio> 5) in 33 (19%) out of the 172 tumor samples. Among the 654 genes/
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clones considered in the above analysis, 8 clones (corresponding to six genes including
ERBB2, GRB7, and MED24) fall into this region. The expressions of these 8 clones are all
up-regulated by the amplification of CNAI-17q12 (see Table 4 for more details), which is
consistent with results reported in the literature (Kao and Pollack 2006). More importantly,
as suggested by the result of the remMap model, the amplification of CNAI-17q12 also
influences the expression levels of 31 unlinked genes/clones. This implies that CNAI-17q12
may harbor transcriptional factors whose activities closely relate to breast cancer. Indeed,
there are 4 transcription factors (NEUROD2, IKZF3, THRA, NR1D1) and 2 transcriptional
co-activators (MED1, MED24) in CNAI-17q12. It is possible that the amplification of
CNAI-17q12 results in the over expression of one or more transcription factors/co-activators
in this region, which then influence the expressions of the unlinked 31 genes/clones. In
addition, some of the 31 genes/clones have been reported to have functions directly related
to cancer and may serve as potential drug targets (see Appendix D.5 of the supplementary
material for more details). In the end, we want to point out that, besides RNA interactions
and subtype stratification, there could be other unaccounted confounding factors. Therefore,
caution must be applied when one tries to interpret these results.

5 Discussion
In this paper, we propose the remMap method for fitting multivariate regression models
under the large P, Q setting. We focus on model selection, i.e., the identification of relevant
predictors for each response variable. remMap is motivated by the rising needs to investigate
the regulatory relationships between different biological molecules based on multiple types
of high dimensional omics data. Such genetic regulatory networks are usually intrinsically
sparse and harbor hub structures. Identifying the hub regulators (master regulators) is of
particular interest, as they play crucial roles in shaping network functionality. To tackle
these challenges, remMap utilizes a MAP penalty, which consists of an ℓ1 norm part for
controlling the overall sparsity of the network, and an ℓ2 norm part for further imposing a
row-sparsity of the coefficient matrix, which facilitates the detection of master predictors
(regulators). This combined regularization takes into account both model interpretability and
computational tractability. Since the MAP penalty is imposed on the coefficient matrix as a
whole, it helps to borrow information across different regressions. As illustrated in Section
3, this type of “joint” modeling greatly improves model efficiency. Also, the combined ℓ1
and ℓ2 norm penalty further enhances the performance on both edge detection and master
predictor identification. We also propose a cv.vote procedure to make better use of the
cross validation results. As suggested by the simulation study, this procedure is very
effective in decreasing the number of false positives while only slightly increases the
number of false negatives. Moreover, cv.vote can be applied to a broad range of model
selection problems when cross validation is employed. In the real application, we apply the
remMap method on a breast cancer data set. The resulting model suggests the existence of a
trans-hub region on cytoband 17q12–q21. This region harbors the oncogene ERBB2 and
may also harbor other important transcriptional factors. While our findings are intriguing,
clearly additional investigation is warranted. One way to verify the above conjecture is
through a sequence analysis to search for common motifs in the upstream regions of the 31
RNA transcripts, which remains as our future work.

Besides the above application, the remMap model can be applied to investigate the
regulatory relationships between other types of biological molecules. For example, it is of
great interest to understand the influence of single nucleotide polymorphism (SNP) on RNA
transcript levels, as well as the influence of RNA transcript levels on protein expression
levels. Such investigation will improve our understanding of related biological systems as
well as disease pathology. In addition, we can utilize the remMap idea to other models. For
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example, when selecting a group of variables in a multiple regression model, we can impose
both the ℓ2 penalty (that is, the group lasso penalty), as well as an ℓ1 penalty to encourage
within group sparsity. Similarly, the remMap idea can also be applied to vector
autoregressive models and generalize linear models.

R package remMap is public available through CRAN (http : //cran.r-project.org/).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Impact of signal size and dimensionality. Heights of solid bars represent numbers of false
positive detections of trans-edges (FP); heights of shaded bars represent numbers of false
negative detections of trans-edges (FN). All bars are truncated at height=132.
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Figure 2.
Impact of correlations. Heights of solid bars represent numbers of false positive detections
of trans-edges (FP); heights of shaded bars represent numbers of false negative
detections of trans-edges (FN). All bars are truncated at height=132.
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Figure 3.
(a) Direct interaction between CNAI A and the expression of gene B; (b) indirect interaction
between CNAI A and the expression of Gene B through one intermediate gene.
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Figure 4.
Network of the estimated regulatory relationships between the copy numbers of the 384
CNAIs and the expressions of the 654 breast cancer related genes. Each blue node stands for
one CNAI, and each green node stands for one gene. Red edges represent inferred trans-
regulations (43 in total). Grey edges represent cis-regulations.
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Table 4

RNAs1 being influenced by the amplifications of the three CNAIs in Table 3.

Clone ID Gene symbol Cytoband Correlation

753692 ABLIM1 10q25 0.199

896962 ACADS 12q22-qter −0.22

753400 ACTL6A 3q26.33 0.155

472185 ADAMTS1 21q21.2 0.214

210687 AGTR1 3q21–q25 −0.182

856519 ALDH3A2 17p11.2 −0.244

270535 BM466581 19 0.03

238907 CABC1 1q42.13 −0.174

773301 CDH3 16q22.1 0.118

505576 CORIN 4p13-p12 0.196

223350 CP 3q23–q25 0.184

810463 DHRS7B 17p12 −0.151

50582 FLJ25076 5p15.31 0.086

669443 HSF2 6q22.31 0.207

743220 JMJD4 1q42.13 −0.19

43977 KIAA0182 16q24.1 0.259

810891 LAMA5 20q13.2–q13.3 0.269

247230 MARVELD2 5q13.2 −0.214

812088 NLN 5q12.3 0.093

257197 NRBF2 10q21.2 0.275

782449 PCBP2 12q13.12–q13.13 −0.079

796398 PEG3 19q13.4 0.169

293950 PIP5K1A 1q22–q24 −0.242

128302 PTMS 12p13 −0.248

146123 PTPRK 6q22.2–q22.3 0.218

811066 RNF41 12q13.2 −0.247

773344 SLC16A2 Xq13.2 0.24

1031045 SLC4A3 2q36 0.179

141972 STT3A 11q23.3 0.182

454083 TMPO 12q22 0.175

825451 USO1 4q21.1 0.204

68400 BM455010 17 0.748

756253,365147 ERBB2 17q11.2–q12—17q21.1 0.589

510318,236059 GRB7 17q12 0.675

245198 MED24 17q21.1 0.367

825577 STARD3 17q11–q12 0.664

7827562 TBPL1 6q22.1–q22.3 0.658

1
The first part of the table lists the inferred trans-regulated genes. The second part of the table lists cis-regulated genes.
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2
This cDNA sequence probe is annotated with TBPL1, but actually maps to one of the 17q21.2 genes.
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