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Abstract

Pregnant women carry a mixture of cell-free DNA fragments from self and fetus (non-self) in their circulation. In recent years
multiple independent studies have demonstrated the ability to detect fetal trisomies such as trisomy 21, the cause of Down
syndrome, by Next-Generation Sequencing of maternal plasma. The current clinical tests based on this approach show very
high sensitivity and specificity, although as yet they have not become the standard diagnostic test. Here we describe
improvements to the analysis of the sequencing data by reducing GC bias and better handling of the genomic repeats. We
show substantial improvements in the sensitivity of the standard trisomy 21 statistical tests, which we measure by artificially
reducing read coverage. We also explore the bias stemming from the natural cleavage of plasma DNA by examining DNA
motifs and position specific base distributions. We propose a model to correct this fragmentation bias and observe that
incorporating this bias does not lead to any further improvements in the detection of fetal trisomy. The improved bias
corrections that we demonstrate in this work can be readily adopted into existing fetal trisomy detection protocols and
should also lead to improvements in sub-chromosomal copy number variation detection.
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Introduction

Detection of trisomy 21, also known as Down syndrome, has

long been considered the driving force for prenatal diagnosis. This

disorder, which causes severe intellectual and developmental

disability, is the most common fetal chromosomal defect with a

prevalence of 1 in 700 newborns [1]. Other aneuploidy conditions

such as trisomy 13 (Patau Syndrome) and trisomy 18 (Edwards

Syndrome) are more lethal in infants but are much less frequent

[2,3]. Efforts to develop non-invasive prenatal tests (NIPT) for

detection of these chromosome abnormalities have been spurred

on by the increasing maternal age in developed countries and the

associated increase in the risk of fetal aneuploidy [4,5].

The 1997 discovery of the existence of cell-free fetal DNA in

maternal plasma [6] provided a new avenue for non-invasive

prenatal testing. A decade and a half of concentrated research

efforts coupled with the recent rapid advances of Next-Generation

Sequencing (NGS), have now allowed sequencing based aneuploi-

dy tests to be clinically translated in several countries including

USA and China. Since the initial proof-of-principle studies in 2008

[7,8], the NGS platform type, sequencing scope and depth used in

NIPT have been rapidly changing, in the quest for greater

sensitivity of trisomy detection and the need to investigate

sub-chromosomal copy number changes in the fetus in the most

cost-effective manner [9,10].

Characteristics and biology of cell-free fetal DNA
Nucleic acids can be found in cell-free form in human plasma

and serum [11]. This DNA has recently been demonstrated to be

predominately of hematopoietic origin [12] and apoptosis has

consistently been shown as a major source of this cell-free DNA

(cfDNA) [13–15]. However, other biological sources have also

been implicated and there remains uncertainty in the field as to the

involvement of various processes such as the active secretion of

cfDNA by cells and the role of membrane proteins in protecting

cfDNA in circulation [16,17].

In early pregnancy, 3–20% of the DNA in maternal plasma

comes from the developing fetus [18–20] and this proportion is

shown to increase with gestational age [21,22]. An inverse

relationship has been described between the fetal proportion and

maternal weight, indicating a possible dilution effect [23,24]. Fetal

cfDNA is detectable from the 7th week of gestation and the most

likely source is thought to be apoptosis of placental (i.e. extra-

embryonic) cells [25,26].

Paired-end sequencing of plasma DNA has revealed that the

fragments are generally around 166 bp in size with a small
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proportion exhibiting a length close to 340 bp [27]. The major

peak in the size distribution is very similar to the length of DNA

that is wrapped around a nucleosomal core unit (approximately

146 bp plus a linker fragment of DNA between 20–90 base pairs

[28]). The 340 bp signal corresponds to a di-nucleosomal

structure. The same study showed that fetal fragments were

generally shorter than 150 bp.

NGS-based Down syndrome detection
While a few clinically available tests use targeted sequencing to

select DNA fragments from specific chromosomes [29,30], the

majority currently utilize a genome-wide sequencing protocol that

has been shown to be reproducible in multiple studies [24,31–33].

The largest clinical validation studies that use whole-genome

sequencing have all used variations of the ‘‘molecular-counting’’

approach.

This approach attempts to identify an increase in DNA

fragments originating from the aneuploidy chromosome in the

fetus without distinguishing between maternal and fetal DNA,

using either lab-based or bioinformatics methods. The tests

calculate the relative amounts of plasma DNA fragments

originating from the different chromosomes and determine if

there is an increase beyond what is expected for a euploid

pregnancy assuming that this increase stems from a copy number

change in the fetus. In a pregnancy with fetal trisomy 21, there

would be a slight increase in the amount of DNA derived from

chromosome 21 in maternal plasma compared with the DNA

from other chromosomes. The extent of this increase is dependent

on the fetal DNA proportion, in that, if fetal DNA constitute 10%

of the ccfDNA in a pregnancy with fetal trisomy 21, we would

anticipate a 5% increase in the copy number of chromosome 21

fragments in maternal plasma. This can be assessed by comparing

the chromosome 21 read counts for an unspecified pregnancy to

that of a set of controls (euploid pregnancies).

Biases in sequencing data
Since the tests attempt to detect small increases in the

chromosomal representation, they incorporate steps in their

analysis that adjust for the bias inherent in NGS data which lead

to inter- and intra-chromosomal read count variability.

Table 1. Clinical details and sequencing data statistics of recruited samples.

Sample Index Sample ID Fetal Karyotype

Total Sequence Reads
Generated (HiSeq
2000)

Reads Uniquely
Aligned (Novoalign)

Reads Uniquely Aligned
(BWA)

1 NIPD-03_TM 47, XX, +21 31,081,981 26,236,069 25,199,455

2 NIPD-03_TMR* 47, XX, +21 32,282,282 28,346,871 27,521,416

3 NIPD-04_TM 47, XY, +21 40,278,804 35,421,320 34,594,910

4 NIPD-04_TMR* 47, XY, +21 38,031,790 33,324,563 32,436,346

5 NIPD-05_TM 46, XX 33,885,622 29,897,378 29,186,676

6 NIPD-05_TMR* 46, XX 31,936,055 28,391,920 27,739,819

7 NIPD-07_TM 47, XY, +21 24,767,047 20,878,567 20,050,937

8 NIPD-07_TMR* 47, XY, +21 24,955,598 21,922,674 21,287,065

9 NIPD-09_TM 46, XY 26,987,293 23,723,020 23,164,487

10 NIPD-09_TMR* 46, XY 31,019,583 27,134,946 26,400,672

11 NIPD-13_TM 46, XY 28,932,490 25,534,678 24,925,205

12 NIPD-13_TMR* 46, XY 32,691,501 29,063,410 28,394,889

13 NIPD-48_TM 46, XY 31,048,049 27,414,008 26,758,810

14 NIPD-51_TM 46, XY 31,303,893 27,363,033 26,587,761

15 NIPD-54_TM 46, XX 32,519,963 28,835,431 28,135,842

16 NIPD-56_TM 46, XY 32,568,205 28,658,808 27,943,150

17 NIPD-58_TM 46, XY 28,960,279 25,087,238 24,309,884

18 NIPD-60_TM 47, XY, +21 32,137,330 28,409,821 27,687,323

19 NIPD-50_TM 47, XY, +21 33,458,803 29,815,550 29,158,995

20 NIPD-52_TM 46, XY 30,801,889 27,449,087 26,835,869

21 NIPD-53_TM 46, XX 33,135,305 29,454,208 28,740,525

22 NIPD-59_TM 46, XX 33,321,758 29,621,383 28,948,308

23 NIPD-61_TM 46, XX 38,287,043 34,235,072 33,502,284

24 NIPD-62_TM 46, XY 33,183,117 29,674,630 29,047,689

25 NIPD-23_TM 46, XX 29,852,910 26,152,316 25,492,998

26 NIPD-30_TM 46, XX 32,038,077 28,463,745 27,840,119

27 NIPD-63_TM 46, XX 32,085,733 28,679,366 28,097,170

28 NIPD-65_TM 46, XY 35,094,568 31,339,712 30,653,822

29 NIPD-66_TM 47, XY, +21 35,411,652 31,237,019 30,450,668

*Sample IDs with the suffix TMR belong to the re-amplified libraries.
doi:10.1371/journal.pone.0086993.t001
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One such bias is the Guanine-Cytosine content (GC) bias which

is uni-modal in nature as the read coverage is maximized for

genomic regions with 40–50% GC with coverage decreasing at the

extreme values. The current tests predominantly incorporate a

locally weighted scatterplot smoothing (LOESS) correction step as

described by Alkan et al. [34] to correct for GC. This involves

binning the read counts into non-overlapping windows and

calculating the GC content of these windows (a 50 Kb bin size

is in wide use). A LOESS curve is fitted to the plot of bin counts vs.

bin GC to obtain predicted values that are used to correct the raw

counts.

A second source of bias stemming from the alignment of short

read data is the inability of sequence reads to map unambiguously

or uniquely to highly repetitive regions of the genome. This

mappability bias is generally dealt with by removal of such regions

(annotated in the RepeatMasker database [35]) rather than

quantifying the mappability and correcting for it.

Statistical test for trisomy
Different research groups use different algorithms to test for

aneuploidy in the bias corrected data. Since they generally have

access to large sample sizes of both normal and aneuploid

pregnancies they are able to make use of these samples to perform

an empirical bias adjustment, per chromosome, in their statistical

analysis [31,36].

Motivation
In this work, we present a post-sequencing protocol that utilizes

a more sensitive GC correction (based on the work of Benjamini

and Speed [37]) as well as a correction for mappability. We also

show an additional source of bias due to fragmentation that is

inflated in plasma cfDNA when compared to genomic DNA. The

fragmentation effect is the position-specific pattern of nucleotides

around DNA fragment ends. Plasma DNA shows different and

stronger patterns than genomic DNA due to the fragments

originating from a biological process and possible nuclease activity

rather than a random shearing during the DNA fragmentation

step of library preparation. This bias is investigated in depth to

illustrate its relationship with the GC bias. We then extend the

improved GC correction to incorporate the fragmentation bias.

The motivation of our work is to compare between different

bias correction protocols in order to recommend an optimal

correction procedure. Since optimization of the test statistic can be

considered a separate research area, we use the simple Z-score

method described by Chiu et al. in 2008 and 2011 [7,19], to

benchmark the results of our correction methods. Furthermore,

the Z-score method has been the basis of many of the subsequent

tests so we used this test statistic for our comparisons. We find that

considerable improvements in trisomy detection are achieved

using our recommended pipeline.

Materials and Methods

Ethics Statement
This study was approved by the Royal Children’s Hospital

(RCH) Human Research Ethics Committee (HREC). All partic-

ipants gave written informed consent to the protocol approved by

the RCH HREC (reference number 31080A).

Subject recruitment and clinical information
Pregnant women in their first and second trimester of

pregnancy were recruited through the Victoria Clinical Genetics

Service (VCGS) after providing informed written consent. All

Table 2. Genome-wide coverage at each sampling proportion for the 29 datasets after Novoalign mapping and subsequent read
filtering.

Proportion of reads sampled Average number of reads Range Mean fold coverage

original 26,174,727 18,832,054–32,733,023 0.42X

0.75 19,719,795 14,172,672–24,677,526 0.31X

0.5 13,206,439 9,483,101–16,539,568 0.21X

0.25 6,635,982 4,761,496–8,317,675 0.11X

0.125 3,328,165 2,387,989–4,173,351 0.053X

0.0625 1,667,889 1,196,946–2,091,602 0.026X

0.0312 854,222 613,083–1,071,927 0.014X

doi:10.1371/journal.pone.0086993.t002

Figure 1. Mappability bias. The smoothed scatter plot of the
mappability (as calculated by mapping the fragmented hg19 reference
to itself using Novoalign) against the read count in 50 Kb genomic
windows shows a linear relationship. Extreme bin counts have been
removed for plotting.
doi:10.1371/journal.pone.0086993.g001
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participants donated 10 mL of peripheral blood. Samples used in

this study were collected prior to any invasive testing and all were

from singleton pregnancies.

Two patient groups were included: The first were women who

had received a post-test low-risk score by Combined First

Trimester Screening. Samples from these women were assumed

as euploid and used as ‘normal’ controls; pregnancy outcomes

were consistent with categorizing these as ‘likely’ euploid. The

second were women with a diagnosis of fetal trisomy 21, which

was made by chromosome analysis of amniocentesis or chorionic

villus samples.

Processing of blood samples
The collected blood samples were stored in tubes containing

Ethylene Diamine Tetraacetic Acid (EDTA) and were processed

within 4 hours after phlebotomy by a double-centrifugation

protocol. In brief, blood was transferred into 15 mL falcon tubes

and centrifuged at 1600 g for 10 minutes at 4uC to separate the

blood cells and plasma. Next, plasma was transferred into 1.5 mL

micro-centrifuge tubes and centrifuged at 16000 g for 10 minutes at

4uC to remove residual cells. Plasma was transferred into new

microcentrifuge tubes and stored at 280uC until further processing.

The blood cell fraction was stored at 220uC until further

processing.

DNA library preparation and sequencing
DNA library preparation was carried out at the Murdoch

Childrens Research Institute where the samples were de-identified

and assigned anonymous IDs for the purposes of this study.

Cell-free DNA was isolated from plasma using the QIAamp

Circulating Nucleic Acid Kit (Qiagen, Melbourne, Australia)

according to the manufacturer’s guidelines, with slight modifica-

tions in reagent volumes.

DNA libraries were prepared according to a modified protocol

from Illumina (http://www.illumina.com/). After end-repairing,

A-base tailing and adaptor ligation, standard multiplex primers

were introduced by PCR with 5 mL of PCR Primer Cocktail and

25 mL of PCR Master Mix. The PCR protocol consisted of a

denaturation step at 98uC for 30 seconds and 10 cycles of 98uC for

10 seconds, 60uC for 30 seconds and 72uC for 30 seconds and

final extension at 72uC for 5 minutes and held at 10uC.

The size distribution of the libraries was analyzed using an

Agilent Bioanalyzer and quantified with real-time PCR. The

fragmentation and size selection steps in the library preparations

Figure 2. Comparison of the repeat handling methods. The prediction error (mean absolute deviation around the predicted rates) in the two
repeat handling methods for 29 samples at different depths of coverage. RM_LOESS (blue) is the protocol where RepeatMasker regions are filtered
and mapCorr_LOESS (green) is where mappability is quantified and read counts are corrected.
doi:10.1371/journal.pone.0086993.g002
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were omitted, as the plasma DNA molecules are naturally cleaved

and exist as short fragments [27].

All samples were sequenced at the Australian Genome Research

Facility on the Illumina HiSeq 2000 platform. Barcoded libraries

were equally pooled in batches of 6 in one lane and sequenced

with a 50-cycle single-end multiplex strategy. Thirty libraries were

sequenced in total using the 6-plex format in five batches. The

batches were run at different times and using different flow-cells.

Sequenced samples
Initially, blood samples from 24 pregnant women were used to

make 24 DNA libraries. All samples, except one, had clinical

information available on the Combined First Trimester Screening

test. The single sample that was missing this information was

removed from further analyses leaving 23 samples.

Six of the remaining libraries were re-amplified using either 3 or

5 cycles of PCR based on the library yield, in order to act as

technical replicates in the study. Hence, twenty-nine 50 bp single-

end read datasets were utilized in the subsequent analysis. Of

these, 9 were from trisomy 21 cases and 20 were normals. All 29

read datasets are accessible through the Short Read Archive

(http://www.ncbi.nlm.nih.gov/Traces/sra/) under the accession

number SRA097799.

Sequencing data processing
Following sequencing, reads were stripped of their adapters and

demultiplexed according to their barcodes. The reads for the 29

samples were then aligned to the human genome, build 37 (hg19)

using Novoalign V2.08.03 (www.novocraft.com). An ambiguous

human reference was used that has known SNPs encoded as

IUPAC ambiguous codes. Reads that mapped to multiple-

locations, those that were designated as PCR duplicates as well

as reads that aligned with more than two mismatches were

discarded from each dataset using a combination of Samtools

V0.1.18 [38] and Picard software V1.65 (http://picard.

sourceforge.net/).

Each sample, consisting of a set of reads from an individual, had

the following four bias correction protocols applied to allow

comparisons in their performance. All the following analyses were

performed in R [39].

1) RM_LOESS: reads that fall into repeatMasker regions

(http://www.repeatmasker.org) are removed and a LOESS

correction performed for GC bias (using the ‘loess’ R

package).

2) mapCorr_LOESS: read counts are corrected according to the

mappability [40] of the regions and a LOESS correction

performed for GC bias.

3) mapCorr_singlePos: GC bias was estimated and corrected via

the single position model [37] after correcting read counts

according to the mappability of regions.

4) mapCorr_singlePos_Frag: As in 3) but corrections carried out

after stratifying reads into classes based on their fragmentation

signature.

Method 1 is a commonly used bias correction approach in the

NIPT field, whilst methods 2)-4) represent new protocols.

In order to assess the robustness of the bias corrections, the read

alignment of the 29 sequencing datasets was repeated with a

different aligner, BWA (V 0.7.2-r351) [38], which uses an

algorithm different to that of Novoalign. BWA is freeware and is

commonly used by other researchers to align NGS data. Its

algorithm is unable to utilize the ambiguous reference; hence the

sequencing reads were mapped to the human genome with

unmasked SNPs.

LOESS GC bias correction
The LOESS correction performed was similar to the one

described by Alkan et al. 2009 [34]. The genome was segmented

into non-overlapping bins of 50 Kb length and the chromosomal

read coverage as well as GC content of each bin was calculated

(chrY was excluded from this analysis). Bin counts are the total

number of reads with the 59 end inside the bin. GC content is the

proportion of guanine and cytosine bases in the bin as per the

reference genome. After filtering regions with no counts, the

average read count for windows with GC content in intervals of

1% were calculated. A LOESS regression curve was fitted to this

data with a span of 0.3, to determine a predicted count for each

bin along the genome based on its GC content using the loess

function in R. The read count of each bin was normalized by the

predicted bin count to obtain the corrected value.

Fifty kb bins were used in the analyses as it is the most widely used

bin size in the NIPT literature. The choice for this bin size was stated

to be arbitrary in an early proof of principle publication [41].

Usage of Repeat Masker
Reads that were mapped to repeat-masker annotated sites

(Repeat Library 20120124; http://www.repeatmasker.org) were

discarded prior to GC correction.

Mappability correction
Short sequence reads were simulated by fragmenting the human

reference genome (hg19) into overlapping fragments at one base-

pair resolution. The length of the simulated reads was set to 50 bp,

as this was the read length in the sequencing data. The reads were

Figure 3. Estimating the optimal window size for GC content.
The truncated plot of the scaled TV scores for 10 representative samples
as the GC window size is varied. The TV score indicates the suitability of
the window length used to calculate GC content. The peak at windows
less than 10 bp demonstrates a strong GC dependent fragmentation
effect. The high values in the range of 150–250 bp stems from the wide
distribution of fragment lengths in plasma. The TV score is truncated for
the fragmentation peak (the range for this peak for the 29 samples is
between 0.11 and 0.15).
doi:10.1371/journal.pone.0086993.g003
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aligned back to the reference genome using Novoalign, and all

base positions of uniquely mapping reads were identified. The

proportion of ‘unique’ sites in the window then gives its

mappability value.

The read counts in a given window were multiplied by the

reciprocal of its mappability value in order to correct for this

mapping bias in the sequencing data. Fifty Kb windows with less

than 50% unique sites were filtered out to prevent over-correction.

Data aligned using BWA were corrected with mappability

annotation created using BWA.

Single-position GC bias estimation with mappability
correction

Benjamini and Speed described a single-position GC bias

correction model [37] and showed that it removed more bias than

the commonly used LOESS method that is based on modeling

read counts and GC content in non-overlapping genomic

windows. The single-position model stratifies uniquely mappable

positions along the genome by the GC content of the DNA

fragment of fixed length beginning at the position. It then

estimates a mean fragment rate for all positions with the same GC.

The following steps summarize how this model was utilized in this

study. All steps were carried out using the GCcorrect R package.

(http://www.stat.berkeley.edu/̃yuvalb/YuvalWeb/Software.html).

Figure 4. Investigating the fragmentation effect. The y-axis denotes the proportion of each nucleotide at fixed positions relative to the
fragment 59 and 39 ends. The vertical line at 0 denotes the start of the read on each strand. The mean, minimum and maximum proportions of 29
samples have been plotted on the same graph and show that the variability between the samples is nearly negligible.
doi:10.1371/journal.pone.0086993.g004

Reducing Coverage Bias in Plasma DNA Sequencing
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(i) Uniquely mappable positions along the genome (denoted

by x) were randomly sampled. Each position was assigned

a value corresponding to the number of GC bases in a

window of length l starting at position x. This was done in

a strand-specific manner.

(ii) Positions of similar GC value were classed into different

GC strata. The total number of positions that fall into a

certain stratum gc was denoted by Ngc.

(iii) The number of DNA fragments Fx in each position x were

counted so that the total number of fragments in each GC

stratum Fgc could be calculated.

(iv) Mean fragment rates l̂lgc were estimated for each GC

stratum by taking the ratio between fragment count Fgc

and positions Ngc . The plot of mean rates against GC was

smoothed to obtain the predictions m̂mgc for each stratum.

(v) Since the GC stratum of each position x was known, the

prediction per position m̂mx could be found using m̂mgc .m̂mx was

equal to 0 if the position x was not uniquely mappable.

(vi) The read counts and predictions were aggregated sepa-

rately into non-overlapping genomic windows of 50 Kb

after the predictions per position were calculated in order

to compare with the LOESS correction protocol. The

counts were normalized by the aggregated predictions per

window and multiplied by the reciprocal of the mapp-

ability value of the window as described before.

Figure 5. Defining a model for the fragmentation effect. The TV-score of one representative sample, conditioning on individual positions at
breakpoints on the 59 (right) and 39 (left) strands sequentially, starting with 22 bp position (2nd row), then adding the 1st bp position (3rd row) and
finally the 0th bp position (4th row). After each level of conditioning, the position that shows the highest TV score (in blue) is aggregated into the k-
mer used to stratify the reads to set up the next conditioning step and the TV score is recalculated. Bias is no longer visibly location-specific after
incorporating the 3-mer at positions 22,0,1. Hence, these positions can be used in a simplified model for the fragmentation bias.
doi:10.1371/journal.pone.0086993.g005
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Estimating the best GC window size
Benjamini and Speed found that the GC window size that

captures the most variation was comparable to the length of the

DNA fragments in the library. They recommended the use of the

median fragment length of a sample. However, paired-end

information was not available in the libraries used in this study

so the fragment sizes could not be determined directly. Hence, the

Total Variation from Independence score (TV-score) described by

Benjamini and Speed was employed to find the optimal GC

window.

The TV-score is a measure of how much of the variation in read

depth is explained by conditioning on GC. Since it was known that

the majority of plasma DNA fragments are shorter than 500 bp,

the TV-score was calculated for GC-window sizes from one bp up

to 700 bp. For each sample, the GC window that gave a high TV

score and was comparable to fragment lengths of plasma DNA

was used in the single position model.

Investigating the fragmentation bias in plasma DNA
In their work, Benjamini and Speed examined the fragmenta-

tion bias present in genomic DNA and investigated the effect of

this bias on the coverage. They concluded that in the genomic

data the bias due to fragmentation was not significant, whilst GC

content of the fragments was an important factor in determining

coverage. We investigated fragmentation effects in this study due

to the possibility that fragmentation bias plays a more important

role in cell-free DNA given its exposure to non-random, biological

processes such as apoptosis, which could result in fragmentation

bias effects.

The following investigations were carried out in all 29 samples

using stringently mapped reads (mapping quality greater than 60)

that aligned to the 59 and 39 strands separately. The proportions of

each nucleotide (A, T, C, G) in an interval surrounding read starts

were calculated to examine any perturbations in the nucleotide

proportions at the sites of DNA fragmentation.

Subsequently, the TV-score statistic was used to find which

positions at the cleavage site were most influential in the

fragmentation bias in order to reduce the fragmentation signature

involving more than 18 positions. It should be noted that the TV-

score is not specific to quantifying how much of the variation in

read coverage is explained by the GC content of a window hence

could also be used for this purpose. Reads were stratified

according to the type of base at different positions surrounding

the read starts and the fragment rates in these strata were used to

calculate TV scores. The TV score in this setting measures how

much variation in the read coverage is explained by conditioning

on the base at each position. The positions that gave a high value

relative to the others were determined visually and were

aggregated. Thus, reads were stratified according to the k-mer at

two or more positions instead of at a single position. This process

was repeated until there was no visible increase in the TV-score

and resulted in a simplified model for the bias by describing a

motif consisting of the second base before the fragment starts as

well as the first two bases into the fragment (positions -2,0,1), other

bases did not impact the TV score once these bases were included

in the model. The motif of nucleotides at these positions for a

given read will henceforth be referred to as its breakpoint 3-mer.

For example, C*CC is the breakpoint 3-mer corresponding to C at

the 22,0 and 1 positions around the breakpoint with any of the

four bases allowed at the 21 position.

Four nucleotides at three positions about the breakpoint result

in a possible 64 combinations (43) of breakpoint 3-mers. The

proportions of all 3-mers were assessed for the 29 samples to detect

any motifs that were consistently over-represented.

For both strands the frequency of reads for the common top

twenty 3-mers was calculated and the rest were aggregated into a

single class. In order to assess any strand specific fragmentation

signature, a chi-square test for homogeneity was carried out to

compare the proportions of the two multinomial distributions.

Figure 6. Investigating DNA motifs at the fragment break-
points. The percentage of reads for the top twenty 3-mers at the 59
breakpoint across all samples. Four high frequency motifs (shown in
color) were grouped into one class and used in the stratification of
reads. This grouping presented the divergent GC profiles shown in
Figure 7.
doi:10.1371/journal.pone.0086993.g006

Figure 7. The GC bias profiles of the fragmentation motif
classes. The GC profile of reads belonging to stratum 1 (reads with
motifs C*CC, C*GG, C*CA and C*TG inferred from the positions 22, 0, 1
of the mapped reads) and stratum 2 (not any of these 4 motifs). Within
each sample, the GC bias show different peak locations for the two sets
of DNA fragments, indicating the need for separate corrections.
doi:10.1371/journal.pone.0086993.g007
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Incorporating fragmentation effect into the single-
position model

The fragmentation bias can be corrected by applying read

stratification by motif. Reads were stratified according to the

breakpoint 3-mer and the single-position GC correction was

carried out within each separate stratum. Stratifying reads from

low-coverage datasets into 64 classes creates too many strata with

low counts of fragments; hence the strata were pooled into two

classes that were determined by examining the GC profiles of

fragments in the strata as well as the marginal frequency

distributions.

With this stratification, the single-position model produces two

predicted counts for every 50 Kb genomic bin. To correct the

count in a bin, its observed counts for each stratum were

normalized by their respective stratum predictions. The corrected

stratum bin counts were aggregated within a bin using the

proportion of reads belonging to the two strata as weights.

Test for trisomy
Bias corrected sequence counts in genomic windows were used

to calculate a standard Z-test of proportions as described by Chiu

et al. [19]. The chromosome 21 proportion metric p̂pj was

computed for each sample, as the total bin count for chromosome

21 divided by the sum of the bin counts for all chromosomes

except for the Y chromosome. The Z-score was defined as,

Fj~
p̂pj{p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0(1{p0)

n

q

where p̂pj is the chromosome 21 proportion for sample j and p0 is

the mean of the chromosome 21 proportions for the 20 non-

trisomy samples (reference set, n = 20). A Z-score value of greater

than 3 was chosen as a threshold to determine rejection of

diploidy. This represents a chromosome 21 proportion greater

than that of the 99.9th percentile of the reference set under the

assumption of diploidy for a one-tailed Normal distribution.

Evaluation of the bias correction algorithms
The performance of the different bias correction protocols was

assessed by evaluating their ability to detect the known trisomy

samples as the depth of sequencing was artificially reduced. For

this purpose, aligned reads in each of the 29 datasets were

separately sampled without replacement to generate different

proportions to simulate data of lower coverage. The proportions

used were 0.75, 0.5, 0.25, 0.125, 0.0625 and 0.0312. For each

sample, the sub-sampled reads were processed as described

previously and the sequence data at the 7 different coverage

Figure 8. Performance of the bias correction algorithms. Chromosome 21 Z-scores for the four different methods as coverage is reduced.
(Blue: RM_LOESS, Green: mapCorr_LOESS, Orange: mapCorr_singlePos, Violet: mapCorr_singlePos_ Frag). The red line denotes the diagnostic
threshold of +3 for trisomy 21 detection.
doi:10.1371/journal.pone.0086993.g008
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levels (original coverage as well as the 6 lower coverage levels) were

run through the four different bias correction protocols.

Firstly, the data processed using the algorithms RM_LOESS

and mapCorr_LOESS was used to compare the effect of the two

methods for handling repeat regions in the genome. A LOESS

smoother is separately fit to the data after each repeat handling

protocol was carried out. The performance of the two methods is

assessed by calculating the mean of the absolute difference

between the observed fragment count and the LOESS prediction

in each 50 Kb genomic bin. This estimate is known as the Mean

Absolute Deviation (MAD). The MAD allows the comparison of

the prediction error of the two LOESS models.

Secondly, the Z-score test was performed and the accuracy of

trisomy detection between all four protocols was assessed. The

difference between the 95th percentile of the normal chromosome

21 Z-scores and the 5th percentile of trisomy Z-scores (known as

the discriminatory distance in NIPT literature) was calculated at

each coverage level, as an additional method for comparison of the

protocols.

Once the most sensitive bias correction algorithm was identified,

an investigation was carried out to determine if this protocol could

detect trisomy in a reference free setting to mimic the situation

where no reference pool was available and to investigate the

necessity of using the Z-score. This was done using methodology

similar to the work of Fan and Quake [41], where the corrected

bin counts of each chromosome were compared to all other

chromosomes within the sample in order to detect over-

representation. The details of this analysis are provided in

Text S1.

Results

Clinical details and sequence read statistics for the plasma DNA

samples from 29 women are specified in Table 1. The gestational

age of the pregnancies at the time of phlebotomy ranged from 9 to

16 weeks. Six-plex format, 50 bp single-end sequencing on the

Illumina HiSeq 2000 platform generated a total number of reads

ranging from 24.8 million to 40.3 million (an average of

32.1 million reads per sample). Novoalign was able to align an

average of 88% of the total reads to the ambiguous reference while

BWA mapped 86% to the non-ambiguous reference.

Table 2 provides coverage statistics for the 29 samples after the

raw reads were processed (aligned, filtered for multi-mapping,

duplicates and mismatches). At the original sequencing depth, the

samples exhibited average genome wide fold coverage of 0.42X

(26 million reads) using Novoalign. The coverage was gradually

reduced, through subsampling of the aligned data based on the

Novoalign alignment, until the number of reads was comparable

to the amount generated on an Illumina MiSeq sequencer with

read lengths of 50 bp (proportions 0.125–0.0312 leading to

coverage of 0.053X – 0.014X). The complementary statistics for

the data aligned by BWA is given in Table S1.

Assessment of mappability bias
The effect of mappability on the read coverage is shown in

Figure 1 using two representative samples. The mapping bias in

the plasma samples show no difference to the bias reported for

genomic DNA in that the mappability effect was linear and

therefore a reciprocal correction was suitable.

Repeat handling
Figure 2 presents the Mean Absolute Deviation (MAD) or

prediction error in data processed using the algorithms

RM_LOESS and mapCorr_LOESS. MAD estimates are present-

ed for the 29 samples at all seven coverage levels. The protocol

that made use of the mappability correction (mapCorr_LOESS)

consistently gave a lower error than that which made use of the

method based on removing reads identified as repetitive by

RepeatMasker (RM_LOESS). For coverages between 0.42X to

0.21X, mapCorr_LOESS (green) reduces error by 80% in

comparison to RM_LOESS (blue) whilst for the lower sequencing

depth the reduction in error is approximately 30%.

Estimating the best GC window size for the single-
position model

Figure 3 shows the TV score as the GC window length is

incrementally increased from one to 700 bp for 10 representative

samples. All samples showed a spike for window sizes less than

10 bp, at the start of the read fragments. This is evidence for an

abundance of GC dependent motifs at the fragment breakpoints.

Disregarding the fragmentation effect, high TV-scores can also be

seen in the range of 150–250 bp, but the function is very flat,

making it difficult to determine a maximum. Similar plots for

genomic/nuclear DNA derived NGS data show clear peaks at the

median fragment lengths of the DNA library [37]. In contrast,

plasma data indicates a range of values that is consistent with the

nucleosomal lengths associated with plasma DNA fragments and

the fact that DNA was not size selected in the library preparation

step. When the TV scores for a sample did not indicate a clear

maximum, the window size of 180 bp was chosen, which is similar

to the average length of DNA wrapped around a nucleosome. The

optimal GC window size selected for each sample is provided in

Table S2.

Fragmentation Effect
The investigation of base composition around the read starts

presented a strong fragmentation effect. Figure 4 shows the

Table 3. Discriminatory distances for the different corrections at the 7 coverage levels.

Coverage RM_LOESS mapCorr_LOESS mapCorr_singlePos mapCorr_singlePos_Frag

0.42X 2.55 4.60 7.43 4.97

0.31X 2.67 3.20 5.04 3.88

0.21X 0.94 3.46 4.54 3.29

0.11X 0.27 2.05 2.95 2.23

0.053X 20.19 2.69 3.40 3.36

0.026X 21.07 1.78 2.54 2.13

0.014X 21.07 0.52 0.94 0.28

doi:10.1371/journal.pone.0086993.t003
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relative abundance of nucleotides at positions up to 25 bp on

either side of the fragment breakpoint (represented as the average

across all 29 samples). The nucleotides show a position-specific

pattern between the bases beginning 8–9 positions before the

fragment and ending 8–10 positions inside the read fragment.

Guanine (G) and Cytosine (C) bases are preferentially observed at

the breakpoint as indicated previously by the TV score plot. There

is no evidence for a strand specific fragmentation signature since

the 39 ends of the fragments show the reverse complement of the

59 pattern. Although the pattern extends over ,18 positions, the

position specific TV-score plots (Figure 5) show that the most

influential bases can be found at positions 22, 0 and 1, with 0

indicating the start of reads. Hence, these positions can be used to

simplify the motif structure for analysis purposes.

This fragmentation pattern was also represented in plasma

DNA prepared using the beta ChIP-Seq library protocol

optimized for low input DNA with no actual chromatin

immunoprecipitation (data not shown). Furthermore, this frag-

mentation signature is highly replicable across technical replicates

and independent samples with very little variability indicating that

it is likely to be reflecting the existence of biological signal in the

observed circulating cfDNA fragments.

A preference for specific motifs was apparent when reads were

classed into the 64 possible 3-mers using the positions at 22,0,1

relative to the breakpoints. Figure 6 shows the proportions across

the 29 samples using reads mapping to the 59 strand. The C*CC

motif was over-represented above all others with a median

percentage of 7%. The motifs of T*CC, C*GG, C*CA, C*TG and

T*TG were also given a higher preference (3–4.5%). The plot

shows that the proportions have minimal variation between

samples and the chi-square test for homogeneity using the motif

proportions between the two DNA strands showed no evidence of

originating from different distributions (p-values for the 29 samples

ranged between 0.095 and 0.971).

Examination of GC bias profiles stratified for membership of

each of the eight highest frequency motifs in Figure 6 showed that

only four of these (C*CC, C*GG, C*CA and C*TG) influenced

the differences in TVscore. Reads were stratified according to

whether they had any one of these motifs (stratum 1), or not

(stratum 2), with stratum 1 constituting around 16% of data in

each sample. Figure 7 shows the GC bias (mean fragment rates vs.

GC content) when the single-position model was run on the

stratified reads. The GC-bias curve in stratum 1 shows a shift

towards higher GC content compared to stratum 2.

Looking across all 29 samples, stratum 1 has the maximum

number of reads observed for 60% GC on average (standard

deviation = 0.04) while stratum 2 has the maximum number of

reads observed at 37% GC (standard deviation = 0.08). The

obvious shift in the GC peaks between the fragments of the two

strata was the motivation for correcting the reads of the 2 strata

separately.

Evaluation of the bias correction algorithms
Figure 8 shows the chromosome 21 Z-scores for each coverage

level and bias correction protocol. Table 3 provides the

discriminatory distance between the trisomy and normal Z-scores

as a summary of Figure 8. Negative values of this statistic occur

when the distributions of trisomy and normal Z-scores overlap

eachother.

The RM_LOESS bias correction method loses sensitivity more

rapidly than all the other methods as the coverage is reduced,

beginning to gain false negatives at 0.2X coverage. mapCorr_-

LOESS performs better than RM_LOESS at all depths. The

single position GC correction performs better than a LOESS

correction as it increases the separation between the trisomy and

normal samples. It should be noted that the discriminatory

distance of the single position protocol at 0.056X is larger than

that of the RM_LOESS method at the original coverage of 0.42X.

The improvement of this new protocol over the RM_LOESS

method is replicated in trend in the data aligned using BWA as an

alternative aligner to Novoalign (Figure S1). Stratifying by break-

point motif does not show an improvement over the original single

position model, despite showing a difference in GC profiles for

reads of the two strata. These observations are further corrobo-

rated in the accuracy estimates provided in Table 4.

Figure S3 shows that the order of the trisomy samples (based on

the Z-score) stays relatively constant as the coverage is reduced.

Despite the clear improvement seen in the mapCorr_singlePos

model, we also see that not all intra-chromosomal variation is

removed and that it is necessary to use reference samples via the Z-

score to remove remaining bias, which cannot currently be

modeled (Figure S2).

Discussion

In the past few years there have been major advances in the

area of sequencing-based non-invasive prenatal testing (NIPT). To

date, a number of large-scale clinical validation studies have shown

that whole-genome sequencing of circulating cell-free DNA

(ccfDNA) in maternal plasma can be used to detect fetal

aneuploidy with high accuracy. Published tests including those

in commercial use, utilize variations of the molecular counting

approach where following the mapping of sequence reads to the

human reference genome, the relative numbers of fragments per

chromosomes are counted to detect deviations due to the extra

genetic material in the fetus.

Table 4. Accuracy estimates for the different corrections at the 7 coverage levels.

Coverage RM_LOESS mapCorr_LOESS mapCorr_singlePos mapCorr_singlePos_Frag

0.42X 100% 100% 100% 100%

0.31X 100% 100% 100% 100%

0.21X 96.6% 100% 100% 100%

0.11X 93.1% 100% 100% 100%

0.053X 93.1% 100% 100% 100%

0.026X 82.8% 100% 100% 100%

0.014X 75.9% 96.6% 96.6% 93.1%

doi:10.1371/journal.pone.0086993.t004
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We have demonstrated that using a more refined method for

GC correction and improvements in the handling of repetitive

genomic regions can lead to substantial improvements in the

sensitivity of the standard statistical test for trisomy 21 detection.

We would suggest that with the rapid progression of the field and a

focus on the roll out of large-scale studies some of the assumptions

and practices made early on in the work should no longer be

perpetuated but be replaced with improved analysis techniques

such as those that we have demonstrated.

The first proof-of-principle NIPT studies dealt with the ‘hard-

to-map’ repeat regions of the genome by aligning the sequencing

reads to the repeat masked human reference. Since 50% of the

genome [35] is designated as some type of repeat, it was

determined that the speed, quality and quantity of mapping was

lowered when aligning directly to the masked reference and that it

also lead to increased false-positives in trisomy detection [42].

Later NIPT studies opted to remove any reads in the annotated

regions post-alignment (using the RepeatMasker database). Even

as the sequencing-based NIPT was clinically translated and the

sequencing depth was dramatically reduced for cost-efficiency the

practice of using RepeatMasker persisted.

This study demonstrates the application of an alternative method

for repeat handling, where the mappability of regions is calculated

and read counts are corrected by these values instead of using the

RepeatMasker method. Our work shows that by using this ‘soft’

approach rather than hard filtering, one can avoid unnecessarily

reducing the read coverage and increasing the variation of bin

counts due to uneven removal of reads. In line with our findings, a

large-scale NIPT study recently reported that filtering RepeatMas-

ker regions in moderation rather than the current severe practice,

also increases the performance of NIPT [43].

To correct the GC bias we opted to use the protocol introduced

by Benjamini and Speed in 2012. In their work, using genomic

DNA, it was shown that a correction based on the single position

model eliminates more GC bias than a LOESS correction. Since

LOESS is the method of choice in whole genome NIPT, we

employed the single position GC model to investigate its

performance in the setting of trisomy detection using plasma

DNA. This is the first instance of the application of this model in

the NIPT setting.

The result of our work shows that the single-position GC

correction coupled with the aforementioned mappability correc-

tion shows a significant improvement over the LOESS method

with RepeatMasker by maintaining 100% sensitivity of trisomy

detection over a range of decreasing depths of coverage. In

particular, the latest NGS based NIPT studies, use approximately

0.2X coverage while we demonstrate 100% sensitivity down to

0.03X or 1/7th the data. The discriminatory distance between

trisomy and normal samples is also much higher with the new bias

correction. We also show that these improvements are not aligner

specific by replicating the results using a different alignment

algorithm.

The performance of the methods we have demonstrated would

improve further if a larger pool of reference samples were available

or by using reference samples that show better matching to reduce

technical variation between sequencing runs [24,32,44]. Another

approach made possible with larger groups of reference samples,

adopted by some NIPT analysis protocols, involves matching

chromosomes of interest to reference chromosomes that have

similar coverage variation across sequencing runs. This is one

method whereby the expected read counts are adjusted to correct

remaining bias after standard intra-sample adjustments for GC

and repeats [31,36]. This method is based on ad-hoc criteria and it

would be desirable to identify and remove further sources of bias

using justifiable approaches. Our study is carried out with a limited

number of samples; hence the above methods are not applicable.

By improving intra-sample bias correction strategies, we can

reduce the reliance on reference samples, but as yet it is not

possible to forego these entirely as we have also demonstrated.

In addition to the improvement in bias reduction, the single

position model estimates corrections at the single base pair level,

rather than at a binned level so it has clear advantages in terms of

resolution when detecting sub-chromosomal copy number changes

in the fetus. However, in an effort to benchmark our improve-

ments against existing protocols we have not taken full advantage

of these improvements. For example we bin our single base pair

predictions into 50 Kb bins, using the standard protocol currently

favored by researchers. We have evidence (data not shown) that

further gains are possible if the size of the window for binning was

reduced, analogously to Benjamini and Speed [37]. If paired-end

information is available the model can also be extended to

incorporate different fragment lengths as the bias stems from the

GC content of the full DNA fragment. This would lead to an even

more sensitive correction as plasma DNA shows a multi-modal

size distribution with fetal and maternal fragments differing in

lengths. We were not able to investigate the further possible gains

this would make in trisomy 21 detection, as we did not have

paired-end data.

We also investigated the effects due to the natural cleavage of

plasma DNA using moderate coverage sequencing data, which has

not been explored in depth using next generation sequencing.

When using genomic DNA the input genetic material is

fragmented artificially via sonication or nebulization protocols,

which creates a wide array of fragment lengths. These are then

size-selected depending on research specifications. In contrast,

plasma DNA is fragmented by natural nuclease action and the

fragments are not size selected in the library preparation for NGS.

We have shown that there are several high frequency motifs in

the nucleotide frequencies spanning 8–10 positions on either side

of the DNA cleavage site and that the positions on which fragment

rates depend the most are the second base before the breakpoint as

well as the first two bases into the fragment. We note that the

cytosine rich motif that we observe at these positions has also been

reported by others using cloned ccfDNA [45]. However, in an in-

vitro study of the apoptotic digestion of lymphocyte chromatin, an

AT-rich motif was uncovered [46], indicating that the enriched

motifs we observe in our data are likely to result from a

combination of biological processes.

When sequence fragments were stratified by over-represented

motifs, a shift in the GC bias curve between strata was revealed,

which was an indication that these fragments should be corrected

separately, in two groups. However, there was no improvement

over the results of the single position GC model with the

mappability correction using the un-stratified data, and the

stratified method performed marginally worse. This could be

due to the presence of only a small subset of the reads (16%) that

fall into the stratum with the enriched motifs and estimating the

bias with a small number of reads at a low sequencing depth

generates too much variability at the gain of little bias

improvement.

The fragmentation effect seen in plasma DNA is different to

that seen in genomic NGS data [37,47]. Since these observations

are highly replicable across multiple samples and across different

library preparation protocols we have reason to believe that these

enriched motifs reflect the existence of real biological signals. Since

the enzymatic action related to plasma DNA cleavage is not fully

understood, the DNA fragments may stem from multiple sources,

including different nucleases with differing cleavage sites and
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trimming of exposed fragment ends. These various processes could

dilute the fragmentation motifs and result in a highly complex

mixture that we only indirectly incorporate into the proposed

model. We cannot rule out the possibility that there may be some

motif signal arising from technical aspects of the library

preparation for ccfDNA (e.g. end-repair), but this can only be

teased apart by carefully designed, deep sequencing experiments.

Whilst we have employed a better correction for GC bias in

plasma DNA sequencing samples, there exist further sources of

bias, which are as yet unknown, and cannot currently be corrected

for within samples. The removal of these sources of bias

necessitates the use of reference samples. These sources of

variation need to be investigated further through deeper sequenc-

ing and analysis of plasma derived DNA. Such an analysis will also

extend our biological understanding of the plasma DNA cleavage

process.
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Figure S1 Chromosome 21 Z-scores for the two main
bias correction protocols as coverage is reduced in read
data aligned by BWA. Blue: RM_LOESS, Orange: mapCorr_

singlePos. The red line denotes the diagnostic threshold of +3 for

trisomy 21 detection.
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Figure S2 Reference free, intra-sample trisomy detec-
tion with the single position GC model with mappability
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chromosome in all 29 samples, calculated from pair-wise Welsh

t-tests. The dashed line corresponds to the statistic associated with
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Figure S3 Tracking samples across the different meth-
ods and coverage levels. Chromosome 21 Z-scores for the four

different methods as coverage is reduced. Different symbols are

used to track the trisomy samples across the different coverage

levels in each bias correction protocol. (Blue: RM_LOESS, Green:

mapCorr_LOESS, Orange: mapCorr_singlePos, Violet: map-

Corr_singlePos_ Frag). The red line denotes the diagnostic

threshold of +3 for trisomy 21 detection.
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