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ABSTRACT

Recently, we reported the co-transcriptional forma-
tion of DNA:RNA hybrid G-quadruplex (HQ) structure
by the non-template DNA strand and nascent RNA
transcript, which in turn modulates transcription
under both in vitro and in vivo conditions. Here we
present bioinformatic analysis on putative HQ-
forming sequences (PHQS) in the genomes of eukary-
otic organisms. Starting from amphibian, PHQS
motifs are concentrated in the immediate 1000-nt
region downstream of transcription start sites,
implying their potential role in transcription regulation.
Moreover, their occurrence shows a strong bias
toward the non-template versus the template strand.
PHQS has become constitutional in genes in warm-
blooded animals, and the magnitude of the strand
bias correlates with the ability of PHQS to form HQ,
suggesting a selection based on HQ formation. This
strand bias is reversed in lower species, implying that
the selection of PHQS/HQ depended on the living
temperature of the organisms. In comparison with
the putative intramolecular G-quadruplex-forming se-
quences (PQS), PHQS motifs are far more prevalent
and abundant in the transcribed regions, making
them the dominant candidates in the formation of
G-quadruplexes in transcription. Collectively, these
results suggest that the HQ structures are evolution-
ally selected to function in transcription and other
transcription-mediated processes that involve
guanine-rich non-template strand.

INTRODUCTION

G-quadruplex, a four-stranded secondary structure formed
by guanine-rich (G-rich) nucleic acids, is gaining increasing

attention owing to its potential role in physiological and
pathological processes (1–4). DNA G-quadruplexes have
recently been shown to exist in the genome of living mam-
malian cells (5). Putative G-quadruplex sequences (PQS) are
prevalent in the human genome, which count to �37000
copies in known genes (6,7). Formation of G-quadruplex
in DNA affects a number of physiological processes
associated with DNA, to mention a few examples,
telomere extension (8,9), DNA tracking (10), methylation
(11) and genome instability (12). Because of its abundance
in promoter regions (13), a more general function of G-
quadruplex in a genome is believed to play a role in tran-
scription regulation. This functionality is first demonstrated
for the intramolecular G-quadruplex structure upstream of
the P1 promoter of C-MYC that controls the transcriptional
activation of the gene (14) and later for the G-quadruplex
structures in many other genes (15–21). Bioinformatic
searches of genomic DNA revealed that PQS are enriched
around transcription start sites (TSS) in a variety of organ-
isms, providing a strong support to a general role of
G-quadruplex structures in transcription (6,7,22–31).
G-quadruplexes can be grouped into two simple

categories, i.e. intramolecular and intermolecular struc-
tures, according to the number of nucleic acid strands
involved in the assembly of the structures. A single
nucleic acid strand bearing four G-tracts can fold into
an intramolecular G-quadruplex containing a stack of
guanine quartets (G-quartet) linked by three loops
(Figure 1A). On the other hand, intermolecular
G-quadruplex can form by acquiring four G-tracts from
multiple nucleic acid strands (Figure 1B). To date, inves-
tigation on G-quadruplexes of genomic sources has been
focused on intramolecular G-quadruplexes (Figure 1C).
While the presence of G-quadruplex structures in living
cells has recently been detected (5), the biogenesis of
G-quadruplexes in cells remains largely unclear.
Recently, we reported that transcription of double-
stranded DNA (dsDNA) readily produces DNA:RNA
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hybrid G-quadruplexes (HQ) by G-tracts from both the
non-template DNA strand and the nascent RNA tran-
script (Figure 1D). In addition, we found that such HQ
formation in turn modulates transcription under both
in vitro and in vivo conditions. We further showed that
putative HQ-forming sequences (PHQS) are present in
>97% of human genes and their number correlate with
the transcriptomal profiles in human tissues (32). These
results suggest that HQ structures have a fundamental
role and could be a more prevalent form of
G-quadruplexes in genome.
To further explore the physiological implication and

characterize the occurrence of PHQS motifs in genomes,
we carried out genome-wide analysis to organisms whose
genomic data are currently available in the Ensembl genes
database. Here we show that PHQS is present in much
greater prevalence and abundance than the PQS. Like
the PQS, PHQS motifs are also concentrated near TSS.
HQ formation requires G-tracts from the non-template
strand. In accordance with this, PHQS motifs exhibited
preferential enrichment on the non-template strand. Our
data suggest that this strand bias might be selected by a
mechanism based on the capability of PHQS to form HQ.
Analysis across different organisms illustrates that a
negative selection of PHQS occurred in the genomes of
metazoa and pisces. In contrast, a positive selection
began to merge in amphibians and PHQS became consti-
tutional in genes in warm-blooded animals. Collectively,
these results suggest that HQ structures are evolutionally
selected to function in transcription regulation and other
transcription-mediated processes that involve the tran-
scription of DNA with guanine-rich non-template
strand, such as immunoglobulin class switching, recom-
bination, genomic instability and replication initiation.

MATERIALS AND METHODS

Gene sequences

Sequences of protein-coding genes and their upstream
flanking region were downloaded in fasta format, respect-
ively, along with their IDs from the Ensembl genes

database (release 68, except Mustela putorius furo, which
was from release 69) via the BioMart (version 0.7) inter-
face (http://www.ensembl.org/) by selecting protein-
coding in the Gene type filter and Unspliced (Gene) in
the Attribute/Sequences panel. Only unique results were
downloaded.

Sequence analysis

PHQS was identified with a home-made Perl program
(Supplementary Figure S1, original transcript and a
standalone executable file are provided) developed using
the Active Perl 5.14.2 (downloaded from www.activestate.
com/activeperl) under the Windows OS. The program
used a pattern-matching code G{3,}(.{1,7}?G{3,}){1,} to
detect the sequences G�3-(N1–7-G�3)�1, where G denoted
guanine and N denoted any nucleotide, including G. The
use of non-greedy quantifiers for loops while the rest op-
erators were greedy by default ensured that G-tracts
would not be ignored or treated as loop. Putative
G-quadruplex sequences (PQS) were identified in the
same way, but using the pattern-matching code
G{3,}(.{1,7}?G{3,}){3,} that detects sequences G�3-(N1–

7-G�3)�3. Each match returned the matched sequence, its
coordinate (the position of the first guanine relative to
TSS, Figure 2A) and gene ID. The motifs found were
grouped into four categories designated 1G, 2G, 3G and
4G+ in which they contained 1, 2, 3 and �4 G-tracts,
respectively. They were then sorted into 100 nt bins
based on their coordinates to obtain their frequency dis-
tribution. Because the pattern matching was within the
whole sequence rather in windows of defined size, motifs
of more than four G-tracts are identified as single hits and
no overlaps would occur. The search of each sequence file
generates two tab delimited plain text files containing in-
formation on each found PHQS, their occurrence distri-
bution and statistical summary of the PHQS motifs on
both the non-template and template strands, respectively,
within a designated searching range (Supplementary
Figure S1 and Supplementary Table S1). The files can be
opened in Excel or similar software for viewing and further
processing. Isolated G3 tracts were analyzed similarly
using the pattern-matching code G{2,}(.{1,7}?G{2,}){0,}
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that identifies all motifs with one or more G-tracts of two
or more consecutive guanines, connected by loops of 1–7
nucleotides. Any found motifs that had more than one
G-tract, or G-tract with size 6¼ 3 were discarded. The re-
maining motifs are single G3 tracts isolated from other
G-tracts by more than seven nucleotides. They were then
processed in the same way as the PHQS.

Masking of regulatory motifs

Motif masking for CpG islands and G-rich transcription
factor binding sites (TFBSs) was conducted using the

software MotifLab version 1.07 (33). A list of IDs for
the protein-coding genes in human (GRCh37.p11) was
obtained from the Ensembl genes database (release 72).
A CpG island BED file for human was downloaded
using the Table Browser of the University of California
Santa Cruz (UCSC) Genome Browser (http://genome.
ucsc.edu/) from the assembly hg19, track CpG islands,
in BED format. Three BED files for the G-rich TFBS,
EGR1, MAZ and SP1, was downloaded using the
UCSC Table Browser from the assembly hg19, track
Uniform TFBS, respectively. The gene list was imported
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into the MotifLab to download the correspondent DNA
sequences and the BED file for the motifs was imported to
mask the sequences. Masked sequences were then
analyzed by the homemade Perl script (Supplementary
Figure S1). Masking of heterogeneous nuclear
ribonucleoproteins (hnRNP) A and H motifs was con-
ducted using a home-made Perl script that searched for
the motifs in the DNA sequences and converted them to
N’s as described (25).

HQ formation in in vitro transcription

dsDNA carrying a T7 promoter and an indicated down-
stream G-core was prepared by overlap extension polymer-
ase chain reaction. Transcription was carried out essentially
as previously described (32) at 37�C for 1h using 50nM
dsDNA in a 10ml volume of 40mM Tris–HCl (pH 7.9)
buffer containing 2U/ml T7 polymerase (Fermentas,
USA), 50mM KCl, 40% (w/v) polyethylene glycol (PEG)
200, 8mM MgCl2, 10mM dithiothreitol (DTT), 2mM
spermidine, 2mM nucleoside triphosphate (NTP) and
0.5U/ml pyrophosphatase, inorganic (Fermentas, USA).
After transcription, the sample was diluted with equal
volume of stop solution containing 40% (w/v) PEG 200,
50mM KCl, 1mM competitive DNA (50-GAAATTAATA
CGACTCACTATA-30, double-stranded), 0.8mg/ml RNase
A and 0.4U/ml RNase H, followed by a incubation at 37�C
for 1h. The reaction was terminated by addition of 1/25 vol
of 0.5M EDTA and 1/20 vol of 2% sodium dodecyl sulfate.
The DNA was then resolved on a 10% polyacrylamide gel
containing 75mM KCl and 40% (w/v) PEG 200, at 4�C,
8V/cm, in 1� tris-borate-EDTA (TBE) buffer containing
75mM KCl. Resolved DNA was detected by the fluores-
cence of carboxyfluorescein (FAM) dye labeled at the 50

end of the non-template strand using a Typhoon 9400
phosphor imager (GE Healthcare, USA).

RESULTS

Strand-biased enrichment of PHQS in
TSS-flanking region

To survey the occurrence of PHQS in genomes, we carried
out computational searches in the protein-coding genes in
species in the Ensembl genes database. The search algo-
rithm found all motifs that match the sequence pattern
G�3-(N1–7-G�3)�1; that is, two or more G-tracts of three
or more consecutive guanines, connected by loops of 1–7
nucleotides. Because the formation of HQ in transcription
requires a minimum of two G-tracts from the DNA
strand, our searching pattern was adopted from the one
G�3 -(N1-7-G�3)�3 that has been used in searches for PQS
in genomes in the original (6,7) and many later works
(13,22–31,34–37) by simply reducing the minimal
number of G-tracts from four to two. The PHQS motifs
were then grouped into four categories designated 1G, 2G,
3G and 4G+, which contain 1, 2, 3 and �4 G-tracts, re-
spectively. It should be noted that the 4G+motifs are also
capable of forming intramolecular DNA G-quadruplex.
The 1G group contained long G-tracts that satisfy the
pattern G�3 -(N1-7-G�3)�1 and can be clarified into one
or more of the other three categories. For example, a

G15 can be regarded either as a 2G sequence of G7-L1-
G7 or as a 4G sequence of G3-L1-G3-L1-G3-L1-G3 or
others, where L1 designates a 1-nt (G) loop. Because of
their small amount (<1% of PHQS in human genes) and
multiple clarifications, they were not used for further fre-
quency analysis. Figure 2B–D present the results obtained
from human, chicken and stickleback, which gives the oc-
currence frequency of PHQS in the ±4kb region centered
at TSS on both the non-template and template strands.

Similar to the PQS motifs (13,23,26,38), the PHQS
motifs were also enriched in the region adjacent to TSS
in human and chicken, mostly within the immediate 1 kb
region (Figure 2B and C). The enrichment is present on
both sides of TSS and on both the template and non-
template DNA strands. Because the PHQS motifs in the
region upstream of TSS and in the template strand down-
stream of TSS are in principle unable to form HQ, they
must be selected by mechanisms that are irrelevant to HQ.
However, the distribution of PHQS showed a greater oc-
currence in the non-template strands than in the template
strands downstream of TSS, which is also similar to that
of the PQS motifs (13,23,26,38). In addition, this strand
bias is not present in the region upstream of TSS that is
not transcribed. These two facts suggest that the strand
bias toward PHQS motifs on the non-template strand is
specifically associated with transcription and selected by
an additional mechanism(s). Comparison with mRNA
showed that the PHQS motifs near the TSS were largely
removed after splicing (Figure 2B and C). Therefore, most
of the PHQS motifs are intended to function in transcrip-
tion and/or pre-mRNA.

PHQS strand bias is positively selected in
warm-blooded animals

If the strand bias for PHQS is selected for a biological
function, it should be conserved across related species.
To trace its evolutional selection, we searched for PHQS
in the genomes of all the species currently available in the
Ensembl database. It can be seen that the species in the
mammalian, avian, reptilian and amphibian categories
showed biased positive selection for PHQS on the non-
template strand, downstream of TSS for the 2G, 3G
(Figure 3) and 4G+ motifs (Supplementary Figure S2).
However, such a strand bias was not obvious for the
species in the pisces and metazoan categories. More pre-
cisely, a reversed negative selection could be noticed in
most of these species in which the occurrence of PHQS
was higher in the template than in the non-template
strand. One exception was the Latimeria chalumnae in
the pisces, which also displayed a higher occurrence in
the non-template than in the template strand, like the
two of the amphibian species. The selection in those
three species was disturbed by random noise in the back-
ground. This might reflect an evolutional transition from
lower to higher organisms in the selection for PHQS.

Overall, an enrichment of PHQS near TSS and strand
bias toward PHQS on the non-template strand began to
show up in amphibians, and they became a general feature
in the warm-blooded animals (aves and mammalia). In
contrast, lower organisms showed much lower occurrences

10382 Nucleic Acids Research, 2013, Vol. 41, No. 22

-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt781/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt781/-/DC1
Double-stranded DNA (
)
PCR
r
-
'
'
r
SDS
&times;
'
-
-
,
,
-
,
transcription start sites (
)
-
s
, 2
,
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt781/-/DC1
.
s


M
am

m
al

ia

H. sapiens 
P. troglodytes 
G. gorilla 
P. abelii 
N. leucogenys 
M. mulatta 
C. jacchus 
T. syrichta 
M. murinus 
O. garnettii 
T. belangeri 
M. musculus 
R. norvegicus 
D. ordii 
C. porcellus 
I. tridecemlineatus
O. cuniculus 
O. princeps 
V. pacos 
T. truncatus 
B. taurus 
S. scrofa 
E. caballus 
F. catus 
A. melanoleuca 
M. putorius furo 
C. familiaris 
M. lucifugus 
P. vampyrus 
E. europaeus 
S. araneus 
L. africana 
P. capensis 
E. telfairi 
D. novemcinctus
C. hoffmanni 
M. domestica 
M. eugenii 
S. harrisii 
O. anatinus 

Aves 
T. guttata 
G. gallus 
M. gallopavo 

Reptilia A. carolinensis 

Amphibia
P. sinensis 
X. tropicalis 

Pisces

L. chalumnae 
O. niloticus 
T. nigroviridis 
T. rubripes 
G. aculeatus 
O. latipes 
G. morhua 
D. rerio 
P. marinus 

Metazoa

C. savignyi 
C. intestinalis 
D. melanogaster
C. elegans 
S. cerevisiae 

P
H

Q
S

 [
3G

, G
≥≥3

-(
N

1-
7-

G
≥3

) 2
]/

10
0

S
eq

u
en

ce
s

0

3

6

9

12

H. sapiens
0
2
4
6
8

10

P. troglodytes
0

2

4

6

8

G. gorilla
1

3

5

7

9

P. abelii
1

3

5

7

9

N. leucogenys
0

2

4

6

8

M. mulatta

0

2

4

6

8

C. jacchus
0

2

4

6

T. syrichta
2

4

6

8

M. murinus
0

2

4

6

O. garnettii
0

2

4

6

T. belangeri
0

2

4

6

8

M. musculus

0

2

4

6

R. norvegicus
0

2

4

6

8

D. ordii
0

2

4

6

C. porcellus
0

2

4

6

I. tridecemlineatus
0

2

4

6

8

O. cuniculus
0

2

4

6

8

O. princeps

0

2

4

V. pacos
0

2

4

6

8

10

T. truncatus
0

2

4

6

8

B. taurus
0

2

4

6

8

S. scrofa
0

2

4

6

E. caballus
0

2

4

6

8

F. catus

0

2

4

6

8

A. melanoleuca
0

2

4

6

8

M.putorius furo
0

2

4

6

8

C. familiaris
0

2

4

6

8

M. lucifugus
0

2

4

6

8

P. vampyrus

0

2

4

6

E. europaeus

0

2

4

6

S. araneus
0

2

4

6

L. africana
0

2

4

6

P. capensis
0

2

4

6

8

E. telfairi
2

4

6

D. novemcinctus
0
1
2
3
4
5
6

C. hoffmanni

0
1
2
3
4
5

M. domestica
0

2

4

6

M. eugenii S. harrisii
0

2

4

6

0

2

4

6

8

O. anatinus
2

4

6

T. guttata

0

2

4

6

8

G. gallus

0

2

4

M. gallopavo
0

1

2

3

A. carolinensis
0

2

4

P. sinensis
0

1

2

3

X. tropicalis L. chalumnae
0

1

2

0

1

O. niloticus

0

1

2

T. nigroviridis
0

1

T. rubripes

0

1

2

G. aculeatus
0

1

O. latipes
0

1

2

G. morhua
0.0

0.2

0.4

0.6

0.8

D. rerio

0

1

2

P. marinus
0.0

0.2

0.4

0.6

0.8

C.savignyi C.intestinalis
0

1

0

1

D. melanogaster
0.0

0.2

0.4

C. elegans

0.0

0.1

0.2

0.3

0.4

S. cerevisiae

Distance to TSS (nt), Minimum: -1000, Maximum: 1000 

Figure 3. Biased selection of PHQS in 60 species in the Ensembl database. Each panel shows the occurrence of PHQS with three G-tracts (3G) in the
non-template (red curve) and template (green curve) strands within the ±1-kb region centered at TSS. Similar distribution pattern and strand bias
were also present for PHQS with two and four G-tracts (2G and 4G+) as in Figure 2. The species list is ordered according to the species tree
provided on the Ensembl Web site to reflect the order of evolution.

Nucleic Acids Research, 2013, Vol. 41, No. 22 10383



of PHQS than higher organisms. The reservation of a
strand-biased enrichment of PHQS across the warm-
blooded species argues that PHQS motifs are evolution-
ally selected.

An independent mechanism for the selection of PHQS
strand bias

Promoters overlap TSS (39) and often harbor G-rich
regulatory elements, such as CpG islands (40), TFBSs
(24,25) and recognition sites for posttranscription
(41,42) and translation (43) regulation. There are two
possibilities that may account for the strand bias of
PHQS. It could be selected either to produce G-rich
RNA to form HQ or serve as recognizing elements in
pre-mRNA/mRNA (41,42). The small number of PHQS
motifs that remained at the 50 end of spliced mRNA may
represent those in the 50 UTR region, based on their
distribution overlap (Figure 2B and C, Blue and pink
curves), which may play other functions in translation
(43). The G-rich elements that function specifically in
pre-mRNA/mRNA are expected to contribute to the
strand bias. At least, those recognized by the hnRNP
are specific to the non-template strand (41,42), thus
should contribute to the PHQS strand bias. To
evaluate the contribution of G-rich regulatory elements,
we determined the occurrence of PHQS in human with
several G-rich elements masked. They include CpG

island, EGR1, MAZ, SP1 and hnRNP binding sequences
(hnRNP).

Figure 4 shows the results obtained for the CpG island
and three G-rich TFBSs: EGR1, MAZ and SP1 motifs,
respectively. The masking of the CpG islands significantly
reduced the occurrence of PHQS on both the non-template
and template strand (dashed versus dotted curve), but the
strand bias downstream of TSS remained across all the
three categories of PHQS motifs after the masking (red
versus green dashed curves). The CpG islands obviously
contributed to the strand bias of PHQS as indicated by a
higher selection for them on the non-template than on the
template strand (red versus green solid curves). Similar
results were also obtained for the EGR1, MAZ and SP1
motifs with respect to their influence on the occurrence of
PHQS and contribution to the strand bias, although in a
reduced magnitude. These results indicated that CpG
islands, TFBS and similar G-rich regulatory motifs
provide a source for the enrichment of PHQS and they
were differentially selected on the two DNA strands to
promote HQ formation.

Unlike the above elements, the G-rich motifs in RNA
transcripts recognized by hnRNP A and hnRNP H is non-
template specific. Therefore, the masking in this case was
conducted only for the G-rich elements. This manipula-
tion reversed the strand bias in the entire region for
human (Figure 5, left panels). When compared with the
template strand, however, it can be noticed that the
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occurrence frequency near TSS on the non-template
strand is still much higher relative to the background
level. To make a better comparison, we normalized the
occurrence of PHQS to the background and this
restored the stand bias (Figure 5, right panels). This
result clearly shows that the enrichment of PHQS was
preferentially promoted on the non-template than on the
template strand near the TSS.

PHQS strand bias correlates with the efficiency of
PHQS to form HQ

In seeking a cause that leads to PHQS strand bias, it was
noticed that the magnitude of the strand bias in
human and chicken increases with the number of
G-tracts (Figure 2B and C). Our previous experiments
showed that HQ formation also increased with an
increase in the number of G-tracts (32) (Figures 2C
and 3B therein). This suggests that the strand bias might
be selected by the capability of PHQS to form HQ.

Because the sequences derived from the NRAS gene in
our previous work varied in the size of both the loops
and G-tracts, and loop composition, we determined
more stringently the dependence of HQ formation on
the number of G-tracts by experiments. Co-transcriptional
formation of HQ was analyzed in dsDNAs (Figure 6A,
scheme) bearing a G-core of different G-tracts with single-
T loops. HQ formation in these DNAs was detected by
native gel electrophoresis after a posttranscription diges-
tion with RNase A and H to remove all the RNAs except
those in HQ. DNA carrying a G-quadruplex migrates at
slower rate than the same DNA containing no
G-quadruplex (32,44). As is shown in Figure 6A, no HQ
was detected in the DNA containing only one G3 under
any condition (lanes 1–4). For the DNAs containing two
or three G3, however, HQ was observed when the tran-
scription was carried out with normal GTP (lanes 7, 11).
In contrast, no HQ was seen when the DNA was subjected
to a heat denaturation/renaturation (lanes 6, 10) or
transcribed with the GTP being substituted by 7-deaza-
GTP (dzGTP) (lanes 8, 12), a GTP analog used to
prevent RNA from participating in G-quadruplex forma-
tion (45). This fact indicates that these two DNAs were
unable to form G-quadruplex by themselves, but needed
the RNA to participate. It can be noted that the DNA
with three G3 tracts formed more HQ (60%) than the
DNA with two G3 tracts (20%). When the number of
G3 tracts increased to four, more G-quadruplex formed
(lane 15, 85%). Because this DNA alone was also able to
form intramolecular G-quadruplex (lanes 14, 16), it is
not known how much HQ formed in this DNA. The
G-quadruplex structures detected were those that
remained after the posttranscription processing and
might not exactly reflect their amount formed during tran-
scription. However, the higher HQ amount detected in the
DNA with three G3 tracts than in that with two G3 tracts
implies that more G-tracts led to more chance of HQ for-
mation, which provides an intuitive explanation to a
greater PHQS strand bias for the 3G than for the 2G
motifs (Figure 2B and C).
To see if a higher strand bias is correlated with more

G-tracts in the other warm-blooded species as in the
human and chicken, we quantitated PHQS strand bias
in all the species available in the Ensembl database using
the following equation:

PHQS Strand Bias ¼
ðNN �NTÞ

NT
,

where NN and NT are the number of PHQS motifs in the
non-template and template strand, respectively, within the
1 kb region downstream of TSS. This definition gives the
relative excess of PHQS motifs in the non-template
comparing with the template strand. In Figure 6B, it can
be seen that all the warm-blooded animals, except the
Ornithorhynchus anatinus, showed positive strand bias,
implying a preferential selection for PHQS in the non-
template strand in these species. More importantly, the
strand bias all increases with an increase in the number
of G-tracts. Even though the 4G+motifs are able to form
intramolecular G-quadruplex besides HQ, it showed the

Figure 5. Contribution of hnRNP A and H to the enrichment and strand
bias of PHQS downstream of TSS. Four G-rich motifs were masked in the
following order: TAGGGT/A, GGGA, only on the non-template strand.
Frequency is expressed as in Figure 2. Left panels: original data obtained
after masking. Right panels: data obtained by normalizing the original
data to the background (mean of the data points in the 3000–4000 nt
region) of each curve. Red and green curves indicate non-template and
template DNA strand, respectively.
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highest strand bias. This may indicate a competition of
HQ formation against the intramolecular structure in
these motifs. On the other hand, a negative selection
seems to be present in the metazoa and pisces where
PHQS occurrence in the majority of the organisms was
suppressed in the non-template relative to the template
strand as indicated by their negative strand bias values.
In this case, a same dependence on the number of
G-tracts, but in a reversed order, is also seen, i.e. motifs
of more G-tracts correlate with stronger suppression or
negative selection.
Our experimental results in Figure 6A (left panel) show

that the formation of a HQ requires at least two tandem

G-tracts in the non-template strand. A single G-tract, like
the GGGA recognized by all the hnRNP H family
proteins (41), is not able to form HQ in transcription,
and masking the GGGA did not remove the strand bias
of PHQS (Figure 5). We thought it might be of interest to
see if a strand bias would also occur with such motifs that
are unable to form HQ. We analyzed those G3 tracts that
are isolated from other G-tracts in the non-template
strand. Figure 6C gives the distributions of such orphan
G3 motifs that are separated from any G�2 by more than
seven nucleotides. In accordance with their inability to
form HQ, their distributions showed little strand bias as
well as enrichment near TSS. Collectively, the results in
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Figures 2 and 6 suggest that the strand bias of PHQS
has been developed based on the ability of PHQS to
form HQ.

PHQS is the dominant candidate for G-quadruplex
formation in transcription

Our previous work shows that HQ formation is a general
feature associated with transcription of DNA bearing
multiple G-tracts in the non-template strand. To survey
the presence of PHQS in different genomes, we searched
for PHQS in all the species in the Ensembl database and
compared it with that of the PQS. Because the PHQS
motifs are concentrated near the TSS and those near
TSS are most relevant to transcription, we calculated
their numbers within the ±1kb region of TSS (Figure 7,
left panels). We found that the PHQS is the dominant
form of G-quadruplex-forming motifs in all the species.
In mammalians, �80% of the genes carry PHQS, while
�50% of the genes bear PQS. In lower species, the per-
centage of PHQS positive genes can be several times
higher than that of the PQS. The PHQS showed a
similar dominance when the average number of motifs
per gene was calculated. In all the species, this value for
the PHQS is averagely more than twice of that for the
PQS. The abundance of both PHQS and PQS in lower
species is dramatically lower than in higher species, but
PHQS always maintained its dominance over PQS.

We also calculated the occurrence of PHQS and PQS
within the transcribed region of the genes (Figure 7, right
panels). In human, PHQS is present in >97% and PQS in
>85% of the genes. This means nearly all genes in human
are PHQS positive. For all the vertebrates, PHQS-positive
genes are mostly between 90 and 100%. The average
number of PHQS per human gene is >73 per gene,
much greater than that of PQS, which is �10. All the
other species have a lower PHQS load than human. The
PQS load is mostly <10 per gene. The above statistics
demonstrate that the putative HQ-forming sites were far
more prevalent and abundant than the non-hybrid intra-
molecular G-quadruplex-forming sites in the eukaryotic
organisms.

DISCUSSION

As an extension of our previous work in which the co-
transcriptional formation of HQ structures was revealed
as a general phenomenon and characterized in details with
experimental approaches (32), our present work presents a
genome-wide analysis on the occurrence of PHQS motifs
for the vertebrates and other eukaryotic species in the
Ensembl database. Our analysis revealed the prevalence
and abundance of PHQS in these species and pointed to
an evolutional selection for PHQS. Although the analyses
on the metazoa and pisces were with a limited number of
data sets, our results suggested that the occurrence of
PHQS motifs or, in other words, the formation of HQ is
suppressed in these species as indicated by their negative
PHQS strand bias. Starting from amphibians, the selec-
tion becomes positive as reflected by the positive PHQS
strand bias and is reserved throughout the warm-blooded

animals (Figure 6B). PHQS motifs have become constitu-
tional in the genes of warm-blooded species (Figure 7).
Interestingly, the L.chalumnae, which is thought to be an
ancestor of amphibian, also shows significant positive
PHQS strand bias as the amphibians.
Several lines of evidences (Figures 2 and 6) imply a con-

nection of PHQS strand bias to the potential of the PHQS
motifs to form HQ in transcription. The evolutional order
of the strand bias (Figure 6B) seems to suggest that the
selection is dependent of the living temperature of the
species. The systematic selection of PHQS in mammalians
and aves is associated with the ability of the organisms to
maintain a constant body temperature. For the metazoa
and pisces, the negative strand bias suggests that the HQ is
physiologically deleterious; therefore, the occurrence of
PHQS is suppressed (Figures 2, 3 and 7; Supplementary
Figure S2), resulting in negative strand biases (Figure 6).
The concentration of G-richness near the TSS as regula-
tory elements creates chances for HQ formation in tran-
scription. The positive strand bias of PHQS in the warm-
blooded animals implies that HQ structures selected are
beneficial in these species with a stable body temperature.
HQ structures may function in two aspects. In general,

lower organisms have fewer PHQS motifs per gene than
higher organisms. In Caenorhabditis elegans, PHQS is only
present in 33% of the genes, with an average of 0.6 PHQS
per gene, in sharp contrast to the human genome. In
Saccharomyces cerevisiae, PHQS is only found in 27.4%
of the genes, with an average of 0.36 PHQS per gene. The
large difference between the lower and higher organisms in
the number of PHQS motifs per gene implied that the HQ
might modulate transcription through different mechan-
isms. In the lower organisms, HQ may serve as recognition
element, as intramolecular G-quadruplex does, that func-
tions through binding with regulatory proteins (46). This
functionality should also be present in higher organisms,
but the universal presence and the large number of PHQS
in warm-blooded species strongly suggested that the HQ
structure has an additional, and perhaps more general,
function independent of specific pathways. It is unlikely
that a single human gene would use 73 HQs as recognition
elements. Our previous work has shown that HQ modu-
lates transcription under both in vitro and in vivo condi-
tions, and the occurrence frequency of PHQS motifs in
genes correlates with the transcriptional profiles in
human tissues. As assumed in our previous work, HQ
may regulate transcription in an intrinsic, direct and
cost-effective way. We hypothesized that HQ structures
may provide a general primary cis control at the root
level of transcription to limit the expression potential of
the host genes (32).
We expect that HQ should also have functionality in

other processes that involve transcription. Strand-biased
enrichment of guanine residues is featured in many
physiologically important genomic elements, including im-
munoglobulin class switching sequences (47), prokaryotic
(48) and mitochondrial (49) replication origins, the MAZ
transcription termination element (50,51) and other
transcribed genes (51,52). Transcription of G-rich DNA
is a well-recognized source of genome instability, and it is
often associated with a bias toward G-richness on the non-
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template strand (53–57). In principle, HQ formation may
participate in cellular events that involve transcription of
DNA with multiple G-tracts on the non-template strand.
For example, transcription by the T7 RNA polymerase
and mammalian RNA polymerase II is blocked when
G-rich sequences are in the non-template strand, but not
when they are in the template DNA strand, even in the
presence of four G-tracts (58,59). Apparently, the forma-
tion of the HQ provides a reasonable explanation for the
strand discrimination in those events because only the
G-rich non-template can produce G-rich RNA transcripts,
a prerequisite for HQ formation (Figure 1D).
The requirement of a minimum of two G-tracts instead

of four allows PHQS motifs to occur at a much higher
frequency than the PQS; thus, they are the dominant

candidates for G-quadruplex formation in transcription
in cells (Figure 7). The prevalence of PHQS motifs in
genes and HQ formation associated with transcription po-
tentially offers opportunity for manipulating the
expression of nearly all genes by targeting HQ structures.
On the other hand, this also brings an extreme challenge
to the selectivity of G-quadruplex-interacting drugs.
Indeed, it has been reported that administration of
G-quadruplex ligands significantly affected the expression
of a wide range of genes in human cells, in correlation with
the presence of the predicted G-quadruplex sequences
(60,61). Telomeric DNA tends to form intramolecular
G-quadruplexes at the 30 end of the DNA strand (62),
and this inhibits its extension by both telomerase and the
alternative lengthening of telomere (ALT) mechanism (9).
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Figure 7. Occurrence of PHQS and PQS motifs in 61 species in the Ensembl database in the ±1-kb region around TSS (left panels) and transcribed
region of genes (right panels). The species list is ordered according to the species tree provided on the Ensembl Web site.
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Thus, stabilization of telomeric G-quadruplexes has long
been pursued as an anticancer strategy (63). Previous inves-
tigations reported that G-quadruplex ligands induced sen-
escence and telomere shortening in cancer cells (64–66).
Given the prevalence of PHQS and PQS, this might
suggest a combined effect of the drugs on telomeres and
other G-quadruplex-bearing genes.
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