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Abstract

Although rice yield has been doubled in most parts of the world since 1960s, thanks to the advancements in breeding
technologies, the biological mechanisms controlling yield are largely unknown. To understand the genetic basis of rice
yield, a number of quantitative trait locus (QTL) mapping studies have been carried out, but whole-genome QTL mapping
incorporating all interaction effects is still lacking. In this paper, we exploited whole-genome markers of an immortalized F2

population derived from an elite rice hybrid to perform QTL mapping for rice yield characterized by yield per plant and
three yield component traits. Our QTL model includes additive and dominance main effects of 1,619 markers and all pair-
wise interactions, with a total of more than 5 million possible effects. The QTL mapping identified 54, 5, 28 and 4 significant
effects involving 103, 9, 52 and 7 QTLs for the four traits, namely the number of panicles per plant, the number of grains per
panicle, grain weight, and yield per plant. Most identified QTLs are involved in digenic interactions. An extensive literature
survey of experimentally characterized genes related to crop yield shows that 19 of 54 effects, 4 of 5 effects, 12 of 28 effects
and 2 of 4 effects for the four traits, respectively, involve at least one QTL that locates within 2 cM distance to at least one
yield-related gene. This study not only reveals the major role of epistasis influencing rice yield, but also provides a set of
candidate genetic loci for further experimental investigation.
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Introduction

Given the paramount importance in sustaining food demand-

ing, great efforts have been made in large scale genetic research

and extensive breeding programs in almost all rice (Oryza sativa L.)

producing countries [1,2]. Gains in rice yield in recent decades are

mainly owed to advancements in breeding technologies including

selection of cultivars with higher productivity and significant

increase of agricultural inputs such as fertilizers and insecticides

[3]. While global environmental degradation has limited further

yield increase through more agricultural inputs, studying the

underlying biological processes of rice yield, and transferring the

knowledge gains into improvement in breeding and agronomic

productivity have become the key for further increase of food

production [4].

Rice yield is determined by several factors including the number

of panicles per plant, the number of grains per panicle and grain

weight. These component traits and the overall yield per plant

exhibit continuous variation since they are influenced by multiple

genetic factors named quantitative trait loci (QTLs) and other

environmental factors. Genetic markers such as restriction

fragment length polymorphisms (RFLPs) [5] and simple sequence

repeats (SSRs) [6] have been utilized to identify QTLs for

understanding genetic basis controlling rice yield [7–11]. A recent

study on QTL mapping for rice yield derived a high density single

nucleotide polymorphism (SNP) bin map from genomic sequences

obtained using deep sequencing technology, and demonstrated

that such high density SNP bin map enabled to identify more

QTLs with higher location precision than the traditional approach

based on RFLP and SSR markers [12]. However, these studies

attempted to identify QTLs individually via single interval

mapping [5] or composite interval mapping with a small scan

window [13], which had limited power of detection, given that

many agronomic traits are controlled simultaneously by multiple

QTLs and influenced by environmental factors [14,15].

Whole-genome marker QTL mapping employs a multiple QTL

model that includes all available markers and evaluates effects of

these markers simultaneously [16–18]. Such approach overcomes

the limitations of the traditional single marker-based QTL

mapping methods [16]. However, when genetic interactions are

considered, a multiple QTL model can have a huge number of

variables, which makes model inference very challenging. Early

methods for multiple QTL mapping usually rely on Markov chain

Monte Carlo (MCMC) simulation to fit a Bayesian model [16–20],

which is computationally intensive and unpractical when a large

number of markers are considered. Recently, more efficient and

accurate methods have been developed [21,22], which make

whole-genome marker QTL mapping feasible. With whole-

genome marker QTL mapping considering main effects and

interactions of all additive and dominance effects simultaneously,

contributions of numerous genetic effects to rice yield can be

assessed.
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In this study, we applied our empirical Bayesian least absolute

shrinkage and selection operator (EBlasso) method [21,22] to

whole-genome QTL mapping for an elite indica rice hybrid,

Shanyou 63 [7,23]. Our EBlasso model includes additive and

dominance main effects of 1,619 markers, all additive 6 additive

interactions, additive 6 dominance interactions, dominance 6
additive interactions, and dominance 6 dominance interactions,

with a total of more than 5 million possible effects. The

quantitative traits considered in this study include yield per plant

and three yield component traits, namely the number of panicles

per plant, the number of grains per panicle and grain weight. We

will demonstrate that our EBlasso identifies a number of QTLs,

most of which are involved in digenic interactions, and coincide

with or are close to experimentally investigated genes related to

yield.

Results

Four quantitative traits including three rice yield component

traits (the number of panicles per plant, the number of grains per

panicle and grain weight) and overall yield per plant were

analyzed using the EBlasso method. The full QTL model includes

main additive and dominance effects of 1,619 markers and all their

pair-wise interactions, with a total of k = 5,242,322 variables (see

the Materials and Methods section for the genetic map). To

understand the performance gain of the full model, we also

performed QTL mapping for the four traits with a QTL model

including k = 3,238 main effects, which is referred to as the main

effect model.

We estimated the phenotypic variance explained by a particular

QTL j as h2
j ~

b̂b2
j var(xj)

s2
y

, j = 1, 2, …, k’, where var(xj) is the

Table 1. Estimated QTL effects from the full model for the number of panicles per plant.

Loci(i, j)a b̂b(sb̂b)b p-valuec ĥh2
j

d Loci(i, j ) b̂b(sb̂b) p-value ĥh2
j

(757_add, 757_add) 20.12(0.04) 2.1661023 0.0030 (104_dom, 732_add) 20.11(0.05) 9.5461023 0.0012

7_add, 220_dom) 0.20(0.06) 2.3961024 0.0032 (186_dom, 735_add) 20.20(0.06) 1.7261024 0.0039

(10_add, 887_dom) 20.25(0.05) 3.7861026 0.0061 (518_dom, 759_add) 20.27(0.06) 1.6461026 0.0075

(18_add, 1407_dom) 0.28(0.06) 1.4561026 0.0080 (220_dom, 784_add) 0.23(0.06) 2.3861025 0.0045

(20_add, 1026_dom) 0.27(0.06) 1.8261026 0.0060 (561_dom, 828_add) 20.36(0.05) 4.88610212 0.0140

(44_add, 532_dom) 20.27(0.05) 1.1661027 0.0071 (861_add, 918_add) 0.41(0.05) 1.11610215 0.0182

(69_add, 913_dom) 0.21(0.05) 2.3961025 0.0040 (904_add, 1113_dom) 0.33(0.05) 3.50610210 0.0098

(123_add, 1132_add) 0.23(0.05) 7.7861027 0.0053 (213_dom, 929_add) 0.27(0.05) 4.8561028 0.0076

(166_add, (684_add) 0.46(0.04) ,10215 0.0279 (967_add, 1515_add) 0.20(0.05) 2.9161025 0.0040

(186_add, 1372_add) 20.11(0.04) 2.8661023 0.0013 (908_dom, 994_add) 0.90(0.05) ,10215 0.0782

(192_add, 580_add) 20.11(0.04) 8.3561023 0.0013 (1026_add, 1173_add) 0.21(0.05) 9.0561026 0.0044

(199_add, 782_dom) 20.08(0.03) 2.5361023 0.0006 (1037_add, 1510_add) 0.14(0.05) 1.1361023 0.0018

(208_add, 309_add) 20.31(0.05) 1.5061029 0.0092 (1089_dom, 1096_add) 0.34(0.12) 2.1761023 0.0016

(227_add, 364_dom) 20.36(0.05) 3.18610212 0.0145 (1119_add, 1471_add) 20.19(0.04) 1.2961025 0.0045

(244_add, 1303_dom) 20.11(0.04) 5.1061023 0.0012 (229_dom, 1160_add) 20.11(0.04) 5.7061023 0.0012

(249_add, 417_dom) 0.12(0.04) 3.1461023 0.0015 (1208_add, 1583_dom) 20.14(0.05) 3.2061023 0.0015

(333_add, 991_add) 0.24(0.05) 3.9261027 0.0057 (64_dom, 1223_add) 20.43(0.05) 2.22610215 0.0191

(335_add, 372_add) 0.20(0.05) 2.0561025 0.0041 (1237_add, 1370_add) 0.54(0.05) ,10215 0.0279

(349_add, 1425_dom) 20.23(0.05) 3.2061026 0.0060 (1334_add, 1576_add) 0.22(0.05) 2.9461026 0.0049

(354_add, 358_dom) 20.50(0.05) ,10215 0.0233 (408_dom, 1356_add) 20.73(0.05) ,10215 0.0488

(371_dom, 381_add) 0.37(0.05) 6.01610211 0.0113 (1065_dom, 1394_add) 20.17(0.05) 1.5561024 0.0026

(421_add, 1079_add) 20.15(0.04) 1.0461024 0.0023 (981_dom, 1558_add) 20.79(0.05) ,10215 0.0735

(456_add, 1282_add) 0.38(0.05) 9.99610215 0.0167 (1094_dom, 1558_add) 0.21(0.05) 4.0561025 0.0046

(517_add, 1346_add) 20.10(0.04) 8.4661023 0.0009 (1217_dom,1615_add) 0.37(0.05) 5.88610213 0.0144

(520_add,595_dom) 20.37(0.05) 4.03610211 0.0109 (54_dom, 1117_dom) 0.27(0.05) 3.9661027 0.0052

(15_dom, 534_add) 0.47(0.05) ,10215 0.0246 (627_dom, 681_dom) 20.25(0.05) 1.0561026 0.0048

(649_add, 1364_add) 20.20(0.04) 3.8061026 0.0045 (786_dom, 810_dom) 0.15(0.05) 1.1161023 0.0021

Parameter(s) a = 0.5, b = 0.5

m 0.0035

s2
0

0.1444

ĥh2 0.9405

aadd: additive effect; dom: dominance effect. If i equals j, then it is a main effect, otherwise, it is an interaction between locus i and locus j. Total number of effects is 112,
only 54 effects with a p-value #0.01 are listed in this table.
bThe estimated marker effect is denoted by b̂b and the standard deviation is denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t001
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variance of the coefficient of QTL j and the total phenotypic

variance s2
y was estimated from the data. To estimate the total

variance explained by all identified QTLs, we refitted the data to

an ordinary linear regression model that includes variables

corresponding to the identified QTLs. The phenotypic values

were predicted from the linear regression model as ŷy, and the total

phenotypic variance explained by all identified QTLs was

calculated as

h2~
var(ŷy)

var(y)
~

var(ŷy)

s2
y

ð1Þ

.

QTL mapping for the number of panicles per plant
The three-step cross validation (CV) procedure (detailed in the

Materials and Methods section) for the full model identified the

optimal pair of parameters as (a, b) = (0.5, 0.5) (Table S1 in File

S1). Using the optimal values of (a, b), the EBlasso algorithm

shrunk most of k variables to zero and yielded a QTL model with

111 nonzero effects. The statistical test, described in the Materials

and Methods section, for each nonzero effect identified 54

significant effects at a p-value #0.01 (Table 1). Among them,

one was main additive effect, 18 were additive 6 additive

interaction, 32 were additive 6dominance interaction, and three

were dominance6dominance interaction. The 54 effects involved

103 QTLs and explained 94.05% of the total phenotypic variance.

Figure 1. Interaction network of 103 QTLs for the number of panicles per plant. The circle shows the bin map and columns indicate
position of the makers (ticks in million base pairs). The thickness of a link is proportional to the strength of the interaction effect. A short straight line
indicates a main effect. Molecularly characterized genes related to yield are also labeled in the appropriate positions of the genome.
doi:10.1371/journal.pone.0087330.g001

Table 2. Estimated QTL effects from the main effect model
for the number of panicles per plant.

locusa b̂b(sb̂b)b p-valuec ĥh2
j

d

3_add 0.22(0.09) 6.8661023 0.0088

228_add 20.24(0.09) 2.9861023 0.0125

353_add 20.24(0.09) 2.6861023 0.0126

757_add 20.54(0.10) 4.1861028 0.0625

818_add 0.40(0.10) 4.8261025 0.0300

908_add 0.31(0.09) 4.7861024 0.0206

994_add 0.54(0.11) 3.5361027 0.0524

1363_add 20.26(0.09) 2.2961023 0.0135

461_dom 0.30(0.10) 1.9261023 0.0091

861_dom 20.45(0.10) 1.1761025 0.0209

Parameter(s) a = 20.01, b = 0.5

m 20.0600

s2
0

1.5260

ĥh2 0.3976

aadd: additive effect; dom: dominance effect. Total number of effects is 10, all
with a p-value #0.01.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t002
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We did a literature survey and found 99 genes with known

genomic locations that had experimental evidence showing that

they were related to rice yield and yield component traits. For each

of the 103 QTLs, we identified genes from 99 experimentally

investigated genes that were within 20 centi-Morgan (cM) distance

and associated such genes with the QTL. In total, we found 58

genes for 103 QTLs. For the ease of presentation, we organized

QTLs within 20 cM distance into a group, which resulted in 51

groups for 103 QTLs. These 51 QTL groups and associated genes

are listed in Table S2 in File S1. It is seen that 36 groups of QTLs

have at least one associated gene and the distances between QTLs

and their associated genes are relatively small (median distance

5.37 cM). Moreover, 21 QTLs involved in 19 of 54 effects locate

within 2 cM distance to at least one gene influencing rice yield.

The interaction network of the 103 QTLs and their associated

genes are visualized in Figure 1.

The three-step CV for the main effect model identified the

optimal pair of parameters as (a, b) = ( 20.01, 0.5) (Table S1 in File

S1), with which eight additive and two dominance effects involving

ten QTLs were identified with a p-value #0.01 (Table 2). The ten

effects totally explained 39.76% of the phenotypic variance, and

nine of them had genes related to yield within 20 cM distance

(median distance 9.29 cM) (Table S3 in File S1). Seven QTLs

were identical to QTLs or within the QTL group identified from

the full model (Bins 228, 353, 757, 861, 908, 994, 1363), and the

other three (Bins 3, 461 and 818) were close to QTLs identified by

Figure 2. Interaction network of nine QTLs for the number of grains per panicle. The circle shows the bin map and columns indicate
position of the makers (ticks in million base pairs). The thickness of a link is proportional to the strength of the interaction effect. A short straight line
indicates a main effect. Molecularly characterized genes related to yield are also labeled in the appropriate positions of the genome.
doi:10.1371/journal.pone.0087330.g002

Table 3. Estimated QTL effects from the full model for the
number of grains per panicle.

Loci(i, j)a b̂b(sb̂b)b p-valuec ĥh2
j

d

(436_add, 436_add) 6.79(0.98) 1.58610211 0.0846

(10_dom, 50_add) 28.74(1.41) 1.0561029 0.0695

(875_add, 1156_dom) 7.15(1.44) 6.3761027 0.0427

(595_dom, 1004_add) 212.78(1.88) 3.34610211 0.0853

(381_dom, 1057_add) 28.82(1.33) 9.40610211 0.0801

Parameter(s) a = 0.05, b = 0.1

m 20.3228

s2
0

156.7998

ĥh2 0.4651

aadd: additive effect; dom: dominance effect. If i equals j, then it is a main effect,
otherwise, it is an interaction between locus i and locus j. Total number of
effects is 5, all with a p-value #0.01.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t003

Whole-Genome QTL Mapping for Rice Yield

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e87330



the full model. Specifically, Bin3 was 3.97 cM away from Bin7

identified from the full model; Bin461 was 8.29 cM away from

Bin456 identified from the full model; and Bin818 was 6.15 cM

away from Bin810 identified from the full model. Comparing the

results obtained from the two models, we see that the full model

identified more QTLs, which included all those identified by the

main effect model, and explained a much larger percentage of the

phenotypic variance.

QTL mapping for the number of grains per panicle
The CV analysis identified the optimal pair of parameters (a,

b) = (0.05, 0.1) for the full QTL model for the number of grains per

panicle (Table S4 in File S1), with which EBlasso identified five

nonzero effects. All of these nonzero effects were significant at a p-

value #0.01 (Table 3), including one main additive effect and four

additive 6 dominance interactions. The five effects involved nine

QTLs, and explained 46.51% of the overall phenotypic variance.

Eight of the nine QTLs have experimentally verified genes related

to rice yield within 20 cM distance (median distance 4.86 cM)

(Table S5 in File S1). Moreover, four of these QTLs involved in

four effects locate within 2 cM distance to at least one yield-related

gene. The interaction network of the nine QTLs and their

associated genes are depicted in Figure 2.

The same three-step CV for the main effect model identified the

optimal pair of parameters (a, b) = ( 20.4, 0.5) (Table S4 in File

S1), with which five additive effects were identified, all having a p-

value #0.01 (Table 4). The five QTLs (Bins 43, 436, 877, 1006,

1057) totally explained 41.48% of the phenotypic variance, and all

had molecularly characterized genes related to rice yield within

19 cM distance (median distance 1.59 cM) (Table S6 in File S1).

All five QTLs were identical or very close to the QTLs identified

from the full model. Specifically, Bin436 and Bin1057 were

identified in both models; Bin43 is 3.40 cM away from Bin50

identified from the full model; Bin877 is 0.47 cM away from

Bin875 identified from the full model; and Bin1006 is 0.72 cM

away from Bin1004 identified from the full model. Comparing the

results obtained from the two models, we observed that although

both models identified five effects, the full model identified four

more QTLs and explained a slightly larger percentage of

phenotypic variance. Moreover, the main effect model identified

five additive effects, but the full model identified QTLs with both

additive and dominance effects.

QTL mapping for grain weight
The CV analysis determined the optimal (a, b) = (1, 1) (Table S7

in File S1) for the full QTL model for grain weights. Using the

optimal a and b, EBlasso yields a QTL model including 89

nonzero effects, among which 28 effects were identified as

significant at a p-value #0.01 (Table 5). Among them, one was

a main additive effect, 10 were additive 6 additive, 15 were

additive 6dominance, and two were dominance 6 dominance

interactions. The 28 effects involved 52 QTLs, and explained

93.79% of the phenotypic variance. QTLs with a distance #

20 cM were placed into a group, resulting in 32 groups, and 26 of

the 32 QTL groups had at least one gene within 20 cM distance

(median distance 5.06 cM) (Table S8 in File S1). Moreover, 15

QTLs involved in 12 of 28 effects locate within 2 cM distance to at

least one yield-related gene. The interaction network of the 52

QTLs and their associated genes are shown in Figure 3.

The CV analysis for the main effect model identified the

optimal pair of parameters (a, b) = (1, 1) (Table S7 in File S1), with

which 26 QTLs (19 additive and 7 dominance effects) were

identified with a p-value #0.01 (Table 6). The 26 QTLs totally

explained 84.24% of the overall phenotypic variance, and 23 of

them had molecularly characterized genes related to rice yield

within 16 cM distance (median distance 4.08 cM) (Table S9 in

File S1). Twenty three of the 26 QTLs were identical to or within

a QTL group identified from the full model, but three QTLs (Bins

228, 843, and 894) do not correspond to any QTLs identified from

the full model within 20 cM distance. Again, the full model

identified more QTLs than the main effect model and the QTLs

detected by the full model explained more phenotypic variance

than those detected by the main effect model.

QTL mapping for yield per plant
The CV analysis determined the optimal pair of parameters (a,

b) = (1, 1) for the full QTL model for rice yield (Table S10 in File

S1). Using the optimal values of (a, b), EBlasso yielded four

nonzero effects, all were significant at a p-value #0.01: one main

additive effect, one additive 6 additive interaction, one additive

6dominance interaction, and one dominance 6 dominance

interaction (see Table 7). The four effects involved seven QTLs

and explained 34.01% of the overall phenotypic variance. Five out

of the seven QTLs have an experimentally verified gene within

15 cM distance (median distance 2.21 cM) (Table S11 in File S1).

Moreover, two QTLs involved in two of four effects locate within

2 cM distance to at least one yield-related gene. The interaction

network of the seven QTLs and their associated genes are

described in Figure 4.

The optimal pair of parameters determined by the CV analysis

for the main effect model was (a, b) = (20.5, 0.1) (Table S10 in File

S1), with which four QTLs with a p-value #0.01 were identified

(Table 8). The four QTL effects explained 23.79% of the

phenotypic variance, and all had at least one gene within 17 cM

distance (median distance 7.82 cM) (Table S12 in File S1). Two of

the four QTLs (Bin1014, Bin1057) were identical to the QTLs

identified from the full model, but the other two QTLs do not

correspond to any QTL identified from the full model within 20

cM distance. Overall, although the full model did not detect all

QTLs identified by the main effect model, it still detected more

QTLs and explained more phenotypic variance.

Table 4. Estimated QTL effects from the main effect model
for the number of grains per panicle.

locusa b̂b(sb̂b)b p-valuec ĥh2
j

d

43_add 25.15(1.08) 1.3861026 0.0454

436_add 8.06(1.03) 6.02610214 0.1190

877_add 3.64(1.05) 3.2161024 0.0225

1006_add 28.00(1.15) 1.48610211 0.1036

1057_add 27.51(1.11) 3.55610211 0.0973

Parameter(s) a = 20.4, b = 0.5

m 20.6700

s2
0

171.21

ĥh2 0.4148

aadd: additive effect; dom: dominance effect. Total number of effects is five, all
with a p-value #0.01.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t004
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Effect types and pleiotropic genes
Among the five types of effects (main additive, main dominance

effects, additive 6additive, additive 6dominance, and dominance

6 dominance interactions) considered in the EBlasso full models

for four traits, no main dominance effects was detected, but several

dominance 6dominance interactions (one for rice yield, three for

the number of panicles per plant, and two for grain weight) were

identified. Many additive 6dominance interaction effects were

identified, including one for rice yield, 32 for the number of

panicles per plant, four for the number of grains per panicle, and

15 for grain weight. Phenotypic variance explained by a single

effect is relatively small for all traits (Tables 1, 3, 5 and 7). For

example, the largest effect has ĥh2 = 7.82% (908_dominance

6994_additive) for the number of panicles per plant, 8.53%

(595_dominance61004_additive) for the number of grains per panicle,

15.48% (729_additive) for grain weight, and 6.08% (1057_additive6
1144_dominance) for yield per plant. Each main effect detected by the

main effect model also explained a small percentage of the total

phenotypic variance.

Many molecularly characterized genes related to yield are

known to play pleiotropic roles in regulating grain productivity

[31]. Without surprise, a number of such genes coincide with or

close to the QTLs that were identified by our EBlasso for multiple

traits, although they did not necessarily have pleiotropic effects.

For example, gene Ghd7, OsNRAMP5 and DEP2 are close to

several QTLs common for the four phenotypes, qSW5/GW5,

OsEF3 and LOG are near the QTLs for three phenotypes except

the number of grains per panicle, and Gn1a, OsJAG, GS3, OsJMT1,

OsSPL14, GW8/OsSPL16, SGL1 are associated with QTLs for

three phenotypes except yield per plant. Besides Ghd7, OsNRAMP5

and DEP2, gene FZP, OsSDR, and OsFAD8 was near QTLs for

both yield per plant and the number of grains per panicle; 14

genes were close to QTLs for both the number of panicles per

plant and the number of grains per panicle; and 62 other genes

were associated with QTLs for both the number of grains per

panicle and grain weight. While the pleiotropic effect of some

genes have been reported [32], our QTL mapping results

identified a number of genes associated with multiple phenotypes,

implying their possible pleiotropic role worthy of further

experimental investigation. Moreover, it is also possible that the

QTLs we detected may be closely linked to unknown genes,

which, if identified, will yield more insight into the molecular basis

of phenotypes [1].

Discussion

Due to its small genome and close relatedness with other grass

crops, rice has served as a model plant for investigating genetic

factors underlying crop productivity [33,34]. To date, more than

600 rice genes have been experimentally cloned with related traits

including yield, biotic and abiotic stresses, grain quality, plant

architecture, fertility, etc. [2]. However, there is still a knowledge

gap regarding the molecular basis of yield-related biological

processes [1], suggesting the importance of systematic tools that

can enable to understand functional role of genes [2,35]. In this

study, we employed a multiple QTL model that included all

additive and dominance main effects of 1,619 markers, and all

their pair-wise interactions with a total of more than 5 million

possible effects, and then applied our EBlasso algorithm to identify

QTLs for four agronomic related traits of rice, including yield, the

number of panicles per plant, the number of grains per panicle

and grain weight. Our QTL mapping revealed a number of QTLs

for four traits, most of which are involved in digenic interactions.

Moreover, most of these QTLs have at least one experimentally

cloned gene within 20 cM distance.

The same set of markers in the recombinant inbred line (RIL)

population where the ‘‘immortalized F2’’ (IMF2) was derived from

were used for QTL mapping, via a composite interval mapping

method with a scan window size of five markers [12]. Upon

development of the IMF2 population, this dataset was obtained

and the ANOVA method was applied to each pair of markers to

identify both main and digenic interaction effects from 5,242,322

possible effects [24]. The composite interval mapping identified

zero, three (Bin40, Bin446 and Bin1006), seven (Bins 49, 171, 439,

729, 928, 1008, and 1266), and one (Bin1007) QTLs for the

Table 5. Estimated QTL effects from the full model for grain
weight.

Loci(i, j)a b̂b(sb̂b)b p-valuec ĥh2
j

d

(729_add, 729_add) 1.02(0.07) ,10215 0.1548

(37_add, 547_dom) 0.71(0.09) 1.29610214 0.0428

(67_add, 772_add) 20.25(0.08) 6.5661024 0.0047

(96_add, 1117_dom) 0.21(0.08) 2.9561023 0.0035

(119_add, 987_add) 0.18(0.07) 6.7361023 0.0024

(151_add, 1262_add) 20.15(0.07) 9.7961023 0.0018

(71_dom, 184_add) 20.67(0.09) 1.55610213 0.0374

(210_add, 1400_add) 0.19(0.08) 7.7961023 0.0025

(329_add, 727_dom) 0.22(0.09) 4.6361023 0.0040

(310_dom, 419_add) 20.21(0.05) 1.8661025 0.0043

(431_add, 1111_add) 0.35(0.08) 1.0161025 0.0107

(71_dom, 500_add) 20.76(0.08) ,10215 0.0493

(583_add, 1578_dom) 0.35(0.08) 9.5061026 0.0092

(107_dom, 700_add) 0.19(0.07) 4.8061023 0.0035

(708_dom, 714_add) 21.15(0.32) 1.7961024 0.0076

(818_add, 1100_add) 0.26(0.08) 3.9361024 0.0053

(916_add, 1026_add) 0.15(0.06) 8.5061023 0.0019

(472_dom, 920_add) 20.27(0.09) 1.6561023 0.0058

(18_dom, 955_add) 20.20(0.08) 3.7761023 0.0033

(971_add, 1461_add) 0.27(0.08) 4.7561024 0.0075

(620_dom, 1011_add) 20.67(0.09) 3.31610212 0.0336

(1035_add, 1224_add) 0.30(0.07) 3.2761025 0.0081

(1093_add, 1407_dom) 0.44(0.08) 2.1361027 0.0148

(1167_dom, 1168_add) 20.47(0.16) 1.3761023 0.0051

(119_dom, 1375_add) 0.61(0.09) 7.83610211 0.0289

(1397_add, 1505_add) 0.41(0.09) 1.9561026 0.0119

(247_dom, 1505_dom) 20.23(0.08) 1.2261023 0.0032

(647_dom, 796_dom) 0.26(0.08) 4.2961024 0.0044

Parameter(s) a = 1, b = 1

m 20.0661

s2
0

0.5317

ĥh2 0.9379

aadd: additive effect; dom: dominance effect. If i equals j, then it is a main effect,
otherwise, it is an interaction between locus i and locus j. Total number of
effects is 90, only 28 effects with a p-value #0.01 are listed in this table.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t005
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number of panicles per plant, the number of grains per panicle,

grain weight and yield per plant, respectively. The ANOVA

method detected thousands (1432, 2696, 3524 and 2251) of

digenic interactions between two bins with a p-value #0.001; and

after those digenic interactions involving adjacent bins were

merged, 115, 189, 238, and 204 effects were reported, respectively

[24]. In contrast, our EBlasso method identified a reasonable

number of effects and QTLs for each trait, and 35%–80% of

identified effects for four traits involve at least one QTL that

locates within 2 cM distance to at least one gene related to crop

yield, which corroborates the reliability of the identified effects.

The list of genes associated with the identified QTLs provides

insight into rice yield with respect to yield component traits. First,

the number of panicles depends on plant’s ability of producing

tillers, which is under genetic, developmental and environmental

influence. While previous composite interval mapping did not

identify any significant effect with the same set of markers in an

RIL population [12], we have identified a set of QTLs that have

nearby genes known to regulate plant tillering. For example,

among genes in Table S2 in File S1, MOC1/SPA is the first gene

characterized for rice tillering; it initiates axillary buds that grow

into lateral braches [36]. OsTB1/FC1 has been identified as an

important gene that negatively regulates lateral branching in rice

[37]. OsSPL14 is a highly expressed gene in the shoot apex and

primordial of primary and secondary branches, which promotes

panicle branching while reducing tiller number [38]. Through

gene mutations, D3, D10, D14, D17/HTD1, and D27 were found

to affect tiller initiation and/or outgrowth [37]. Secondly, the

number of grains per panicle is another important trait

determining crop yield. While composite interval mapping

identified three QTLs (Bin40, Bin446 and Bin1006) close to genes

Gn1a, GS3, OsNRAMP5 and Ghd7, our EBlasso also identified these

genes in addition to other 13 genes. Among them, FZP is known to

control spikelet meristem identity [39], Ghd7 is a pleiotropic gene

affecting grain number, plant height and heading date [40], GW8/

OsSPL16, PGL, and DEP2 all are known to be essential in

regulating cell proliferation or elongation [41–43]. Thirdly,

composite interval mapping detected seven QTLs (Bins 49, 171,

439, 729, 928, 1008, and 1266) for grain weight, with nearby

genes Gn1a, LAX1, GS3, GS5, qSW5/GW5, OsJMT1, OsIAA23,

Ghd7, OsNRAMP5, TAC1, LGD1 and SG1. In addition to these

genes, our EBlasso identified many other genes with known effects

in controlling grain weight. For example, GIF1 is a gene encoding

a cell-wall invertase required for carbon partitioning during early

grain filling, and overexpression of GIF1 leads to larger and

heavier grain weight [44]. Genes SRS3 and SRS5 have been found

to regulate seed cell elongation [45,46]. Over-expression of LRK1

gene results in enhanced cellular proliferation and increased grain

weight [47]. Finally, yield per plant is the most complex trait and a

small number of effects were identified compared with its

component traits. While composite interval mapping identified

only one QTL (Bin1007) with nearby gene Ghd7 and OsNRAMP5,

Figure 3. Interaction network of 52 QTLs for grain weight. The circle shows the bin map and columns indicate position of the makers (ticks in
million base pairs). The thickness of a link is proportional to the strength of the interaction effect. A short straight line indicates a main effect.
Molecularly characterized genes related to yield are also labeled in the appropriate positions of the genome.
doi:10.1371/journal.pone.0087330.g003
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our EBlasso identified this QTL and six other QTLs, four of which

have cloned gene within 15 cM distance (Table S11 in File S1).

In conclusion, taking advantage of the powerful EBlasso model

for simultaneously accounting for more than 5 million possible

effects, we identified a number of QTLs for four traits of the elite

rice hybrid Shanyou 63, a vast majority of which are involved in

digenic interactions. This set of QTLs not only shed light on the

genetic basis of the yield of the rice hybrid, but also provide

candidate loci for identification of new genes that may be involved

in crop yield.

Materials and Methods

Plant materials and QTLs
The genotype and phenotype data used in this study were

obtained from previous studies [12,24]. The mapping plants were

created by first crossing between indica rice Zhensha 97 and

Minghui 63 [7] to produce the elite rice hybrid Shanyou 63 that

was the most widely cultivated in China in 1980s –1990s [24].

Then a population of 240 F9 RILs was derived from single-seed

descent of Shanyou 63. Next, an ‘‘immortalized F2’’ (IMF2)

population consisted of 278 crosses was created by intercrossing

RILs for QTL mapping study [7,23]. The crossed population was

field tested on the experimental farm of Huazhong Agricultural

University in Wuhan, China, in 1999, for traits including yield per

plant, the number of panicles per plant, the number of grains per

panicle and grain weight.

The RILs were genomic sequenced with an Illumina Genome

Analyzer II using the bar-coded multiplexed sequencing approach

as described in [25], and 270,820 high quality SNPs were

identified. Bin maps were constructed by lumping consecutive

SNPs with the same genotype into blocks, masking blocks with less

than 250 kb to avoid false double recombinations, and merging

recombination bins less than 5 kb, resulting in a map consisting of

1,619 bins without missing data [12]. Genotypes of the IMF2

crosses were deduced according to genotypes of their RIL parents

[24]. The three genotypes in each bin were coded as A and B for

each parental homozygote genotype and H for the heterozygote.

Using the recombinant bins as QTLs, a 1,625.5 cM genetic

linkage map was constructed with about 1.0 cM (230 kb) in length

per bin (Figure 1).

Bayesian Lasso linear regression model for multiple QTLs
We employed a Bayesian Lasso (BLasso) multiple linear

regression model to infer genotypes and quantitative trait

associations. The regression model includes main additive and

dominance effects of 1,619 SNP bins and all their pair-wise

interactions. Let yi be the phenotypic value of a quantitative trait of

the ith individual in a mapping population. In this study we

observed yi, i = 1, ???, n, of n = 278 individuals and collected them

into a vector y = [y1, y2, ???, yn]
T. In these n individuals, let

Table 6. Estimated QTL effects from the main effect model
for grain weight.

locusa b̂b(sb̂b)b p-valuec ĥh2
j

d

37_add 0.40(0.08) 8.2261027 0.0262

50_add 0.21(0.08) 3.1461023 0.0072

151_add 20.18(0.07) 2.7761023 0.0052

173_add 20.49(0.07) 6.46610211 0.0418

199_add 0.23(0.06) 1.5161024 0.0077

332_add 0.30(0.06) 1.2661026 0.0150

440_add 20.98(0.06) ,10215 0.1670

498_add 20.35(0.06) 5.1861028 0.0188

710_add 0.17(0.06) 2.1361023 0.0047

729_add 0.81(0.07) ,10215 0.0968

894_add 20.18(0.06) 8.2161024 0.0053

936_add 20.44(0.07) 3.11610210 0.0291

1008_add 20.34(0.06) 6.6361028 0.0177

1110_add 0.18(0.05) 4.8561024 0.0055

1176_add 20.26(0.06) 8.7761026 0.0108

1251_add 0.37(0.07) 4.6461028 0.0171

1374_add 0.33(0.06) 2.5561027 0.0167

1442_add 20.22(0.06) 6.3761025 0.0079

1565_add 0.20(0.06) 2.3361024 0.0063

38_dom 0.29(0.07) 3.1861025 0.0066

228_dom 20.20(0.07) 1.6061023 0.0032

312_dom 0.17(0.06) 3.2061023 0.0024

441_dom 20.23(0.07) 7.9561024 0.0043

547_dom 0.15(0.06) 6.6861023 0.0019

843_dom 0.16(0.06) 5.4161023 0.0021

1506_dom 20.26(0.07) 1.8961024 0.0054

Parameter(s) a = 1, b = 1

m 0.1000

s2
0

0.5224

ĥh2 0.8424

aadd: additive effect; dom: dominance effect. Total number of effects is 38, only
30 effects with a p-value #0.01 are listed in this table.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t006

Table 7. Estimated QTL effects from the full model for yield
per plant.

Loci(i, j)a b̂b(sb̂b)b p-valuec ĥh2
j

d

(1014_add,1014_add) 21.94(0.37) 1.9561027 0.0544

(113_add, 1547_add) 22.81(0.53) 1.4361027 0.0552

(1057_add,1144_dom) 22.89(0.53) 5.5761028 0.0608

(743_dom,1043_dom) 3.21(0.52) 8.38610210 0.0598

Parameter(s) a = 1, b = 1

m 20.7521

s2
0

22.9734

ĥh2 0.3401

aadd: additive effect; dom: dominance effect. If i equals j, then it is a main effect,
otherwise, it is an interaction between locus i and locus j. Total number of
effects is 4, all with a p-value #0.01.
bThe estimated marker effect is denoted by b̂b and the standard deviation is
denoted by sb̂b .
cP-value is obtained via t-test.
dPhenotypic variation explained.
doi:10.1371/journal.pone.0087330.t007
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m = 1,619 denote the number of genetic markers genotyped whose

main effects include additive and dominance effects. Let the

additive and dominance genotypes of marker j of individual i be

xAij and xDij, respectively, where xAij takes on values +1, 0 and 21,

and xDij takes on values 0, +1 and 0, corresponding to genotypes A,

H and B, respectively. Let us definexAi~½xAi1,xAi2,:::,xAim�T and

xGi~½xDi1,xDi2,:::,xDim�T . The interactions between any two

effects are modeled as element-wise product of the corresponding

main effects. Let xAAi, xADi, xDAi, and xDDi be m(m{1)=2|1
vectors containingxAij

:xAij’, xAij
:xDij’,xDij

:xAij’, and xDij
:xDij’,

respectively, where j~1,:::,m{1 and j’wj. Then we have the

following linear regression model for y:

y~mzXAbAzXDbDzXAAbAAzXADbAD

zXDAbDAzXDDbDDze,
ð2Þ

where m is the population mean, vectors bA and bD represent the

main additive and dominance effects of all markers, respectively,

and vectors bAA, bAD, bDA and bDD capture the additive6additive,

additive 6 dominance, dominance 6 additive, and dominance 6
dominance interactions, respectively. Matrices XA~½xA1,xA2, � � � ,
xAn�T , XD~½xD1,xD2, � � � ,xDn�T , XAA~½xAA1,xAA2, � � � ,xAAn�T ,

XAD~½xAD1,xAD2, � � � ,xADn�T , XDA~½xDA1,xDA2, � � � ,xDAn�T ,

and XDD~½xDD1,xDD2, � � � ,xDDn�T are the corresponding design

matrices of different effects, and 1e is the residual error that follows

a normal distribution with zero mean and variance s2
0I.

Given m markers, the size of matrix XA or XD is n6m, and the

size of XAA, XAD, XDA, or XDD is n6q, where q = m(m21)/

2 = 1,309,771. Defining b~½bT
A ,bT

D,bT
AA,bT

AD,bT
DA,bT

DD�
T

, and

X~ XA,XD,XAA,XAD,XDA,XDD½ �, we can write (2) in a more

compact form:

y~mzXbze: ð3Þ

The size of matrix X is n6k, where k = 2m+4q = 5,242,322, and

we apparently have k&n. However, we would expect that most

elements of b are zeros and thus we have a sparse linear model.

The Blasso model employs a three-level hierarchical prior

distribution to model the sparsity. At the first level,

letbj , j~1,2, � � � ,k, follows an independent normal distribution

with mean zero and unknown variance s2
j : bj

~NN(0,s2
j ). At the

second level, let s2
j , j = 1, 2, ???, k, follows an independent

exponential distribution with a common parameter l:

p(s2
j )~lexp({ls2

j ). At the third level, we assign a conjugate

Gamma prior Gamma(a, b) with a shape parameter a and an inverse

scale parameter b to the parameter l. Finally, we assign non-

informative uniform priors to m and s2
0. The three-level

hierarchical model has two hyperparameters (a, b) for adjusting

the degree of shrinkage, and cross validation (CV) can be applied

to choose appropriate values of these parameters.

Figure 4. Interaction network of seven QTLs for yield per plant. The circle shows the bin map and columns indicate position of the makers
(ticks in million base pairs). The thickness of a link is proportional to the strength of the interaction effect. A short straight line indicates a main effect.
Molecularly characterized genes related to yield are also labeled in the appropriate positions of the genome.
doi:10.1371/journal.pone.0087330.g004
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The QTL model (2) or equivalently (3) includes all main effects

and digenic interactions. We refer to this model as the full model

throughout the paper. We also performed QTL mapping with the

model y~mzXAbAzXDbDze, which is referred to as the main

effect model, since it includes only the main effects.

Model inference and cross validation
The Blasso model can be inferred efficiently with the empirical

Blasso (EBlasso) algorithm [21]. The EBLasso algorithm employs a

coordinate ascent method to find ŝs2
j , the estimate of s2

j , j = 0 …, k,

that maximizes the likelihood function of s2
j , j = 0, …, k. In the

iterative process, many s2
j or equivalent bj are shrunk to zero. The

coordinate ascent method along with other algorithmic techniques

makes the EBlasso algorithm very efficient. Our previous studies

demonstrated that EBlasso outperformed several other multiple

QTL mapping methods including the empirical Bayes method

[26], the Bayesian hierarchical generalized linear models

(BhGLM) [27], HyperLasso [28], and Lasso [29]. Detailed

description of the EBlasso algorithm can be found in [21,22]

and an efficient C program with the R interface [30] implement-

ing the EBlasso algorithm is available.

The optimal values of two hyperparameters (a, b) of the EBLasso

algorithm were obtained with five-fold CV in three steps to

minimize the prediction error (PE) calculated from

PE~ 1
n

Pn

i~1

(yi{ŷyi)
2, where ŷyi,i~1, � � � ,n, is the estimated pheno-

typic value. In the first step, a = b = 0.001, 0.01, 0.1, 1 were

examined and a pair (a1, b1) corresponding to the smallest PE was

obtained. In the second step, b was fixed at b1 and a was chosen

from the set [20.9, 20.8, 20.7, 20.6, 20.5, 20.4, 20.3, 20.2,

20.1, 20.01, 0.01, 0.05, 0.1, 0.5, 1], which yielded a value a2

corresponding to the smallest PE. In the third step, a = a2 was fixed

and b varied from 0.01 to 10 with a step size of one for b.1 and a

step size of one on the logarithmic scale for b,1. Note that when

fixing one of the two parameters, the degree of shrinkage is a

monotonic function of the other parameter [21,22]. Therefore, in

the second and third steps, the selection did not go through the full

path but stopped if the current PE was one standard error larger

than the minimum PE in previous steps.

Statistical significance test
One advantage of the EBLasso algorithm relative to Lasso [29]

is that it not only outputs a k’|1 (k’%k) vector b̂bas an estimate of

nonzero elements of b, but also gives an estimate of the covariance

of b̂b, ŜS. Letting ŜSjj be the jth diagonal element of ŜS, we can use the

t-statistics b̂bj=ŜSjj
1=2

to test if b̂bj=0 at a certain significance level.
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