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ABSTRACT

In silico prediction of genomic long non-coding RNAs
(lncRNAs) is prerequisite to the construction and
elucidation of non-coding regulatory network.
Chromatin modifications marked by chromatin regu-
lators are important epigenetic features, which can
be captured by prevailing high-throughput
approaches such as ChIP sequencing. We demon-
strate that the accuracy of lncRNA predictions can
be greatly improved when incorporating high-
throughput chromatin modifications over mouse em-
bryonic stem differentiation toward adult Cerebellum
by logistic regression with LASSO regularization. The
discriminating features include H3K9me3, H3K27ac,
H3K4me1, open reading frames and several repeat
elements. Importantly, chromatin information is
suggested to be complementary to genomic
sequence information, highlighting the importance
of an integrated model. Applying integrated model,
we obtain a list of putative lncRNAs based on
uncharacterized fragments from transcriptome
assembly. We demonstrate that the putative
lncRNAs have regulatory roles in vicinity of known
gene loci by expression and Gene Ontology enrich-
ment analysis. We also show that the lncRNA expres-
sion specificity can be efficiently modeled by the
chromatin data with same developmental stage.
The study not only supports the biological hypothesis
that chromatin can regulate expression of tissue-
specific or developmental stage-specific lncRNAs
but also reveals the discriminating features between
lncRNA and coding genes, which would guide further
lncRNA identifications and characterizations.

INTRODUCTION

The ENCODE and related projects have revealed that the
majority of eukaryotic transcripts are non-coding RNAs
(1). Within the past few years, non-coding RNAs
(ncRNAs) have attracted significant attention with
regard to their unbelievably numerous biological roles,
highlighting the biological significance of previously ‘over-
looked’ RNA reservoir (2). Generally, long non-coding
RNAs (lncRNAs) are ncRNAs that are longer than
200 nt and are typically expressed in a developmental
stage-specific manner (2). Other criteria have also been
used such as open reading frame (ORF) size <300 nt
and high conservation for filtering interested lncRNAs
(3,4). Most of lncRNAs have short ORFs based on con-
ceptual translation and may not generate proteins (5).
Similar to protein-coding genes, most lncRNAs are
supposed to be transcribed by RNA polymerase II and
have typical pre-mRNA-like structure including 50 Cap
and polyA+ tail. lncRNA species can be divided into
distinct categories basically including intergenic, sense,
antisense, intronic and bidirectional transcripts (6).
Previously, lncRNAs were considered to be transcrip-
tional noises and experimental artifacts (7). However,
lncRNAs are involved in a plethora of cellular processes
including trans-regulation of nearby protein-coding genes
(8), imprinting control (9) and alternative splicing (10).
For instance, HOTAIR, a HOX-associated lncRNA,
which originates from the HOXC locus, can target
PRC2 and silence the transcription of the HOXD locus
in trans (11). Importantly, a few lncRNAs are involved in
embryogenesis in vertebrates (12–15).

Computational approaches are widely used to identify
non-coding genes in previous studies. These approaches
typically identify non-coding genes that have short ORFs
and lack homology to protein-coding genes (16). It is still
difficult to distinguish lncRNA genes with long ORFs from
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long protein-coding genes. In addition, a large number of
non-coding transcripts originate from protein-coding loci
(17). To tackle the challenges, initial computational
approaches based solely on genomic sequences are used
to identify lncRNAs. ORF length (3), ORF conservation
(18,19), structural approach (20) and artifact filtering (3,21)
are the most common criteria used to distinguish lncRNAs
from coding mRNAs (22). Machine-learning algorithms
are one solution for non-coding RNA identification. Four
recent representative tools, CPC (23), PORTRAIT (24),
CONC (25) and iSeeRNA (26), use support vector
machines to distinguish ncRNAs from coding mRNAs.
These support vector machine-derived algorithms take
multiple features such as peptide length, amino acid com-
position, sequence conservation and sequence alignment in-
formation into consideration, representing the pioneering
methods for identifying lncRNAs from unknown genomic
regions. Though successful in predicting structural RNAs
(e.g. transfer RNA), these approaches do not perform well
in non-structural lncRNAs, due partly to that non-
structural RNAs are mRNA-like and less conserved
among different species, which limits the applicability of
sequence alignment information in lncRNA prediction.
Recently, computational studies aiming at identifying
non-structural lncRNAs are accumulating. In brief, they
can be summarized by three strategies: cDNA
sequencing-based filtering, chromatin modification
mapping and RNA sequencing-based filtering. First,
Boerner et al. (27) developed a computational pipeline for
identifying lncRNAs from cDNA sequences. Though
cDNA sequence is one source for locating lncRNAs in
genome, the relatively higher costs hinder the extensive
use. Second, Guttman et al. identified over 1000 putative
lncRNAs in mouse genome based on H3K4me3 and
H3K36me3 marks. Though successful, one potential limi-
tation of their study is that lncRNAs are assumed to be
regulated by same chromatin marks as protein-coding
genes, which would underestimate the number of actual
lncRNAs. Last, Sun et al. (28) proposed a computational
tool for filtering lncRNAs from RNA sequencing (RNA-
seq) data. Though RNA-seq-based transcriptome recon-
struction is promising for de novo lncRNA identification,
it suffers from sequencing precision and lagging algorithms
for accurately building full-length transcripts due to low
abundance of lncRNAs (29,30). However, the wide avail-
ability of RNA-seq data provides a basis for identifying a
large number of potential tissue-specific lncRNAs that can
be further filtered.

Though sequence-based methods achieve good perform-
ance against golden-standard sequence sets, it is not prac-
tical to derive tissue-specific expression information from
them, making it inefficient to validate and analyze lncRNA
function experimentally. Several studies have shown that
chromatin modifications are helpful to increase genomic
element prediction efficiency (31,32). lncRNAs rely on epi-
genetic mechanisms to regulate cell differentiation and
organ development (33), but little is known about the
roles of epigenetic modifications in lncRNA transcriptional
regulation. Owing to the chromatin immunoprecipitation
followed by massively parallel sequencing (ChIP-seq)
technique, which has been widely used to investigate

genome-wide chromatin modifications in mammalian
genomes (34,35), we are provided an opportunity to under-
stand on a genome-wide scale how lncRNAs are regulated
in a cell-type-specific manner based on tissue-specific or
developmental stage-specific RNA-seq data and ChIP-seq
data. Importantly, little is known about the chromatin
modification and genomic features discriminating
lncRNAs from protein-coding genes, which emphasizes
the necessity to integrate chromatin features in different
developmental stages and genomic information in a
machine-learning model and evaluate their importance
for distinguishing lncRNAs from protein-coding genes.
To this end, we use 22 publicly available high-throughput

mouse ChIP-seq data sets involving three developmental
stages as well as 19 genomic features to identify features
that discriminate lncRNAs from protein-coding genes.
We use logistic regression with LASSO regularization
to identify discriminating lncRNA signatures, evaluate
model performance based on known gene annotations and
finally predict lncRNAs from transcriptome-assembled
transcribed fragments (transfrags). Logistic regression
model, one of the most famous machine learning models,
can integrate a large number of features and identify
discriminating features/markers, which would tackle the po-
tential problem that each single feature may not be com-
pletely representative of lncRNAs. For example, although
sequence conservation is usually used to identify regulatory
non-coding genes, the degree of variation of conservation
involving lncRNAs makes that high conservation feature
can depict only a small subset of development related
lncRNAs (36). Through the trained model, we evaluate
the usefulness of chromatin modification and genomic
features for lncRNA prediction. Specifically, LASSO regu-
larization ranks the predictability of features for lncRNA
classification with three transposable elements being the
most predictive features followed by two enhancer-related
histone modification marks H3K9me3 and H3K27ac in
gene exons. In addition, the comparison of performance
of model using chromatin information and/or sequence in-
formation implies the ability of the integrated model to
identify lncRNAs involved in embryonic development.
Though chromatin modification features yield the perform-
ance comparable with genomic features, the model
integrating both types of information performs even better
against the model with only one type. The lncRNA expres-
sion specificity is contributed mostly by the chromatin
modification features from same developmental stage, sug-
gesting the trained integrated model is capable of predicting
tissue-specific lncRNAs. A large pool of putative lncRNAs
that exhibit comparable genomic property and chromatin
profile with known lncRNAs is predicted from RNA-seq
data. Furthermore, the coexpression of putative lncRNAs
with nearby genes and enrichment in close to genes
associated with neuron differentiation and transcriptional
regulation functions suggest the potential regulatory func-
tionality of lncRNAs.

MATERIALS AND METHODS

The model construction, graphs and statistical ana-
lyses were done in R (http://www.r-project.org) and
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Bioconductor (www.bioconductor.org) unless otherwise
stated.

Genomic features and chromatin data sets

The chromatin modification data were taken from the
mouse ENCODE project (35). Twenty-two publicly avail-
able chromatin ChIP-seq raw data in mouse embryonic
stem (ES) cell, Embryonic day 14.5 (E14.5) embryonic
brain and adult 8-week Cerebellum (CB) were downloaded
from Sequence Read Archive (37) including the following
chromatin modifications: CCCTC-binding Factor
(CTCF), polymerase II (PolII), H3K4me1, H3K4me3,
H3K9me3, H3K27ac, H3K27me3 and H3K36me3
(Table 1), in addition to Input. CpG islands information
predicted by CpG_MI was obtained from Su et al. (38).
Other genomic features including Phastcons most
conserved regions and repeat elements were downloaded
from UCSC (mouse mm9 build) (39). ORF-related
features including ORF_proportion (ratio of ORF to tran-
script length) and ORF_length were calculated by txCds
Predict provided by UCSC. PhastCons most conserved
regions and nucleotide sequences-based features were
calculated by iSeeRNA program suite (26).

Known lncRNAs for model training and testing

RefSeq was generated by both automated and curated
approaches to provide an up-to-date representation of
gene sequences (40). Here, we used the lncRNA and
long protein-coding genes from RefSeq for model
training because the annotation typically had support by
experimental validation. In RefSeq, annotated lncRNAs
are considered unlikely to be protein-coding for several
reasons, including non-sense-mediated decay, truncated
ORFs and alternate splice variants with significant ORF
truncation. In addition, RefSeq lncRNA annotations were
also incorporated in the Havana and Ensembl gene
building processes.
We used Ensembl (41) transcripts for validating the

proposed integrated model. The Ensembl lncRNA anno-
tation was based on cDNA alignments and was guided by

chromatin modifications (H3K4me3 and H3K36me3).
Specifically, cDNAs with H3K4me3 and H3K36me3
overlap were identified, followed by protein-coding poten-
tial filtering. The procedure was similar to that performed
by Guttman et al. (4). The candidate lncRNAs with
maximum ORF covering >35% of its length and with
PFAM/tigrfam protein domains were not considered as
non-coding genes in Ensembl annotation. Other than elec-
tronic annotation, the Ensembl annotation also included
Havana manual annotation, suggesting that it was a
reliable non-coding and coding annotation source.

Sequencing data pre-processing

Raw chromatin modification data (FASTQ format) were
aligned to the mouse genome (mm9) by BWA software
(v0.6.2) while suppressing alignments with >2 mismatches
within a read. The aligned data were then normalized by a
fixed read number (25 000 000). Exact duplicate tags were
removed from each ChIP-seq data set to avoid PCR amp-
lification biases introduced in the sequencing library prep-
aration processes. Visual inspection suggested that the
baseline read numbers were generally comparable for all
normalized chromatin modification data, diminishing dif-
ferences between different data. The aligned sequencing
data were processed by MACS (42) to produce enriched
chromatin domains.

In lncRNA expression specificity analysis and the rela-
tionships with nearby gene analysis, we also used RNA-
seq data of the same developmental stages with ChIP-seq
data, making it suitable for model construction and
testing. Raw paired end RNA-seq FASTQ data were
downloaded from GEO with the accession number
GSE20851 for ES cell and GSE36025 for E14.5 embryonic
brain and adult 8-week CB (43). Raw RNA-seq data were
aligned to the mouse genome (mm9) by TopHat software
(44), followed by gene expression quantification according
to a widely accepted protocol (45). The expression levels of
transcripts were quantified by Fragments Per Kilobase of
transcript per Million mapped reads (45).

To obtain assembled non-coding transcriptome data
sets for genome-wide lncRNA predictions, we removed

Table 1. The details of 227 features used in the integrated model

Features Cell
line

Tissue/cell
type

Accession Feature number Data type

Histone modifications (H3K4me1, H3K4me3,
H3K9me3, H3K36me3, H3K27ac,
H3K27me3), PolII and CTCF

E14 ES GSE31039 8, each with 7 subfeatures, summing up
to 56 features

ChIP-seq

Histone modifications (H3K4me1, H3K4me3,
H3K9me3, H3K36me3, H3K27ac,
H3K27me3), PolII and CTCF

E14.5
whole
brain

GSE31039 8, each with 7 subfeatures, summing up
to 56 features

ChIP-seq

Histone modifications (H3K4me1, H3K4me3,
H3K27ac, H3K27me3), PolII and CTCF

8 week
CB

GSE31039 6, each with 7 subfeatures, summing up
to 42 features

ChIP-seq

Repeat elements and CpG islands UCSC mm9 9, each with 7 subfeatures, summing up
to 63 features

Bed format

PhastCons most conserved regions, ORF and
nucleotide sequences-based features

UCSC mm9 1 conservation feature, 2 ORF features,
7 nucleotide sequences-based features,
summing up to 10 features

BED format

Columns represent the feature names, the cell lines of mouse ES cell used (cell Line), the tissue/cell type of the data (tissue/cell type), the NCBI GEO
accession number (Accession), feature number and the data type.
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the reads mapped on RefSeq and Ensembl genes. Further
filtering included the removal of transfrags with short
length (<400 nt), lower expression (Fragments per
kilobase of transcript per million mapped reads < 0.1),
coding potential CPC score less than �1 by CPC (23),
long ORFs with length >600 nt (26). The remaining
transfrags were predicted by our trained feature-selected
model. The resulting putative lncRNAs for three devel-
opmental stages were listed in Supplementary Table S1.

Feature calculation

The genomic (only repeat elements and CpG islands) and
chromatin features of known and predicted transcripts
were quantified for the following seven categories respect-
ively: Transcription Start Sites (TSSs) upstream 3k,
promoter (TSS until end of first exon), 1st third, 2nd
third and 3rd third of gene body excluding 1st exon, re-
spectively, exons in together and lastly Transcription End
Sites downstream 3k. For transcripts with only one exon,
the promoter was defined as 20% of gene length down-
stream of TSSs. The lncRNA body was defined as the
gene body without first exon. The rule makes seven
subfeatures to be modeled for each feature (except
10 sequence features), summing up to 227 features
(Table 1). The full data for all features including
subfeature information are in Supplementary Table S2.
The general naming conventions of the subfeatures are
tissue_feature_region, where region represents one of
3000bp_u _TSS, 3000bp_d _TSS, 1_3 _gene, 2_3 _gene,
3_3 _gene, exons and 3000bp_d_TTS, corresponding to
the aforementioned feature categories, respectively. The
subfeature calculations were done by writing custom
JAVA scripts. The feature values for all genes used in
the training and testing model were given in
Supplementary Table S2.

Selection of potential sequence features is one of the
most important steps before modeling. We referred to
Sun et al.’s article (26) to select 10 effective sequence
features that are listed in Table 1. In addition, the
feature space of di- or tri-nucleotide sequence features
is large, and these features are highly inter-correlated,
which would decrease the performance of integrated
model. We only used GC, CT, TAG, TGT, ACG and
TCG in our model, which were shown to contribute
mostly to the prediction performance (26). Though
other features such as those based on homolog search
were often used for non-coding RNA classification,
they were highly correlated with the conservation and
did not improve model performance (26). In addition,
CpG island feature was used here because many
intergenic CpG islands were associated with non-coding
RNAs (46). Repeat elements were also reckoned to
regulate lncRNA evolution (47), which were also
included in our model.

The gene expression specificity based on three develop-
mental stages was used for analyzing lncRNA expression
specificity-related chromatin and genomic features. We
used QDMR software (48) to calculate expression specifi-
city. Transcripts without developmental stage-specific
expression fell into no specificity category.

Feature selection by LASSO regularized logistic
regression

Standardization that can avoid shrinkage of feature
weights was performed by subtracting the mean and
dividing by the standard deviation for all features in
integrated model. A binomial logistic regression was
used to model sequence and chromatin features and then
predict putative lncRNAs from transcriptomic data in ES
cell, E14.5 brain and adult CB. Let yi=0 or 1 to represent
lncRNA or protein-coding gene. Define y=[y1, y2, . . .,
yn]

T as the binary class label for all n genes. The probabil-
ity of yi=1 is given by pi=Pr(yi=1), i= 1, . . ., n. The
logistic regression model is defined by:

logitðpiÞ ¼ �0+
Xm
j¼1

�jxij ð1Þ

where � is the regression coefficient of variable x, which
indicates how well each feature explains the difference
of lncRNA and protein-coding genes. The logit(pi) is
defined by:

logitðpiÞ ¼ log
Prðyi ¼ 1Þ

1� Prðyi ¼ 1Þ

� �
ð2Þ

To select efficient features, we used LASSO regularization
that introduces an additional penalty with a power raised
on the weight vector (49). Using LASSO regularization,
feature weights of less significance would shrink to 0 as
lambda increases.
The LASSO estimate of � is determined by

�̂lasso ¼ argmin
�

XN
i¼1

 
yi��0�

Xm
j¼1

xij�j

!2

+�
Xm
j¼1

�j
�� ��

8<
:

9=
; ð3Þ

For the unbalanced size of RefSeq protein-coding and
lncRNA genes, we split the coding genes into 10 parts,
each of which together with all lncRNAs constituted a
data set, respectively. Based on the lambdas that
minimized the Mean Squared Error from cross-validation
for each of the 10 data sets, we obtained a feature selected
model for each data set, respectively.

Model evaluation

The model assessment measures included Area Under
Curve (AUC) under Receiver Operating Characteristic
(ROC) curves, Precision and Recall in 10-fold cross-valid-
ation. The performance was averaged for 10 data sets. We
calculated averaged AUC, Precision and Recall values for
lncRNA and protein-coding gene predictions. We defined
False Negative (FN) as the number of lncRNAs that
were classified as coding RNAs in our predictions. The
Positive Predictive Value (PPV), specificity and sensitivity
were given as TP/(TP+FP), TN/(FP+TN) and TP/
(TP+FN), respectively.

Gene Set Enrichment to elucidate lncRNA functions

Gene Set Enrichment was done to explore lncRNA regu-
latory functions. Briefly, we explored the function of genes
closest to putative lncRNAs and systematically performed
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Gene Ontology (GO) gene function enrichment of these
genes using the DAVID system (50) followed by clustering
of functions with significant numbers of shared genes
using Enrichment map (51). Only Biological Process
branches were involved in GO enrichment.

RESULTS

Specific features can discriminate long non-coding genes
from coding genes

To discriminate 24761 long coding and 2383 long non-
coding RefSeq gene regions, we used mouse ChIP-seq
data sets in three developmental stages: (1) ES cells; (2)
E14.5 brain and (3) CB, involving seven histone modifica-
tions, one polymerase occupancy and one chromatin-
associated protein (Table 1). In addition to these ChIP-seq
data sets, genomic features including CpG islands, ORFs,
repeat regions and PhastCons most conserved regions were
also incorporated in our model. Chromatin features were
tissue specific, which implied that the model can be applic-
able to other cell/tissue contexts to predict other tissue-
specific lncRNAs. Besides for model training, all of these
data sets were also used for model validation and prediction
purposes. Because of the unbalanced size of coding and
lncRNA genes, the coding genes were randomly drawn
into 10 gene sets with the whole lncRNA genes and 10
non-overlapping coding gene sets of equal size.
In our initial binomial model, we classified the training

genes into two categories: coding and lncRNA genes. The
regions of gene body plus 3-kb extended from transcript
ends were split into seven parts (refer to ‘Materials and
Methods’ section). Logistic regression model assumes that
each feature contributes independently to the overall per-
formance. However, the trained model would be biased if
some features are partially or fully redundant. For
example, some histone modifications like H3K4me1,
H3K4me2 and H3K4me3 are likely to colocalize specific
regions, making some features have no or little additional

predictive power. To tackle this, we used a LASSO
regularized binomial logistic regression model to
evaluate features, by which we can rank the contributions
of features to the classification of lncRNA and coding
genes. LASSO regularization can shrink feature weights
by introducing a lambda penalty factor to filter out unin-
formative or redundant features. Top ranking features
(non-zero weights and occurring at least in 7 of the 10
models) with respect to specific log lambda values for 10
training models were kept to build the feature selected
model, whereas the feature weights with respect to log
lambda were shown in Figure 1. As increasing the
penalty parameter lambda, we observed that the weights
of less informative features shrink to zero, whereas
weights of informative features keep above-zero. By
LASSO regularization, the most positively predictive
features for coding genes under the log lambda values
determined by cross-validation were ORF_proportion
and ORF_length, which have been widely used for
coding gene prediction in documented studies. It was
not unexpected because long ORF is less likely to be
observed in non-coding RNA sequences. H3K4me3_
3000bp_d_TSS (promoter) in ES and CB ranked third
and fourth, respectively. H3K4me3 was previously
shown to associate with active gene expression around
TSSs (52), which is consistent with that lncRNAs are gen-
erally lowly expressed. Surprisingly, features that best
categorized lncRNA genes were three repeat elements,
followed by ES_H3K9me3_exons and E14_H3K27ac_
exons, in agreement with lncRNA characteristics. Only
one stage of the two chromatin modification data was
selected by the model, which was reasoned by the
average concatenated exon profiles generated by CEAS
software (53) in Supplementary Figure S1. From
Supplementary Figure S1A and C, we observed that
H3K9me3 is more enriched in exon in ES cell than E14
brain, whereas H3K27ac is more enriched in exon in E14
brain than ES cell (Supplementary Figure S1B, D and E).
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Figure 1. Selected informative features determined by the strict threshold using binomial logistic regression with LASSO regularization. Feature
weights in predicting lncRNAs are with respect to log lambda, a penalty to shrink feature weights in the regression model. Weights of features with
less discriminative power of the lncRNAs and protein-coding genes shrink to 0 as lambda is increasing. Informative features are those with above-
zero weights based on lambda value determined by cross-validation.
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After comparing 10-fold cross-validation results, we
found that the performance of integrated model decreased
slightly after feature selection. AUC, Precision and Recall
were used to assess models (refer to ‘Materials and
Methods’ section), using 10-fold cross-validation
(Table 2). Though chromatin data only model achieved
relatively worse performance, integrated model with chro-
matin information improved the lncRNA prediction. The
logit of the full feature selected model was given as follows:

logit½Pðy ¼ protein� codingÞ� ¼ 4:001ORF length

+5:333ORF proportion

� 0:426E14 H3K4me1 exons

+1:718ES H3K4me3 3000bp d TSS

� 0:473ES H3K9me3 exons

+0:304CB H3K4me3 3000bp d TSS

� 1:441E14 H3K27ac exons

+1:694E14 H3K4me3 3000bp d TSS

+0:156E14 H3K36me3 exons

� 2:792DNA repeat exons

� 0:796LTR repeat 3000bp d TSS

� 5:824LINE repeat exons

+0:023SINE repeat 1 3 gene

� 5:779LTR repeat exons

+0:011SINE repeat 3000bp u TSS

� 0:066SINE repeat exons+0:601

ð4Þ

In our model, the size of bin upstream and downstream
of two categories of genes that was used for feature quan-
tification was arbitrarily defined as 3 kb. However, the bin
size may not be optimal, as the chromatin signals are ex-
pected to span thousands of genomic base pairs. A short bin
size may only capture part of chromatin signatures,
whereas a large bin size may include non-informative
regions, which may degrade the model performance. To
better characterize signatures of lncRNA and coding
genes, the efficient bin size out of gene body should be
optimized, as no explicit bin size was proved best previ-
ously. After conducting independent experiments on
eight bin sizes (1, 2, 3, 4, 5, 6, 8, 10 kb), we found the per-
formance of cross-validations for the full feature model was
best at 3 kb, though 3, 4 and 5 kb have comparably high
performances (Supplementary Figure S2A).

The gene body was partitioned into three parts (k=3),
as discretization into three parts is an usual strategy. To
evaluate whether the partition was most effective for our
model, we also explored other k values for partitioning. As
a result, a partition with k=2 yielded a moderate result,
whereas partitions with k=5 and k=6 yielded extremely
poor results (Supplementary Figure S2B). The partitions
with k=3 and k=4 generated comparable cross-
validation performance. To make our model simple, we
preferred to use a partition with k=3.

The use of loose thresholds for adding more features does
not significantly improve the performance of the
integrated model

We only kept overrepresented features with common oc-
currence >6, which was termed as the strict threshold for
10 training models. One would speculate that a model can
achieve even better performance with additional feature
inclusion. To defy this, we reconstructed three feature-se-
lected models with loose thresholds of 6, 5 and 4 common
features in 10 models, respectively. For the integrated
model with more features benefited by loose thresholds
while keeping other settings unchanged, we observed
minor performance increments in the lncRNA and
coding gene predictions (Supplementary Figure S3A).
For example, the integrated model achieved a precision
of 0.803 using the strict threshold, whereas the precision
smoothly increased to 0.813 with a looser threshold of
4/10. Such a minor increase of performance suggested
that feature selection with a stricter threshold was
suitable to perform a genome-wide prediction, with
respect to both time and result robustness.
We were also interested whether removal of any one,

two or more features from the feature selected integrated
model at the strict threshold would harm the model per-
formance. For the feature-selected integrated model, when
removal of any one feature, two features or three features,
while keeping other settings unchanged, on average, we
observed only a weak reduction of the model performance
for only one feature removal (Supplementary Figure S3B),
whereas the performance was worse when more features
were removed. The result further suggested the efficiency
of feature selection and the robustness of the proposed
feature selected integrated model.

Independent gene set testing shows that the integrated
model including chromatin data identifies lncRNAs more
accurately than sequence only model

Having the data set of known Ensembl lncRNA and
protein-coding genes without training, we conducted
model performance testing with the strict threshold,
which was shown to be effective compared with other
thresholds. It was tempting to evaluate our models
without sequence features together with a sequence only
model because it was unclear if chromatin data could sig-
nificantly improve lncRNA prediction power. A set of
6578 Ensembl lncRNA genes without overlapping any
RefSeq genes were used as the lncRNA positive testing
set for evaluation. In contrast, a set of 1495 protein-
coding genes without overlapping any RefSeq genes

Table 2. Comparison of average performance of 10-fold cross-valid-

ation in RefSeq lncRNA and protein-coding gene predictions using

all features, chromatin data only, sequence only and feature selected

features

Used features AUC Precision Recall

All features 0.927 0.857 0.857
All chromatin features 0.827 0.760 0.759
All sequence features 0.876 0.797 0.796
Feature selected features 0.882 0.833 0.832

The comparisons include the AUC under ROC curves, precision and
recall values.
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were used as the negative testing set. The testing set is an
unbalanced data set, the size ratio of lncRNAs versus
coding genes is �4.4. A more proportion of lncRNAs
in testing set mimicked the situation where most
unannotated transfrags in assembled transcriptome data
were expected to be non-coding fragments. Ten independ-
ent tests for 10 training models were performed, respect-
ively. The averaged results were shown in Table 3. From
Table 3, the chromatin data only model and the sequence
only model achieved a comparable accuracy on predicting
lncRNAs (average PPV=86.0% using chromatin data
only features versus 87.2% using sequence only
features). It was not surprising that the chromatin data
only model did not outperform the sequence only model
because chromatin modification data from only limited
tissues/cell types were included in integrated model, and
the performance may be better if more marks and more
data from other tissues/cell types could be added. The
integrated model with selected features achieved a better
PPV, suggesting the usefulness of feature selection. Taken
together, the sequence and chromatin information were
somewhat complementary, though the sensitivity of chro-
matin data only model was inferior to that of the sequence
only model.
Though more effective sequence features would help

identify lncRNAs in theory, it seemed that features
involving ORF were most useful, which were considered
irreplaceable by chromatin data. Therefore, an integrated
model incorporating both effective chromatin information
and genomic sequence information could help identify
potential lncRNAs in a more effective manner.

lncRNA prediction based on transfrags of uncharacterized
genomic regions by integrated model

We then applied our feature selected integrated model to
predict lncRNAs from transfrag sets de novo assembled
from RNA-seq data of same developmental stages with
chromatin ChIP-seq data. After pre-processing of RNA-
seq data (details refer to ‘Materials and Methods’ section),
only unannotated intergenic transcripts were kept to be
predicted by our model. Furthermore, potential coding
transcripts were filtered out by the CPC program, which
used six features of putative ORFs to distinguish protein-
coding from non-coding genes. In summary, we obtained
19 246, 17 230 and 2688 lncRNAs in E14.5 brain, CB and
ES cell, respectively. About 80% of these were develop-
mental stage-specific lncRNAs.

lncRNAs were short, non-conserved and lowly ex-
pressed, compared with protein-coding genes in previous
studies (4,54,55). To explore whether the putative
lncRNAs filtered here also had similar genomic character-
istics, we analyzed the gene structure, conservation level
and ORF length of developmental stage-specific putative
lncRNAs of three tissue/cell types (Figure 2). We found
that the length of predicted putative lncRNAs was on
average a half of that of known protein-coding transcripts
(mean length of 1549 nt for lncRNAs versus 2676 nt for
coding transcripts) (Figure 2A). Though shorter than
known protein-coding transcripts, the putative lncRNAs
were comparable with known RefSeq lncRNAs in length
(1549 nt for lncRNAs versus 1899 nt for known
lncRNAs). Moreover, lncRNAs had fewer exons per tran-
script (�1.5) than protein-coding gene (�11.2), even fewer
than known lncRNA transcripts (�5.2) (Figure 2B).
Though the less number of exons might be an underesti-
mation of the actual size of putative lncRNAs due to po-
tentially incomplete assembly of lowly expressed
transcripts, much evidence suggested many lncRNAs
were tended to be unspliced, compared with protein-
coding genes (56). In supporting this, the gene transcrip-
tional rates were considered to be positively associated
with splicing machinery (57). Consistent with prior
studies (17,55), the putative lncRNAs were less conserved
than known coding transcripts (Figure 2C). Notably, the
putative lncRNAs were associated with shorter ORFs
than known protein-coding transcripts (mean length of
162.8 nt for lncRNAs versus 1747.0 nt for coding tran-
scripts) (Figure 2D), while comparable with known
lncRNAs (384.9 nt for known lncRNAs).

Previous studies have implicated lncRNAs as potential
products of enhancer functions. It has been suggested that
enhancer elements can produce short transcripts called en-
hancer RNAs (58). Enhancer RNAs may be related to
lncRNAs because both of enhancers and lncRNAs are
highly tissue/developmental stage-specific in gene expres-
sion. For enhancer marks were associated with lncRNAs
based on feature selection, we were interested in whether
putative lncRNAs were associated with enhancer related
chromatin marks. H3K27ac is known as an active
enhancer mark, which is more useful for testing
enhancer than H3K4me1 that marks both active and
poised enhancer (59). To estimate the proportion of
enhancer associated putative lncRNAs, we intersected
gene body and promoter of putative lncRNAs at three
developmental stages with H3K27ac enriched domains
of matched stage, respectively. We observed that �20%
of promoters of predicted lncRNAs in E14 and CB and
�10% of promoters of predicted lncRNAs in E14 brain
were associated with H3K27ac enriched domain
(Supplementary Figure S4). In addition, �50% of
lncRNA body of predicted lncRNAs (exons excluding
first exon, the same for following results) were associated
with H3K27ac (Supplementary Figure S4). Taken
together, a large proportion of lncRNAs seemed to be
regulated by enhancer marks, whereas only a small pro-
portion (�20%) of lncRNAs may be enhancer products.
If only common lncRNAs expressed in the two develop-
mental stages were considered, the proportion of

Table 3. Comparison of averaged performance of testing validation

for Ensembl lncRNA and protein-coding genes without overlapping

any RefSeq genes using selected features, chromatin data only and

sequence only features

Used features Sensitivity Specificity PPV

All chromatin features 0.706 0.649 86.0%
All sequence features 0.764 0.657 87.2%
Feature selected features 0.753 0.823 92.8%

The comparisons include the sensitivity, specificity and PPV.
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association with the mark is low (�4% for promoter and
�13% for body, detailed data not shown), which could be
reasoned that lncRNAs were precisely and specifically
regulated by this enhancer mark.

As an example of enhancer mark regulated lncRNAs, we
showed in Figure 3 that four lncRNAs in an imprinting
cluster betweenDlk1 andMeg3 were candidates associated
with enhancer, which were supported by histone modifica-
tion patterns (H3K27ac and H3K4me1) and available lit-
erature (Figure 3). Only basal levels of H3K4me3 and PolII
were observed, in contrast to the enrichment of two
enhancer marks H3K27ac and H3K4me1 in the cluster of
putative lncRNAs. Court et al. used 3C-qPCR approach to
study the chromatin dynamics and long-range cis-inter-
actions for several genomic regions. Based on their data,
we found that these lncRNAs were in close to the contact
loci with other chromosomes (60). Put together, the
lncRNAs we found were reckoned to have roles in chro-
matin dynamics over large genomic distances even other
chromosomes. As another example, we also found an
lncRNA located �8 kb downstream of Zfp386 and �4 kb
upstream of Vipr2, as shown in Supplementary Figure S5.

We then examined the reliability of lncRNA predictions
by evaluating whether predicted lncRNA regions were sup-
ported by PolII occupancy and Cap Analysis of Gene
Expression (CAGE) clusters. First, we analyzed the pre-
dicted developmental stage-specific lncRNAs by stage-
matched PolII ChIP-seq data. RNA polymerase II binds

the promoters of virtually all known protein-coding and
non-coding genes (61,62). Though PolII feature was used
to build the training model, it was not included in the
feature selected model, consistent with its role as a
general gene transcription indicator. The PolII distribu-
tions aligned by the putative lncRNAs in E14.5 brain
were shown in Figure 4A and B. The distributions in
other tissues/cell lines were shown in Supplementary
Figures S6 and S7. As expected, we found a peak at the
vicinity of TSSs in E14.5 brain, CB and ES cell, respectively
(Figure 4A, Supplementary Figures S6A and S7A).
Quantitatively, �50% of promoters (TSS upstream 3k
until end of first exon) of predicted lncRNAs were
associated with PolII (Supplementary Figure S8A).
Altogether, the PolII patterns were consistent with known
distribution of PolII (63). The lncRNA body was signifi-
cantly enriched with PolII signals over basal levels
(Figure 4B, Supplementary Figures S6B and S7B).
Approximately 40% of lncRNA body of predicted
lncRNAs was associated with PolII (Supplementary
Figure S8B). It has been known that genes with low expres-
sion have more tendency of PolII distribution toward TSSs
and less in gene body compared with genes with high ex-
pression (64), which implied that most lncRNAs we
identified were lowly expressed exclusively in specific
stages, considering the stage of PolII ChIP-seq data was
exactly matched with that of predicted stage-specific
lncRNAs in this analysis.
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Figure 2. The genomic property of putative lncRNAs with developmental stage specificity, compared with known lncRNAs and protein-coding
genes with developmental stage specificity. (A) Putative lncRNAs display shorter transcript length than that of known lncRNAs and known protein-
coding genes. (B) Putative lncRNAs display fewer number of exons than that of known lncRNAs and known protein-coding genes. (C) Putative
lncRNAs display lower PhastCons conservation scores than that of known lncRNAs and known protein-coding genes. (D) Putative lncRNAs display
comparable ORF length with that of known lncRNAs and shorter ORF length than that of known protein-coding genes.
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CAGE was developed to map promoters, and we
were interested whether the predicted lncRNA promoters
were supported by CAGE tags, which would add extra
evidence for supporting our predictions. The basic
assumption of the evaluation was that the larger the
number of CAGE tags overlapped with the predicted
lncRNA promoters, the more confident the predictions
were. Though only one CAGE tag was needed to map a
promoter, lncRNAs would be reliable by multiple tags, due
to the potential noise of CAGE, which would be better to
be demonstrated in the similar manner with that of PolII.

The CAGE data used here were taken from the
FANTOM4 project with over 20 tissues/cell lines
including brain tissues (65). Analogous to PolII profile,
we also found a peak at the vicinity of TSSs in E14, CB
and ES cell, respectively (Figure 4C, Supplementary
Figures S6C and S7C). Quantitatively,>80% of promoters
of predicted lncRNAs were associated with CAGE tags
(Supplementary Figure S8C). No enrichment of CAGE
tags in gene body was consistent with the fact that CAGE
was developed to map TSSs rather than other genomic
regions (Figure 4D, Supplementary Figure S6D
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and S7D). In contrast, �60% of lncRNA body of
predicted lncRNAs was associated with CAGE tags
(Supplementary Figure S8D). Altogether, the evalu-
ation of putative lncRNAs by PolII occupancy and
CAGE data suggested that the integrated model was
powerful for identifying developmental stage-specific
lncRNAs.

lncRNAs are coexpressed with nearby genes and are
associated with differentiation and development

To explore the regulatory roles of the predicted lncRNA
candidates, we assigned developmental stage-specific
lncRNA candidates to their closest genes and compared
the gene expression changes of lncRNAs and their closest
genes during development, as previous studies raised a

hypothesis that the regulation of lncRNAs on nearby
protein-coding genes was a possible regulatory mechanism
(Figure 5A), and almost 40% of GENCODE v7 lncRNAs
were estimated to flank protein-coding gene loci (17). We
showed the distance distributions between lncRNAs and
nearby protein-coding genes in Supplementary Figure S9,
where most of E14.5 brain-specific lncRNAs (�71.5%)
had gene neighbors within 100 kb and �18.3% within
10 kb. Similarly, �78.5% of CB-specific lncRNAs had
gene neighbors within 100 kb and �19.9% had within
10 kb. The detailed distance information for lncRNAs
and neighboring genes was available in Supplementary
Table S3. An lncRNA candidate may be difficult to be
assigned to one specific nearby gene, as lncRNAs were
often located in intergenic deserts and even may not
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Figure 4. The average profile of PolII ChIP-seq tags and CAGE tags around TSS and within gene body for stage-specific lncRNAs in E14.5 brain.
(A) The TSS of lncRNAs is enriched with PolII tags over basal levels, where PolII density is aligned around TSS with±3000 bp extensions.
The average signal represents the average number of reads per 100-bp interval. (B) The gene body of lncRNAs normalized by length of 3000 bp
with 1000-bp extension from TSS toward upstream and TTS toward downstream is enriched with PolII tags over basal levels. (C) The TSS
of lncRNAs is enriched with CAGE tags over basal levels, where CAGE tag density is aligned around TSS with±3000-bp extensions. (D) The
gene body of lncRNAs normalized by length of 3000 bp with 1000-bp extension from TSS toward upstream and TTS toward downstream is enriched
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package).
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regulate closest genes in a linear genome. Here, we preferred
to keep lncRNAs with closest genes <500kb, and we also
discarded lncRNAs with closest genes<5 kb to avoid poten-
tial untranslated region extensions from known genes. We
were interested in the expression changes of the closest genes
to tissue-specific lncRNAs (10 013 CB-specific lncRNAs,
12029 E14.5 brain-specific lncRNAs and 7217 common
lncRNAs) during development. The expression data we
used were stage matched with chromatin modification data
in ES, E14.5 brain andCB, respectively.Here, an lncRNAor
nearby protein-coding gene was defined as upregulated if the
expression in E14.5 brain is <50% of that in CB, whereas it
was downregulated if the expression in E14.5 brain is >2-
fold of that in CB. In Figure 5B, most (71%) of closest genes
of CB-specific lncRNAs were upregulated in CB, and most
(75%) of closest genes of E14.5-specific lncRNAs were
downregulated in CB, consistent with the proposed hypoth-
esis. In contrast, neighboring lncRNAs expressed both in
E14.5 or CB were not tended to have such a pattern
(Figure 5C). In addition, 36% of closest genes of common
lncRNAs expressed in all developmental stages were
upregulated or downregulated (data not shown). These
findings suggested that the putative lncRNA candidates
regulated transcription of nearby genes in brain develop-
ment, in contrast to common lncRNAs and neighboring
lncRNA–lncRNA pairs. The coexpression of lncRNAs
and neighboring coding genes was supposed to be regulated
by chromatin modifications, as the genomic information
remained constant for all developmental stages.
To further testify the regulatory roles of lncRNAs in

mouse brain development, we performed GO function
enrichment for the genes closest to lncRNAs using the
DAVID system (50) followed by clustering of resulting

function terms with significant numbers of shared genes
using Enrichment map (51). Nearest coding genes of the
E14.5 brain-specific lncRNAs were significantly enriched
in GO terms such as neuron differentiation and cell
morphogenesis involved in differentiation and
axonogenesis (FDR =6.2� 10�13 and 1.9� 10�9, re-
spectively) (Figure 6) and included many genes involved
in brain functional regulation: Bdnf, Dbx1, Alkbh1,
Neurod2 and Nrcam, suggesting lncRNAs were potentially
associated with embryonic brain development. Although
in adult CB, there were only eight enriched terms
(q-value< 0.021), which were related to neuron differenti-
ation, transcriptional regulation and synaptic transmis-
sion (Figure 7). This result indicated that embryonic
brain continued to develop, and neuron differentiation
did not finish even after mouse birth, compared with
adult mouse brain. Although for common lncRNAs,
there were only three enriched GO terms (FDR< 0.001),
less than that in E14.5 brain (41 terms) and in CB (five
terms). The full enriched GO terms for E14.5 brain-
specific lncRNAs, CB-specific lncRNAs and common
lncRNAs were listed in Supplementary Table S4. Taken
together, the assumed links between lncRNAs and func-
tional genes in brain development sounded reasonable,
which also suggested the regulatory roles of putative
lncRNAs in stage-specific brain development.

Furthermore, we also used the UP_TISSUE annotation
from the DAVID system to explore whether known genes
close to stage-specific lncRNAs tended to be tissue-specific
genes. The UP_TISSUE list is a curated list of gene ex-
pression specificity based on literature mining. Indeed, we
found brain-related organ-specific genes are highly
enriched in genes neighboring stage-specific lncRNAs.
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Figure 5. Developmental stage-specific lncRNAs are positively associated with neighboring protein-coding genes with regard to gene expression level.
(A) A hypothetical model is proposed, assuming stage-specific lncRNAs can regulate neighboring protein-coding genes and therefore have a positive
coexpression relationship. (B) We analyze the known protein-coding gene expression changes from E14.5 brain to CB and find that 75% of protein-
coding genes closest to the E14.5-specific lncRNAs are downregulated, whereas 71% of protein-coding genes closest to the CB-specific lncRNAs are
upregulated. (C) We analyze the expression changes from E14.5 brain to CB for neighboring lncRNA–lncRNA pairs as a control and found that
55% of neighboring lncRNAs around the E14.5-specific lncRNAs are downregulated, whereas 47% of neighboring lncRNAs around the CB-specific
lncRNAs are upregulated.
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(FDR< 0.01) and is followed by clustering of resulting function terms with significant numbers of shared genes using Enrichment map. Dense gene
functions are surrounded by circles with function terms labeled aside. Line thickness between connected nodes is proportional to gene numbers
shared between terms. Twenty-three terms indicated by dark gray are enriched by q< 0.021 filtering. Many terms are related to Brain development,
Neuron differentiation and Transcriptional regulation.
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Figure 7. GO enrichment analysis of genes close to developmental stage-specific lncRNAs in adult CB. Terms are related to Neuron differentiation,
Transcriptional regulation and Synaptic transmission.
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There were 12 enriched terms in E14.5 brain and 17 terms
in CB after multiple testing adjustment (Supplementary
Figure S10). Though top terms were shared by stage-
specific lncRNAs and common lncRNAs, a few terms
were developmental stage-specific, like Cortex in E14.5
brain and Hippocampus in adult CB, suggesting
lncRNAs were involved in stage-specific organ develop-
ment. As supporting evidence, transcriptional regulation
in cortex might change significantly before and after birth
(66). These results suggested that lncRNA regulation may
play an important role during a critical window of brain
development.

Developmental stage-specific lncRNAs could be efficiently
modeled by chromatin modifications

Most of lncRNAs exhibited more tissue-specific expres-
sion patterns than protein-coding genes (55). With this
in mind, we investigated whether lncRNA expression spe-
cificity can be explained by the integrated model.
Specifically, we investigated the developmental stage-
specific expression of known RefSeq lncRNAs by
replacing the class label of the initial integrated model
with the expression specificity and then re-building the
model. The expression specificity included ES specificity,
E14.5 brain specificity, CB specificity and, lastly, no spe-
cificity. In detail, there were 429 ES-specific, 738 E14-
specific and 605 CB-specific lncRNA genes, whereas
there were 7412 ES-specific, 6598 E14-specific and 5698
CB-specific protein-coding genes. In addition, 611
lncRNAs and 5053 protein-coding genes belonged to no
specificity class. Unexpectedly, we did not observe
tendency of lncRNAs to have specificity labels compared
with coding genes, reflecting the global transcriptomic
changes during mouse brain development. For the
balanced number of four classes of expression specific
lncRNAs, we directly applied LASSO regularized multi-
nomial logistic regression model to evaluate features
without any partitions. Here, we only analyzed the
model of lncRNAs for simplicity.

We also performed feature selection and desired to
know whether chromatin features from a particular devel-
opmental stage contributed more to lncRNAs with
matched developmental stage specificity in integrated
model. Indeed, we found that most of top chromatin
features of lncRNAs specific at E14.5 stage were chroma-
tin features in E14, like H3K36me3 and H3K4me3, rather
than in ES or CB (Figure 8). Similar situation was also
revealed at the other two stages (Supplementary Figure
S11), while the stage-specific features were different
from non-specific genes (Supplementary Figure S12).
The observation was consistent with the hypothesis that
chromatin modifications directed tissue-specific or devel-
opmental stage-specific lncRNA gene expression. When
chromatin modification features and genomic sequence
features were both included, the integrated model had a
much lower precision and AUC in 10-fold cross-validation
for predicting lncRNA expression specificity (Table 4). In
addition, genomic sequence information was shown to
have little contribution to the integrated model perform-
ance, as genomic information degraded the integrated
model performance (Precision from 0.823 in the chroma-
tin data only model to 0.794 in the integrated model).
Altogether, stage-specific chromatin data were proved
more useful to predict mouse developmental stage-
specific lncRNAs.
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Figure 8. Selected informative features of embryonic E14.5 brain expression specificity determined by the strict threshold using multinomial logistic
regression with LASSO regularization. Feature weights in predicting expression specificity of embryonic E14.5 brain lncRNAs with respect to log
lambda, a penalty to shrink feature weights in the regression model. Weights of features with less discriminative power of the lncRNAs expressed in
embryonic E14.5 brain shrink to 0 as lambda is increasing. Informative features of embryonic E14.5 brain lncRNAs are those with above-zero
weights based on lambda value determined by cross-validation.

Table 4. Comparison of averaged performance of 10-fold cross-valid-

ation in lncRNA expression specificity predictions using all features,

chromatin data only, sequence only and selected features

Used features AUC Precision Recall

All features 0.936 0.794 0.793
All chromatin features 0.955 0.823 0.823
All sequence features 0.653 0.385 0.392
Feature selected features 0.641 0.674 0.674

The comparisons include the AUC under ROC curves, precision and
recall values

10056 Nucleic Acids Research, 2013, Vol. 41, No. 22

Cerebellum 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt818/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt818/-/DC1
Cerebellum
Cerebellum 
,
Cerebellum
ile
Cerebellum
if 
Cerebellum
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt818/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt818/-/DC1
quite 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt818/-/DC1


DISCUSSION

Here, we present a systematic study to identify and assess
discriminating features for lncRNA identification over
mouse ES cell differentiation to adult CB. We point out
the importance of feature selection by LASSO regularized
binomial logistic regression model. Selected chromatin
modification features are explained from a chromatin
biology point of view. We also highlight the importance
of chromatin information in prediction of development
related lncRNAs.

Recent genome-wide transcriptomic maps have revealed
a growing body of putative lncRNAs (28,54,55,67–69). It
has been established that the expression of lncRNAs is
strongly associated with vertebrate development
(54,55,67,69). Cufflinks and Scripture are two earlier pi-
oneering tools that can assemble and quantify transcrip-
tome-wide coding and non-coding transcripts based
directly on RNA-seq data (67,70). Other programs or
pipelines can also filter lncRNAs de novo from RNA-seq
data, of which Codon Substitution Frequency (71) and
PhyloCSF (72) are most typical. Many mouse develop-
ment studies used these tools to identify and filter novel
lncRNAs based on high-throughput transcriptomic data
(4,28,67,70). However, such alignment-based tools are not
suitable to identify lineage-specific lncRNAs and are time-
consuming. Recent attempts to mitigate this problem of
RNA-seq based strategy used multiple chromatin modifi-
cations (12,73). In this study, we suggest that chromatin
modification data involving mouse brain development can
improve lncRNA prediction, both revealed in 10-fold
cross-validation and independent gene set evaluation.
Nevertheless, the model we present here is preliminary
and is expected to further improve lncRNA predictions
by using other chromatin data, given that ChIP-seq data
in public databases are rapidly accumulating. A researcher
who is interested in lncRNAs in specific loci related to
other development and differentiation processes should
use other tissue/cell-related chromatin data, though rela-
tively comprehensive chromatin data were only available
for a handful of tissues/cells and species.

Individual features from our model are associated with
lncRNAs to different extents, which prompts us to use
modeling approaches to discriminate lncRNAs from
coding genes. Feature selection using chromatin features
has been previously demonstrated to be efficient for pre-
dicting genomic elements such as enhancer and transcrip-
tion factor binding site (TFBS), based on available histone
modification ChIP-seq or ChIP-chip data (31,74–76).
Particularly, Narlikar et al. (77) also use LASSO regular-
ization to identify heart-specific enhancers based on
sequence features. Inspired by these studies, we use chro-
matin features from ChIP-seq data as well as genomic
sequence features to identify lncRNAs. Because chromatin
marks are generally enriched in the vicinity of TSSs and
are broadly distributed in genic regions, which may yield
co-occurrence of chromatin features and is difficult to be
handled by generalized linear model. LASSO regulariza-
tion is expected to eliminate overfitting to training sets and
reduce feature space; thus, LASSO regularization-based
logistic regression model is useful to model such data.

It is assumed in previous studies that coding and non-
coding RNAs are under regulation by similar epigenetic
modifications, like H3K4me1/2/3, H3K27me3, H3K9me3
and H3K36me3. Though epigenetic mechanisms of
protein-coding gene regulation are relatively well-
characterized previously, whether the transcription of
lncRNAs itself is regulated by chromatin regulators and
how difference between coding genes and long non-coding
genes is not well understood. To tackle the circumstance,
Sati et al. (78) compared chromatin modifications between
genome-wide lncRNA and coding genes and observed that
lncRNAs seemed to share same chromatin marks with
coding genes, except DNA methylation and H3K9me3
that did not seem to regulate lncRNAs. Later, Santoni
(79) developed an algorithm to characterize given
genomic elements based on ChIP-seq data. Based on the
algorithm, H3R2me1 mark was shown to be differentially
distributed between lncRNA and coding genes. In the
integrated model, 16 features are effective for distinguish-
ing lncRNA from protein-coding genes. The top features
predictive of lncRNAs are three repeat elements, followed
by ES_H3K9me3_exons and E14_H3K27ac_exons, all in
agreement with lncRNA characteristics. Transposable
elements were previously shown to be associated with
lncRNAs (80). It is supposed that lncRNA evolution is
driven by transposable element insertions, which would
partially explain the poor conservation of lncRNA tran-
scripts. Once, H3K9me3 was not considered as a distin-
guishing mark of lncRNAs; here, we show that H3K9me3
is generally moderately related to lncRNAs. Compared
with a prior study (78), we detected significant
H3K9me3 differences in gene body rather than TSS
proximal regions, which may explain why H3K9me3 had
role in predicting lncRNAs but failed to be detected pre-
viously. ORF-related features are shown to have import-
ant roles in predicting coding genes, and ORF length is
considered as the most efficient feature for distinguishing
lncRNA from coding genes.
There are two candidate explanations for the improved

model performance and potential usefulness of chromatin
information relative to DNA sequence-derived informa-
tion. First, chromatin modifications are indicative of
enhancer regions and other intergenic elements such as
TFBS regions, as shown by recent high-throughput char-
acterization studies in human (74,81). The explanation
seems likely, given that available evidence suggests that
some chromatin marks are indicative of enhancer. Here,
we discover many instances where lncRNAs are marked
by H3K4me1 and/or H3K27ac. Therefore, the model may
be biased toward enhancer elements. Though enhancer-
related lncRNAs may be important for recruitment of
chromatin-modifying enzymes (82), we also find a large
number of transcripts marked by well-recognized tran-
scription initiation marks, such as H3K4me3 and PolII,
whereas a less number of transcripts marked by H3K4me1
and/or H3K27ac, as exemplified by those lncRNAs in
Supplementary Figure S13 and S14. In contrast to
Figure 3, these lncRNAs have relatively weaker
H3K27ac and H3K4me1 marks, suggesting they are less
likely to relate to enhancer function. Developmental spe-
cificity prediction also suggests that other chromatin
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features contribute more to specificity predictions than
enhancer-related features. From Supplementary Figure
S4, we estimate that the proportion of lncRNAs with
H3K27ac occupancy is �40%. Though the proportion
of enhancer-related lncRNAs is difficult to determine,
enhancer-related lncRNAs may not dominate the
lncRNA reservoir.
Second, the improved performance is more likely to be

contributed by chromatin features, which is well supported
in this article. Interestingly, some chromatin features
such as H3K9me3 and H3K27ac are relatively higher
distributed along gene body of lncRNAs at different devel-
opmental stages, whereas the other chromatin features are
more stage-specific (Figures 1 and 8 and Supplementary
Figure S11). The predictability of stage-specific lncRNAs
is an evident merit, given that lncRNAs may only act
in specific cell/tissue types. The simple strategy of
incorporating chromatin information in model can
improve lncRNA predictions and stage-specific predic-
tions, which can be explained that chromatin data reflect
directly the molecular activity that modulates lncRNA
transcription, whereas sequence information is indirect
and interwoven with a few confounding variables such as
transcription factor binding. However, chromatin and
sequence data are shown complementary, possibly due to
the limited chromatin modification data in use. An
integrated model involving multiple information sources
is therefore useful for lncRNA predictions. Taken
together, these observations suggest that chromatin modi-
fications account for the performance improvement
compared with sequence only model. Though the
proposed model achieves satisfactory performance,
lncRNA transcriptions may be regulated by different regu-
latory mechanisms but are not within the central topic of
this article, which can be separately analyzed by machine-
learning tools in future studies.
There are exceptions where chromatin information does

not improve lncRNA predictions. The DNA-binding
protein CTCF does not improve lncRNA predictions, in
contrast to histone modification marks. We are not
surprised because chromatin modifications are not
closely related to this particular DNA-binding protein,
in accordance with a previous study (83). Besides CTCF,
PolII is also irrelevant to lncRNA prediction, which is
consistent with that PolII can bind to both transcription-
ally active and inactive gene promoters (84,85). Notably,
though H3K4me1 and H3K27ac are overrepresented for
lncRNAs in the integrated model, it is useless for stage-
specific lncRNA predictions.
The integrated model is applied to transcriptome RNA-

seq data and predicts many novel lncRNAs that are
around imprinted genes. Many imprinted genes are them-
selves non-coding RNAs, including Meg3 and Airn. Our
predictions appear to reveal the regulation of nearby genes
by lncRNAs, such as those putative lncRNAs upstream of
Meg3 (Figure 3).
Interestingly, we have also analyzed the enriched func-

tions of known genes close to lncRNAs. In agreement with
previous studies, genes associated with putative lncRNAs
are enriched in GO terms related to neuron differentiation
and transcriptional regulation. Additionally, the modified

model for investigating developmental stage specificity
suggests the potential roles of chromatin modifications
in stage-specific non-coding RNA regulation. The regula-
tion by distal lncRNAs on nearby genes perhaps allows
gene expression to be fine tuned in a cell-type/developmen-
tal stage-specific manner. Together, these findings suggest
that lncRNAs tend to be involved in stage-specific tran-
scriptional regulation.

CONCLUSIONS

We show here the logistic regression model with LASSO
regularization can be used to predict lncRNAs using
selected top characteristic histone modification and
genomic features. We evaluate the integrated model by
cross-validation together with independent data testing.
Though more features are helpful for lncRNA predictions,
the model performance is contributed mostly by top
features. We compare the performance of model with
only chromatin information and model with only
genomic sequence information and show that they are
both irreplaceable by each other, suggesting the useful-
ness of an integrated model with both types of informa-
tion. The observation suggests that the integrated model
has an acceptable capability of learning complicated
patterns from weak and complex chromatin and
genomic patterns in lncRNAs. When applying the
integrated model to assembled transcripts from RNA-
seq data, we demonstrate the putative lncRNAs show
strong tendency to close to genes associated with functions
such as neuron differentiation and transcriptional regula-
tion. For the tissue and developmental stage specificity of
lncRNAs, more high-throughput chromatin data would
be critical in deciphering non-coding RNA regulation,
which would be encouraged by more availing high-
throughput data. With more and more high-throughput
chromatin modification data at hand, we envision that
integrative modeling will facilitate more cell/tissue-
specific lncRNA predictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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