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Nature vs nurture
Interplay between the genetic control of telomere length and environmental factors
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Telomeres are nucleoprotein struc-
tures that cap the ends of the linear 

eukaryotic chromosomes, thus protecting 
their stability and integrity. They play 
important roles in DNA replication and 
repair and are central to our understand-
ing of aging and cancer development. In 
rapidly dividing cells, telomere length is 
maintained by the activity of telomerase. 
About 400 TLM (telomere length mainte-
nance) genes have been identified in yeast, 
as participants of an intricate homeostasis 
network that keeps telomere length con-
stant. Two papers have recently shown 
that despite this extremely complex con-
trol, telomere length can be manipulated 
by external stimuli. These results have 
profound implications for our under-
standing of cellular homeostatic systems 
in general and of telomere length main-
tenance in particular. In addition, they 
point to the possibility of developing 
aging and cancer therapies based on telo-
mere length manipulation.

Telomeres are the specialized nucleo-
protein structures present at the ends of 
eukaryotic chromosomes. Telomeres play a 
central role in maintaining the stability of 
the genome: they serve to differentiate the 
natural chromosomal ends, which should 
not be repaired, from double-stranded 
DNA breaks (DSBs), which may occur by 
accident and need to be repaired imme-
diately to prevent loss of genomic infor-
mation.1 Protection of the chromosomal 
ends is conferred by the special structure 
of telomeres, created by specific telomeric 
proteins. In addition, telomeres provide a 
solution to the end-replication problem: 
the regular DNA replication machinery is 
unable to fully replicate the chromosomal 

ends;2 as a consequence, information is 
lost with each cell division, eventually 
resulting in senescence and cell death.3

Highly proliferative cells, such as 
mammalian embryonic cells and uni-
cellular organisms, solve this problem 
by expressing telomerase, a specialized 
reverse transcriptase4 able to use an inter-
nal RNA molecule as a template to extend 
the telomeres. Indeed, it is enough to 
express active telomerase to overcome cel-
lular senescence in somatic cells.5 Cancer 
cells also require functional telomeres: in 
about 80% of tumors, the telomerase gene 
is expressed;6 in the rest, an alternative 
mechanism, ALT, based on homologous 
recombination, allows telomere length 
extension.7 Moreover, experiments have 
shown that replenishing telomeres is one 
of the few essential and earliest steps that 
a normal mammalian fibroblast must take 
in order to become cancerous.8 Muta-
tions that affect telomere function result 
in human diseases, such as dyskeratosis 
congenita, idiopathic pulmonary fibrosis, 
and others.9-12 Expression of telomerase is 
downregulated in many somatic tissues in 
mammals. Accordingly, telomere length 
was found to decrease with age in human 
individuals,13 suggesting a link between 
telomere length and aging. Indeed, in 
human fibroblasts in culture, a lack of 
telomerase expression leads to progressive 
telomere shortening, and cells cease to 
divide in a process called replicative senes-
cence.14 Thus, our understanding of the 
biology of telomeres has significant medi-
cal implications and is especially relevant 
to the fields of aging and cancer.

Although some differences exist 
between the organization of telomeres 
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in yeast and mammals, many basic rules 
are universal. The yeast Saccharomyces 
cerevisiae, with its sophisticated genet-
ics and molecular biology tools, has been 
instrumental in providing basic infor-
mation about telomere biology (recently 
reviewed in ref. 15). The yeast genome 
has close to 6000 recognized genes. A col-
lection of 4700 mutants was constructed 
by systematically deleting each individual 
non-essential gene in yeast (non-essential 
yeast mutant collection16). This collection 
was later complemented with 2 additional 
libraries of mutants encompassing all the 
essential genes (yeast has ~1300 essential 
genes). In one of these, each essential gene 
was replaced by a hypomorphic allele;17 
in the other, temperature-sensitive alleles 
were used.18

The mutant collections allow research-
ers to carry out systematic mutant screens 
even if the phenotype of interest is not 
selectable. For example, 3 publications 
reported the systematic screening of the 
mutant collections, looking for those 
mutants that affect telomere length (telo-
mere length maintenance or tlm mutants). 
In these publications, DNA was extracted 
from each individual yeast strain and telo-
mere length was measured by Southern 
blot.19-21 Together, these papers identified 
~400 genes affecting telomere length. 
This list starkly contrasts with the 30 or 
so genes known to do so at the time the 
screens were performed,19 and, in addi-
tion, it underscores the central role played 
by telomere biology in the yeast life cycle, 
as ~7% of the genome participates in telo-
mere biology. Moreover, it also demon-
strates the complexity of the challenge: a 
mutation in any of the TLM genes changes 
the final telomere length, as this length is 
determined by mechanisms that elongate 
(e.g., telomerase) or shorten (e.g., repli-
cation-related shortening, nucleases) telo-
meres (which are themselves positively and 
negatively regulated); this means that each 
of the ~400 genes participates in determin-
ing an equilibrium between the 2 types of 
activity. Remarkably, however, each wild-
type yeast strain always exhibits telomeres 
of the same size; thus, in the tag-of-war 
between elongating and shortening mech-
anisms, the equilibrium is always attained 
(in a wt cell under optimal conditions) at 
the same telomere length. Researchers thus 

concluded that a very tight homeostatic 
mechanism involving hundreds of genes 
is at play.22 The genes uncovered in these 
screens, as expected, include those affect-
ing DNA and chromatin metabolism, but 
almost all functions in the cell are also rep-
resented, including RNA and protein syn-
thesis, traffic and modification, metabolic 
pathways, mitochondrial functions, etc. A 
large number of these genes is evolution-
arily conserved and present in the human 
genome. The challenge ahead, of course, is 
to determine how all these genes impinge 
on the telomere length determination. 
The fact that a near-complete list of TLM 
genes is available opens the door for fur-
ther exploration of telomere biology. For 
example, using computational approaches 
and the vast amount of information about 
protein–protein and genetic interactions 
in yeast, initial network models of telo-
mere biology have been established, allow-
ing their study.22-24

In biological systems, homeostasis usu-
ally works to isolate the organism or some 
of its cells from the effects created by the 
environment. Thus, warm-blooded organ-
isms maintain body temperature despite 
external fluctuations, and cells maintain 
constant levels of ions and cofactors irre-
spective of their environmental level.25,26 
Any change in steady state introduced into 
the system by the external signals is imme-
diately “corrected” by the interacting pro-
teins, in order to restore the state at which 
the system is equilibrated. However, our 
understanding of complex homeostatic 
mechanisms has been impaired by our lack 
of knowledge about the genes involved. 
Although a small number of genes that, 
when mutated, led to a noticeable change 
in the “equilibrium point” were described 
for several biological systems, it is seldom 
that a complete regulatory circuit com-
prising hundreds of genes, such as the 
TLM system, is characterized.

It, therefore, may be surprising to see 
that the telomere length maintenance sys-
tem, while normally maintaining telomere 
length at a fixed size, is able to respond 
to external signals. Here we summarize 2 
recent studies that characterize the response 
of this highly homeostatic system to exter-
nal cues and the mechanisms involved.27,28

One study explored the effect of cel-
lular starvation on telomere length.27 

Cells regulate their growth according to 
the availability of nutrients from their 
surroundings. Tor1 and Tor2 (targets 
of Rapamycin29) are 2 serine/threo-
nine kinases that regulate cell growth in 
response to nutrients and stress. A single 
TOR protein exists in mammalian cells 
(mTOR30). The drug Rapamycin inhibits 
TOR by forming an inhibitory complex 
with FKBP12 (Fpr1p protein in Saccharo-
myces cerevisiae).31

The Tor kinases can be found as part 
of the TOR complex 1 (TORC1), which 
controls many cellular processes, includ-
ing protein synthesis,32 ribosome bio-
genesis,33 autophagy,34 and sorting and 
turnover of nutrient permeases.35 TORC1 
represses the transcription of specific 
genes induced by nutrient starvation and 
is sensitive to Rapamycin.36 A second 
Tor-containing complex, TOR complex 
2 (TORC2), is Rapamycin-insensitive, 
because the rapamycin–Fpr1p complex 
does not bind to Tor2 in this complex.37 
TORC2 is involved in the regulation of 
actin cytoskeleton polarization during cell 
cycle progression.38

Ungar et al. grew yeast cells either under 
starving conditions, or in the presence 
of sublethal Rapamycin concentrations. 
Strikingly, in this situation, yeast cells 
respond by dramatically shortening their 
telomeres. Mutations in FPR1 or in other 
components of TORC1 resulted in a lack 
of telomeric response to Rapamycin, con-
firming that Tor complex 1 is the target for 
the Fpr1–Rapamycin silencing. Among the 
various growth-related metabolic pathways 
controlled by TORC1, the authors identi-
fied the nitrogen response pathway as the 
one involved in the signal transduction to 
the telomeres. Upon nitrogen starvation, 
the Gln3 and Gat1 transcription factors 
(TFs) enter the nucleus and promote tran-
scription from a battery of nitrogen catabo-
lite repression (NCR) genes.39,40 As long 
as nutrients are available, the activity of 
TORC1 prevents the TFs from entering the 
nucleus: they are kept in a phosphorylated 
form, bound to the Ure2 protein. Inhibi-
tion of TORC1 by the absence of nitrogen 
(mimicked by Rapamycin) leads to the 
dephosphorylation of Gln3 and Gat1, their 
dissociation from the cytoplasmatic Ure2p 
and their import to the nucleus, where 
they promote gene expression.39,41
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The existence of an almost complete 
list of TLM genes involved in regulating 
telomere length allowed the authors27 to 
ask how was the starvation signal trans-
mitted from the environment to telo-
meres. They performed a screen for tlm 
mutants that fail to shorten their telo-
meres in the presence of Rapamycin. 
This screen identified the Ku complex 
as the main responder to starvation: no 
change in telomere length was observed in 
yku70Δ or yku80Δ mutants. The YKU70 
and YKU80 genes encode the 2 compo-
nents of the Ku heterodimer, which plays 
important roles in telomere biology42,43 as 
well as being pivotal for the repair of DSBs 
through non-homologous end joining 
(NHEJ).44 Further investigation showed 
that, indeed, under nutrient-poor condi-
tions or Rapamycin treatment, the release 
of Gln3p and Gat1p from Ure2p and their 
entrance into the nucleus leads to a reduc-
tion in Yku70 protein levels. Degradation 
of Yku70 results in rapid telomere short-
ening. Since Yku70 is also involved in 
DNA double-strand break (DSB) repair 
via NHEJ,43,44 the authors tested a pos-
sible role of the cascade described in this 
process, and found that the ure2 strain (in 
which the TFs are constitutively nuclear 
and Ku levels are low) is also deficient in 
NHEJ repair, and that this defect can be 
suppressed by preventing the entrance of 
the Gln3 and Gat1 transcription factors to 
the nucleus.27

These experiments thus clearly show 
that Rapamycin treatment, or starvation 
conditions, lead to telomere shortening. 
What advantage can a massive loss of 
telomeres provide to the starving cell? 
Telomere maintenance, with its complex 
regulation, may be energy-intensive and 
therefore highly costly with respect to 
nutrient consumption. It is possible that 
telomere length regulation is compro-
mised in starved stress in order to real-
locate cell resources to more essential 
processes. At the same time, telomere 
degradation may supply much-needed 
nitrogen and carbon sources.27

The ability of cells under a complex 
telomere length homeostasis to respond 
to environmental clues could be advanta-
geous and increase cellular fitness under 
certain circumstances. In order to find 
conditions at which yeast cells respond 

to the environment by modifying their 
telomere length, Romano et al.28 recently 
subjected yeast cells to a battery of stress-
ful environments, including high and low 
temperature, changes in pH, exposure to 
different drugs, etc. Interestingly, most 
of the stresses, including oxidative stress, 
did not significantly alter telomere length, 
indicating that telomere length homeosta-
sis is robust under many, probably most, 
environmental conditions. Some stresses, 
however, such as high temperature, the 
addition of caffeine, and low levels of the 
drug hydroxyurea, resulted in telomere 
shortening, while others, such as added 
acetic acid and alcohols including etha-
nol, methanol, and isopropanol, caused 
a significant increase in telomere length. 
Strikingly, under alcohol stress, telomeres 
were not only longer, but also exhibited 
length heterogeneity, indicating that the 
mechanism(s) that preferentially elongates 
short but not long telomeres,45 thus ensur-
ing a narrow telomere length distribution 
in the cell, was disrupted. The effect of 
alcohols on telomere length was indepen-
dent of the ability of these cells to metabo-
lize the alcohol: telomeres elongated upon 
ethanol treatment in petite yeast strains 
lacking mitochondrial function, which are 
unable to utilize ethanol. Telomere elon-
gation by ethanol was telomerase-depen-
dent, rather than ALT-like. In all cases, 
removal of the stressing agent resulted in a 
gradual restoration of wild-type telomere 
length, demonstrating that the changes in 
telomere length were physiological rather 
than genetic, and thus may have been 
mediated by altered gene expression and 
protein activity.28

By analyzing the genome-wide transcrip-
tion levels in yeast cells under no stress, or 
exposed to ethanol (elongating conditions), 
high temperature and caffeine (shortening 
conditions), or peroxide (no effect on telo-
mere length), the authors identified genes 
that showed differential response. They 
then integrated transcript abundance data 
with the in silico TLM network22 created 
by using protein–protein interactions data 
to connect all TLM genes to the telomere 
maintenance machinery (telomerase and 
nucleases). The pairwise distances between 
stress-specific differentially expressed TLM 
genes were compared with pairwise dis-
tances of other TLM genes. This revealed 

that stress-specific, differentially expressed 
TLM genes lie significantly closer to each 
other for ethanol, caffeine, and 37 °C but 
not for hydrogen peroxide stress, which 
does not affect telomere length. These 
results suggested that the differentially 
expressed TLM genes may be involved in 
transducing the external signals and dis-
rupting telomere length homeostasis.

Based on this analysis, a list of candi-
date mutants was generated, which were 
grown under the various stress condi-
tions in order to look for those defective 
in transmitting the stress signal to the 
telomeres. Strikingly, they found a strong 
correlation between the rate of change in 
telomere length and the initial length of 
the mutant: in ethanol, long tlm mutants 
elongate more rapidly and short tlm 
mutants elongate more slowly than the 
wild type. Similarly, in caffeine and at 
37°C, long tlm mutants shorten more rap-
idly and short tlm mutants shorten more 
slowly than the wild type. This correla-
tion between abnormal telomere length 
and response magnitude to the stresses 
suggests that telomere elongation/shorten-
ing in the presence of external cues is per-
formed by the same basic mechanism(s) 
that maintain telomere length under 
unperturbed conditions.28

As in the case of the response to 
Rapamycin (described above), the authors 
concentrated on tlm mutants that were 
unresponsive to the external signals. 
Among these, rif1Δ was the most striking. 
The Rif1 and Rif2 proteins are negative 
regulators of telomerase that interact with 
the C terminus of Rap1, an essential pro-
tein that binds to the telomeric repeats.46 
Downregulation of the RAP1 gene or 
mutations in the C terminus of RAP1 led 
to extreme telomere elongation and to an 
increase in telomere length variability, 
similar to that observed in the presence of 
ethanol.47,48 The genome-wide transcrip-
tional analysis revealed a reduction in the 
level of Rap1 expression in cells grown 
in the presence of ethanol, suggesting a 
model in which alcohol leads to a reduc-
tion in the levels of Rap1, reducing Rif1 
recruitment to telomeres and leading to 
telomere elongation. Indeed, telomere did 
not respond to ethanol when the RAP1 
promoter was replaced by a tetracyclin-
inducible one (which does not respond to 
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the ethanol signal).49 Similarly, no changes 
were observed upon ethanol exposure in 
mutants lacking the Rap1 C-terminal 
region or the Rif1 protein. These results 
single out the Rap1–Rif1 pathway as cen-
tral to telomere elongation in response to 
ethanol. Consistent with this hypothesis, 
chromatin immunoprecipitation (ChIP) 
experiments showed that upon exposure 
to ethanol there is a 2-fold reduction in 
the level of Rif1 at telomeres. Rif1 activity 
was also required to shorten telomeres in 
the presence of caffeine. Therefore, Rif1 
may play a general sensing/structural/
regulatory role, rather than a catalytic one, 
in the telomeric response to environmen-
tal signals. This is consistent with recent 
studies that found a role for Rif1 in the 
regulation of chromatin structure and of 
DNA replication origin firing.50,51 Rif1 
and Rif2 were thought to form a complex. 
Remarkably, however, rif2Δ cells exhib-
ited a stronger-than-expected response to 
ethanol, underscoring the different roles of 
Rif1 and Rif2 in telomere length mainte-
nance.52-54 Surprisingly, a strain deleted for 
the TEL1 gene, which encodes the yeast 
ortholog of the mammalian ATM pro-
tein kinase or strains lacking components 
of the MRX complex (Mre11, Rad50, 
Xrs2), which work in the same pathway, 
also exhibited an over-reaction to ethanol. 
This result suggests that in addition to its 
positive role in promoting elongation of 
the shortest telomeres in the cell, the Tel1/
ATM pathway also functions to restrain 
elongation of telomeres by telomerase.

Deletion of Rif1 and mutations in 
Rap1 also significantly decreased the telo-
meric response to caffeine, indicating that 
Rif1-Rap1 is not only involved in telomere 
elongation under ethanol stress, but also 
in telomere shortening under caffeine. 
Caffeine is a known inhibitor of phos-
phatydyl inositol-3 kinase-related kinases 
(PI3K-like kinases), such as human ATR 
and ATM55 and their yeast counterparts, 
Tel1 and Mec1.56 Indeed, deletion of 
either TEL1 or MEC1 individually did 
not prevent the response to caffeine, but 
a double mutant tel1Δ mec1Δ was com-
pletely insensitive to the telomeric effect 
of caffeine, consistent with the known 

redundant function that these 2 kinases 
play in telomere biology.57 Thus, caffeine 
causes telomere shortening by inhibiting 
the ATM/ATR-like regulatory kinases.

Interestingly, mutations in Rap1 and 
the deletion of Rif1 affected only the 
shortening rate in the presence of caf-
feine but did not change the response 
to high temperature. High temperature 
has a broad, pleiotropic effect and may 
alter telomere length via several mecha-
nisms. No single deletion mutant failed 
to shorten its telomere length at the high 
temperature, suggesting that either there 
are redundant temperature-responding 
functions, or, more likely, some telomer-
ase component(s) is intrinsically thermo-
labile, as has been recently suggested.58 
Consistent with this idea, cells treated 
with caffeine, which exhibited telomere 
shortening, elongated their telomeres 
back to normal length once the caffeine 
was removed, but only if grown at a per-
missive temperature; no elongation was 
observed at 37 °C.

Telomere length and telomerase activ-
ity are important factors in the pathobiol-
ogy of human disease. Age-related diseases 
and premature aging syndromes, for 
example, are characterized by the short-
ening of telomeres.59 Tumor cells, on the 
other hand, prevent telomere shortening 
and telomere loss by upregulating telomer-
ase, thereby perpetuating cells with short 
telomeres and high chromosomal instabil-
ity.60 Thus, although the mechanisms at 
work differ, changes in telomere length 
fuel disease pathology in cancer and other 
premature aging syndromes. Interestingly, 
previous studies identified correlations 
between telomere length and environ-
mental conditions, such as mental stress,61 
socioeconomic status,62 and health-related 
behavior in adults.63 Although intrigu-
ing, these studies presented only a corre-
lation between 2 phenomena, and lacked 
a demonstration of causality. By using 
controlled experimental approaches in a 
model organism amenable to manipula-
tions, the 2 papers reviewed demonstrate 
a direct causality between environmental 
cues and changes in telomere length. The 
identification of mechanisms by which 

external signals modify telomere length 
significantly advances our understand-
ing of the complex interplay of genes and 
environment. More critically, however, 
these findings also suggest the possibil-
ity of strategic manipulations of telomere 
length that may well have important 
therapeutic implications in the treatment 
of human disease.64 Studies to assess the 
effect of different environmental stresses 
on telomere length in human cells are 
under way.

One of the best immediate candidates 
for such therapy is Rapamycin. Due to its 
central role in cell growth and metabo-
lism, inappropriate upregulation of the 
TOR pathway has been implicated in 
various malignancies, including cancers 
of the colon, breast, liver, brain, stom-
ach, lung, and ovary (reviewed in ref. 65). 
Several Rapamycin derivatives are cur-
rently undergoing clinical trials for the 
treatment of carcinomas, lymphomas, 
and other types of cancers. If the results 
presented hold true for human cells, they 
have potential implications for the use of 
Rapamycin as a therapeutic agent against 
cancer, as telomere maintenance is essen-
tial for maintaining the immortality in 
cancer cells.5 Moreover, drugs directed 
against mTOR have shown synergy with 
DNA damaging agents.66 In yeast cells, 
starvation leads to reduced levels of Ku 
heterodimer, resulting in NHEJ defi-
ciency. The effect of Rapamycin on NHEJ 
in mammals is currently being tested, as 
NHEJ is one of the main double-strand 
break repair mechanisms in mammals, 
and Rapamycin may thus render the cells 
hypersensitive to DNA damaging agents.
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