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Developing a universal vaccine for S. 
aureus is a top priority but to date we 

have only had failures in human clinical 
trials. Given the plethora of bacterial vir-
ulence factors, broad range of the health 
of humans at-risk for infections, lack 
of any information regarding immune 
effectors mediating protection for any 
manifestation of S. aureus infection and 
overall competence of this organism as a 
colonizer, commensal and pathogen, we 
may just simply have to accept the fact 
that we will not get a universal vaccine. 
Antigenic variation is a major challenge 
for some vaccine targets and for many 
conserved targets the organism can eas-
ily decrease or even eliminate expres-
sion to avoid immune effectors without 
compromise to infectivity and ability to 
cause disease. Studies of human immune 
responses similarly have been unable to 
identify any clear mediators of immu-
nity and data from such studies can only 
eliminate those found not to be associ-
ated with protection or that might serve 
as a marker for individuals with a higher 
level of resistance to infection. Animal 
studies are not predictive of success in 
humans and unlikely will be except in 
hindsight if and when we develop an effi-
cacious vaccine. Successful vaccines for 
other bacteria based on capsular polysac-
charides have not worked to date for S. 
aureus, and laboratory studies combining 
antibody to the major capsular serotypes 
and the other S. aureus surface polysac-
charide, poly-N-acetyl glucosamine, 
unexpectedly showed interference not 
augmentation of immunity. Potential 
pathways toward vaccine development 
do exist but for the foreseeable future 
will be based on empiric approaches 
derived from laboratory-based in vitro 
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and animal tests and not on inducing a 
known immune effector that predicts 
human resistance to infection.

Introduction

To answer the title’s question, we will have 
to deal with the facts that S. aureus is just 
too variable in its expression of vaccine 
target antigens,1 is capable of infecting a 
wide range of animal and human tissues 
and thus able to survive in a wide enough 
varieties of niches in these hosts such that 
any selective pressures induced by vaccina-
tion can potentially be readily overcome 
by expansion of existing variants able 
to escape immune-selective pressures.2 
While some studies have identified genes 
commonly found among a large major-
ity of clinical isolates3,4 no single essential 
virulence factor needed for infection in 
most settings that can be targeted as a vac-
cine is known, exceptions being diseases 
mediated purely by toxins such as toxic-
shock syndrome toxin,5,6 exfoliative der-
matitis and mediators of staphylococcal 
food poisoning.7,8 Extensive genetic2 and 
hence antigenic variability in many poten-
tial antigens precludes their use as vac-
cines. Variability in the level of expression 
leading to a highly variable surfacome9,10 
provides an easy means for bacterial 
escape from immune effectors by merely 
reducing levels of antigens to below that 
needed for elimination or killing of bacte-
ria. S. aureus is also notorious for causing 
frequent reinfection with the same strain, 
indicating natural infection does not read-
ily induce acquired immunity that can be 
defined and used to guide vaccine develop-
ment. Further difficulties are encountered 
when using laboratory animals to evaluate 
S. aureus virulence and immunity as they 
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sufficient, for effective immunity to S. 
aureus. More to the point, if most immu-
nocompetent humans simply do not make 
a protective antibody response follow-
ing either colonization or infection with 
S. aureus,48,49 then there is little value in 
drawing conclusions about the role of anti-
body in protection when comparing those 
who can’t (B-cell deficient) and those 
who don’t (everyone else) make protective 
antibody. This point was also discussed 
in detail by Jansen et al.27 So, if finding 
Th-17-inducing vaccine antigens50,51 is not 
the answer, it is not clear what is.

Immune Responses in Initial and 
Recurrent Infections: Can we 
Make Some Progress Here?

Analyzing antibody levels and T-cell 
responses present in acute and conva-
lescent sera is a time-honored means to 
identify vaccine candidates but there 
are few such studies for S. aureus infec-
tions and all have focused on antibody 
responses.35-38,48,49 And with the high 
recurrence rate of S. aureus infections, 
many of these responses are either going 
to be ineffectual at preventing infection 
or potentially even promote infection by 
mechanisms such as neutralizing innate 
immune-activating properties of bacte-
rial factors.52,53 Of note, in several of these 
studies35,36,48 antibody levels to many S. 
aureus antigens are already elevated in 
sera taken close to the time when a clini-
cal sample yields a positive culture for 
S. aureus. This indicates that significant 
exposure to S. aureus that induced anti-
body responses had occurred prior to the 
time of actual microbiologic diagnosis of 
infection. Importantly, we must consider 
that the presence of elevated antibody lev-
els early in the course of clinical infection 
indicates they are either too low or inef-
fective at protecting against infection. 
Although no cellular responses were mea-
sured, the common finding that antibody 
levels are already elevated at the onset of 
clinically-diagnosed infection might also 
suggest that cell-mediated immunity had 
also been stimulated but was without 
effect on preventing infection.

Numerous associations between 
patient outcomes and levels of antibodies 
to the S. aureus antigens have been made, 

and immune effectors needed to produce 
an effective vaccine, the high recurrence 
rates seen in humans, particularly with 
methicillin-resistant S. aureus (MRSA) 
infections32-34 and evidence for inadequate 
immune responses following infection35-38 
may, in fact, be insurmountable challenges 
to finding a broadly-effective vaccine for 
S. aureus. It may be time to consider that 
these challenges indicate there may not 
be a means to come up with an effective, 
broad-spectrum S. aureus vaccine with 
currently available technologies.

How Hopeless is it?

Difficult to know. Within his reviews,26,39 
Proctor argued extensively that the path-
ways and mediators induced by vaccines 
that have been tried and failed in humans 
might simply elicit the wrong types of 
immune responses. He proposed a basis 
for an effective vaccine may be found in 
new insights regarding the role of inter-
leukin-17 producing T-helper cells (Th17) 
and cell-mediated immunity in resistance 
to S. aureus infection. But evidence for 
this is fairly minimal, with some associa-
tions of human immune deficiencies and 
enhanced susceptibility to S. aureus skin 
and mucocutaneous infection40-43 and an 
observation that humans with B-cell defi-
ciencies are not particularly more suscepti-
ble to S. aureus infections than individuals 
with intact immune systems.44,45 However, 
individuals with neutrophil deficiencies 
do have increased deep-seated S. aureus 
infections46 indicating inefficient opsonic 
killing contributes to certain types of S. 
aureus infection. But associations among 
various observations can easily confound 
obtaining insights that can be translated 
into evidenced-based vaccine approaches. 
As T cell function, particularly T-helper 
function, is at the core of all acquired 
immunity, defects in T-helper cells do not 
necessarily mean increased susceptibility 
to infection in the setting of T-cell defi-
ciency would exclude a role for antibody-
mediated immunity. Th-17 cells are also 
critical for effective neutrophil-dependent 
host responses,47 so defects in these cells 
would impair effective recruitment of this 
key effector of antibody-based immu-
nity. Thus it may be that Th-17 and 
IL-17 responses may be necessary, but not 

are sufficiently different in their responses 
from those that occur in humans mean-
ing that pre-clinical animal tests primarily 
function as systems of exclusion, used to 
judge what likely won’t work in humans 
but unable to predict what will work. 
Against these challenges we might find 
that, at best, we can develop vaccines to 
prevent specific types of S. aureus infec-
tions such as bacteremia or skin and soft 
tissue infections (SSTIs).

In spite of these barriers, many vaccin-
olgists would place the need for a highly 
effective vaccine against Staphylococcus 
aureus in the top 3–5 public health essen-
tials. The organism is among the most 
frequent causes of infections in virtually 
all human, and many animal, tissues,11,12 
causes considerable morbidity and mor-
tality13-16 and community-acquired infec-
tions in otherwise healthy people continue 
unabated and may be increasing.17-19 So 
why has it not only been so difficult to 
develop a vaccine but, to date, numerous 
trials of a variety of vaccines in humans 
have all failed? Unfortunately failures pro-
vide little informative insight into their 
basis, as they are usually multi-factorial, 
and hypotheses about failure are untest-
able. Yet the failed S. aureus human vac-
cine trials conducted to date were all 
backed up by strong pre-clinical data,20-25 
so, at best, we can conclude pre-clinical 
studies are insufficient to be predictive of 
success or failure in humans.

Recently, Proctor summarized the chal-
lenges for developing a universal S. aureus 
vaccine26 as have Jansen et al.27 and within 
these reviews excellent summaries of the 
attempts to date (Table 1 in Proctor26 and 
Table 1 in Jansen et al.27) and major chal-
lenges (Table 2 in Proctor26) are provided. 
Therefore there is no need to repeat these 
except to note the subsequent publication 
of the results of the Merck V710 (IsdB) 
vaccine trial in cardiothoracic surgery 
patients.28 The major point made in these 
and other reviews of S. aureus vaccine 
development26,29-31 is we have insufficient 
insight into the basis for virulence and 
immunity for this organism to rationally 
design vaccines targeting known protec-
tive immune effectors. The multitude of 
genetically variable virulence factors, the 
undefined mechanisms of host immu-
nity which might indicate the antigens 
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sera and IVIgG have been found to have 
significant levels of neutralizing antibody 
to PVL.53,64 Among infected children, 
we found the highest levels of antibody 
to PVL in those with recurrent SSTI53 
clearly indicating these antibodies are not 
protective and demonstrating there is an 
association between high levels of anti-
body to PVL and increased susceptibility 
to infection. Furthermore, most studies do 
not find patients with PVL infections do 
worse than those with non-PVL S. aureus 
infections63,65-67 suggesting it is not having 
a major impact on pathogenesis of human 
infection or natural immunity is sufficient 
to defuse its toxic manifestations. Of note, 
neutralizing antibody to PVL was found 
in a mouse skin infection model to pro-
mote, not inhibit, S. aureus infection68 
due to the antibody’s ability to inhibit the 
immune-activating functions of PVL that 
initiate host innate immunity at low PVL 
concentrations, such as those encountered 
early in infection. Along the same lines, 
stains of S. aureus deleted for the PVL-
encoding genes lukS and lukF were more, 
not less, virulent in a mouse model of 
pneumonia.52,69

The recently published study of Fritz 
et al.58 similarly looked at antibody reac-
tivity (defined in the paper as the optical 
density readings obtained in an ELISA 
with a single 1:100 serum dilution) to 
α-hemolysin and PVL in various groups 
and overall found no differences in 
acute-phase titers in those with primary 
vs. recurrent infections and even found 
a decline in titers in the convalescent 
sera of those with SSTI but not invasive 
infection. However, when they examined 
patients with recurrent infections there 
were lower mean antibody levels at five 
time points post primary infection to 
α-hemolysin compared with those who 
did not get recurrent infections.58 But the 
overall differences in the mean OD read-
ing were small and one can infer from the 
reported means and standard deviations 
that about 80% of the individuals with 
recurrent infection had an OD reading 
comparable to those without recurrent 
infections. Additionally, paired t-tests 
were used to analyze the differences in 
OD readings between enrollment and 
convalescent/post-infection sera, but this 
statistical analysis is not appropriate to 

drawn about the importance of an anti-
body titer in relation to protective immu-
nity and vaccine development.

Another group of interest to study 
are patients that have been infected or 
even colonized with S. aureus that are 
at a high risk for a recurrent infection. 
Among patients with MRSA infections, 
or even just colonized during hospitaliza-
tion, re-infection rates approaching 30% 
occur in the 6–18 mo after discharge,32-34 
and identification of such cases markedly 
increases when vigorous means to detect 
post-discharge infections are used.32,59 
Fritz et al.58 recently reported a recurrence 
rate of 62% in closely-followed individu-
als with primary or recurrent SSTI within 
12 mo of the initial episode. Hospital-
acquired, community onset infections 
identify patients potentially ideal for the 
study of acquired immunity to S. aureus. 
This is further substantiated by the find-
ing that most of these recurrences are due 
to the same strain as the initially infecting 
one,34,38,59,60 meaning that serologic varia-
tion in antigens will not be a major factor 
in trying to identify protective immune 
responses, although this could be a prob-
lem for designing a universal vaccine if 
immunity to a single strain is targeted to a 
highly serologically variable antigen. If one 
therefore can compare immune responses 
among immunologically-intact humans 
with a properly diagnosed S. aureus infec-
tion or colonization in the hospital who 
then get a recurrent or subsequent infec-
tion with those that only have a primary 
infection or do not progress from coloniza-
tion, insights into immune responses asso-
ciated with resistance to reinfection might 
emerge. However, as noted above, the 
titers associated with becoming infected 
have to be, for the most part, lower than 
and not-overlapping to any large degree 
with the titers in the uninfected controls.

In this context, we examined the 
occurrence of antibody to the phage-
encoded PVL, a major cytotoxin of the 
highly virulent USA300 and USA400 
strains,61-63 among children with primary 
or recurrent skin and soft tissue infections 
(SSTI), the major manifestation of infec-
tion by PVL-producing MRSA. Due to 
its epidemiologic association with these 
S. aureus strains, PVL has been touted as 
a potential vaccine, but normal human 

but none of these associations indicate 
any cause and effect relationship between 
antibody level and protection from infec-
tion or reduction in severity of an out-
come.35-38,48,49,54-57 Furthermore, often 
overlooked in these analysis is the signifi-
cant overlap in antibody levels between 
the susceptible and resistant groups. For 
example, Adhikari et al.57 reported that 
patients with S. aureus bacteremia who 
went on to develop sepsis vs. those that 
did not had lower overall median antibody 
levels against five S. aureus toxins (α and 
δ-hemolysins, Panton-Valentine leuko-
cidin (PVL), staphylococcal enterotoxin 
C-1, and phenol-soluble modulin-α3). 
Fritz et al.58 recently analyzed antibody 
levels to α-hemolysin and PVL in individ-
uals with primary and recurrent SSTI and 
systemic infections and found no overall 
differences in titers between those with 
primary vs. recurrent infections. While 
mean or median levels of antibodies to 
particular antigens might differ between 
groups that develop sepsis or recurrent 
infections vs. those that do not, many of 
the patients with sepsis or recurrent infec-
tions had antibody levels to toxins well 
above the medians in the non-septic/non-
recurrent groups. This overlap indicates 
there is little likelihood that those antibod-
ies were mediators of effective immunity. 
Also, in the study of Adhikari et al.57 all 
of the patients had S. aureus bacteremia, 
indicating the higher antibody levels were 
not protective against this manifestation 
of infection, and the likelihood of devel-
oping a vaccine to prevent S. aureus sepsis 
and not bacteremia is low. In order to have 
a meaningful difference in antibody lev-
els associated with resistance to S. aureus 
infection there needs to be little overlap 
in titers between those at risk who do not 
get infected (higher) and those that do get 
infected (lower). When a significant pro-
portion of the group developing an infec-
tion has antibody titers well within the 
range of those that do not, it highlights 
the inability of such associative studies 
to define a mediator or even a marker of 
immunity. Only in settings where a pro-
tective level of antibody or other effector 
is defined, above which infection is rare 
such as has been done with the successful 
capsular polysaccharide vaccines to other 
pathogens, can meaningful conclusions be 
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and communicated to a physician, this 
is not possible in animals. For example, 
someone awakening with a painful hand 
or finger who seeks medical care that 
turns out to be an S. aureus joint infec-
tion identifies a potentially serious situa-
tion where the individual is at risk for a 
significant compromise to the functional-
ity of their hand. This, of course, could 
never be modeled in an animal, we have to 
infect them with a sufficient level of bac-
teria to get frank infections in most of the 
animals and these levels are usually many 
orders of magnitude above those that initi-
ate infections in humans. At best one can 
hope that significant reductions in bacte-
rial levels or other measures of infection 
in immunized animals are reasonable tests 
for potential vaccine efficacy without rely-
ing on the results to predict outcomes in a 
human vaccine trial.

Additionally, if we truly evaluate the 
results from animal infection models we 
often see in many studies that there is a 
reduction in bacterial levels, but in real-
ity most, if not all, of the animals are 
infected.83-85 It might not matter in a 
human S. aureus vaccine trial if there are 
fewer bacteria in infected tissues of vacci-
nated patients, if they are still diagnosed 
with an infection based on a positive cul-
ture resulting from even low numbers of 
bacteria in the infected tissue it would 
be indicative of vaccine failure unless 
the reductions in bacterial burdens were 
accompanied by a significant effect on 
a measurable clinical outcome that had 
also been identified as an endpoint for the 
clinical trial.

Lethality studies in animals might be 
more predictive of efficacy in humans, and 
prevention of lethality would be an accept-
able and readily identified endpoint for a 
clinical trial. But doses of S. aureus needed 
to induce lethality in lab animals are 
often quite high and lethality may not be 
due to bacterial burdens but rather acute 
toxicity from the bolus injection of these 
high infectious doses. It seems unlikely 
these challenge doses are representative of 
what initiates human infections with S. 
aureus. Furthermore, vaccines against CP 
antigens,23 immunity to ClfA82 and vac-
cination against IsdB80,81 have all shown 
protection from lethality in mice but these 
vaccines have all failed in human trials, so 

human immunity. Basically, animal and 
human susceptibility and the course of S. 
aureus infections are just too damn dif-
ferent from lab animals, and few other 
animals are routinely available to study 
vaccines. At most, lab animal studies serve 
as systems of exclusion, possibly defining 
what might not work. But even negative 
results in animals cannot predict human 
responses. When developing the menin-
gococcal serogroup vaccines in the 1960s 
the purified capsular polysaccharides were 
not immunogenic in mice, rhesus mon-
keys, chimpanzees and only one of 5 gib-
bons made an antibody response following 
vaccination.71 But the investigators knew 
humans could make antibody from natu-
ral exposure.72,73 Importantly, the purified 
meningococcal serogroup A and C capsu-
lar antigens were immunogenic in nearly 
100% of human volunteers74 so if one used 
animal results to conclude meningococcal 
polysaccharides were not good vaccine 
candidates we might not have benefited 
from this remarkable advance that ended 
the epidemic of meningococcal meningitis 
in military recruit camps.75,76 We just have 
to admit lab animals are “furry test tubes” 
and at best can be used to test hypothesis 
about in vivo activity of immune effectors 
such as functionality, the need for co-fac-
tors such as white blood cells, comple-
ment, Th17 cells, etc., and determine if a 
vaccine target is expressed in vivo in lab 
animals.

A major logical reason animal mod-
els cannot be improved to guide vac-
cine development is that we will only 
know which models are associated with 
human vaccine efficacy when we actu-
ally have an efficacious vaccine. As all of 
the failed S. aureus vaccines tested to date 
in humans28,77-79 have shown reductions 
in bacterial burdens and even protection 
from lethality21,23,80-82 in many animal 
models, it is clear these models have no 
predictive capacity for effectiveness in 
humans. Unless an efficacious S. aureus 
vaccine is developed for humans that 
has been tested in an animal model that 
would also show a failure of immunity to 
CP, ClfA, and IsdB, then the likelihood 
of finding an improved animal model 
is remote. Furthermore, many human 
manifestations of S. aureus infections 
induce symptoms that can be identified 

apply to this type of longitudinal data, 
wherein samples were taken from individ-
uals at multiple time periods and all com-
pared with the same initial, pre-infection 
levels. Paired t-tests assume independence 
of each measurement and it is clear an 
individual with a high OD reading at one 
point does not have the same chance of 
having a low or high OD reading at the 
next time point, as antibody levels decline 
in a predictable manner in humans. 
Perhaps of greatest importance, the 
actual toxin-neutralizing activities of the 
antibodies were not measured to either 
α-toxin or PVL. As Foletti et al.70 showed, 
humans with the same ELISA titer to 
α-toxin had as much as a 100-fold dif-
ference in their α-hemolysin-neutralizing 
activity, so without functional character-
ization of the anti-toxin activity in the 
sera analyzed by Fritz et al.58 it is difficult 
to accept that any association of neu-
tralization of toxins and resistance to S. 
aureus infection has been demonstrated. 
Similarly, although Adhikari et al.57 found 
significant differences in the ELISA bind-
ing titers to the individual proteins com-
prising PVL, LukF (p = 0.02) and LukS 
(p = 0.01) between patients with S. aureus 
sepsis and those that did not get septic, 
the P value for the difference in the toxin-
neutralizing titer was only 0.17. Thus, in 
the study of Fritz et al.58 one must also 
take into account the possibility that 
patients with recurrent infections might 
actually have higher neutralizing titers to 
α-hemolysin than those without recurrent 
infections, which would indicate a possible 
negative association of neutralizing anti-
body to α-hemolysin and infection risk. 
Given that the Merck V710 vaccine trial28 
revealed greater overall adverse events in 
the immunized group, greater rates of mul-
tiorgan failure and higher mortality rates 
than placebo recipients, the need for full 
characterization of the functional activity 
of any immunologic marker is paramount 
to avoid repetition of such unwanted out-
comes from vaccine trials.

Animal Studies-why they Really 
can’t be Improved for Vaccine 

Development

Because vaccine results obtained with 
mice, rats and rabbits do not predict 
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to CP antigens the infecting S. aureus 
strains phase-vary and stop making them 
without any loss of virulence. This con-
cept is supported by the frequent recovery 
of isolates from human infections that 
have mutated the accessory-gene-response 
(agr) system103-106 needed for maximal CP 
production.107 Loss of agr-facilitated CP 
synthesis could allow for escape from anti-
body-mediated opsonic killing and such 
variation during infection is deserving of 
further investigation.

Might PNAG then serve as a con-
served, broadly expressed vaccine target 
present of the surface as are the capsules 
of pathogens for which successful vaccines 
have been developed? Over the past 15 y 
PNAG has been extensively evaluated in 
pre-clinical settings as a S. aureus vaccine 
candidate.85,92,108-110 Overall, strong evi-
dence for both protective immunity and 
function as a virulence factor in settings of 
experimental S. aureus infection has been 
obtained,85,108-111 which, while encourag-
ing, still represent studies comparable to 
those for the S. aureus vaccines that have 
gone before and failed in human trials. 
A key breakthrough in the development 
of PNAG vaccines was the finding that 
immunity elicited to the native glycoform 
of the antigen, in which the vast majority 
of the amino groups on the second carbon 
of the N-acetyl glucosamine monomers 
are acetylated, does not elicit protective 

these antigens to mediators of immunity. 
Thus, in contrast to the description of 
Jansen et al.27 in Table 1 of their review 
that PNAG is a biofilm antigen into 
which antibodies and immune effectors 
might have trouble penetrating, PNAG is, 
in fact, a capsular antigen like CP5 and 
CP8 and passive and active immuniza-
tion against PNAG will most likely target 
infections wherein the bacteria are in the 
planktonic, not the biofilm, state.

Of note, in the reports on immune 
responses in various populations given 
CP-conjugate vaccines it appeared that 
natural antibody to CP5 and CP8 pres-
ent in the pre-immunization sera was low, 
(<10 μg/ml22,98-100) suggesting that most 
humans do not make much of an anti-
body response to CP5 or CP8 from natu-
ral exposure. In some contexts this would 
be encouraging, as it would indicate that 
an effective CP-specific vaccine could pro-
vide immunity not engendered by natural 
exposure. However, from the epidemiol-
ogy of S. aureus infections it is clear that 
CP antigens are not essential virulence 
factors, as CP-non-expressing strains 
comprise 10–20% of clinical isolates, 
and the highly virulent USA300 clone of 
MRSA, increasingly found as a cause of 
both community- and hospital-acquired 
infections,101 does not make either CP5 or 
CP8.102 As non-essential virulence factors 
it may be that in the presence of antibody 

we can already conclude lethality models 
are not stringent tests for identifying vac-
cines likely to succeed.

Logical Assumptions and Historic 
Vaccine Success-are they  

Indicators of a Path Toward  
Rationale Vaccine Design for  

S. aureus?

In spite of the lack of data associating any 
specific human immune response with 
protective immunity to S. aureus, some 
logical assumptions about potential vac-
cine candidates can emerge based on prin-
ciples from other pathogens, notably the 
effectiveness of vaccines targeting capsu-
lar polysaccharides of Streptococcus pneu-
moniae,86 Hemophilus influenzae type b,87 
Neisseria meningitidis88 and Salmonella 
enterica serovar typhi.89 The presence of 
capsule-specific immunity in resistant 
human populations was the basis for 
developing these successful vaccines, and 
thus one might predict analyzing anti-
body responses to S. aureus capsules could 
be highly informative. S. aureus strains 
can expresses either one of two capsular 
polysaccharides (CP), CP5 or CP8,29,90,91 
or neither, along with the poly-N-acetyl 
glucosamine (PNAG) surface polysac-
charide antigen.85,92,93 CP5 is produced 
by about 30% of strains, CP8 by about 
50%94-96 and, as best as we can tell from 
our own immunologically-based studies,92 
PNAG can be detected on the surface of 
nearly 100% of S. aureus clinical isolates. 
Near universal PNAG expression among 
invasive clinical isolates is also supported 
by genetic evidence3,4 indicating the pres-
ence of the intercellular-adhesin (ica) genes 
encoding the PNAG biosynthetic appara-
tus in almost all invasive S. aureus strains. 
An antigen designated 336 has been pro-
posed as another S. aureus capsule, but it 
is, in fact, a cell wall teichoic acid antigen 
and not a true capsular polysaccharide.97 
On in vitro grown S. aureus, the CP anti-
gens and PNAG are both co-expressed on 
the cell surface as intercalated molecules 
(Fig. 1), with significant overlap in the 
pixels visualized by confocal microscopy 
indicative of the presence of both CP and 
PNAG antigens in close proximity on the 
bacteria (Fig. 2). These results also indi-
cate there is comparable availability of 

Figure 1. reactivity of S. aureus CP8 strain mn8 and CP5 strain reynolds to antibody to either 
the homologous CP antigen (anti-CP), PnaG (anti-PnaG) or both as detected by immunofluo-
rescence. nrS = normal rabbit serum. Binding of rabbit antibody to CP5 or CP8 to S. aureus cells 
detected with anti-rabbit IgG secondary antibody conjugated to alexaFluor (aF) 588 (red). Human 
mab F598 to PnaG directly conjugated to aF 488 (Green) was used to detect PnaG on the bacte-
rial surface. Co-localization of red and green pixels in samples reacted with antibody to both CP 
and PnaG antigens appears as an orange-yellow to yellow color. Far right panels show fluores-
cence in the individual red (anti-CP), green (anti-PnaG) or both channels for selected bacterial 
cells in the micrograph co-stained with antibody to CP and PnaG antigens. White bars = 10 μm.
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we had to remove one or the other of these 
antibodies from the sera by absorption, 
but when combined back together the 
opsonic killing manifest in the absorbed 
sera were restored to the initial non-
opsonic state. Thus, the problem was not 
in induction of a potentially protective 
opsonic response to either CP or PNAG 
antigens in patients heavily infected with 
S. aureus, the problem was the inability of 
these two effectors to peacefully co-exist. 
This inhibitory phenomenon may also 
have contributed to the failure of the CP5/
CP8 conjugate vaccine trial in hemodialy-
sis patients99 wherein a significant 57% 
(95% C.I. 10–81%) reduction in S. aureus 
infections among vaccinates was detected 
at 40 weeks post-immunization but not 
at 54 weeks, the pre-determined trial 
endpoint. From the 40–54 week period 
the decline in antibody levels to the CP 
antigens could have brought them into the 
inhibitory range, thus turning an effica-
cious signal at 40 weeks into a non-effi-
cacious one 14 weeks later. A repeat trial 
of the CP5/8 conjugate vaccine in hemo-
dialysis patients failed to show efficacy at 
any time point, and while no published 
data are available for analysis, it was sug-
gested at meeting presentations that there 

the antibodies to the negatively-charged 
CP and positively charged, dPNAG to 
each other. Inhibition was not present if 
antibody to either CP or PNAG antigens 
predominated in a serum36 but in humans 
this could be a transient phenomenon, as 
not only did vaccine induced antibody to 
PNAG inhibit CP antibody functional-
ity,36 but the natural, non-opsonic, non-
protective antibodies to PNAG present 
in almost all normal human sera could 
also inhibit vaccine-induced antibody to 
CP antigens.35 Thus, once an initial spike 
in antibody to CP antigens induced by 
immunization declines over time, the pre-
dominant effect in human sera could be 
loss of functional activity of the antibody 
to S. aureus CP antigens.

Looking at development of antibody 
to CP and PNAG antigens in infected 
human sera provided further insight into 
the incompatible nature of antibody to 
both antigens being present in one serum. 
We found that among S. aureus infected 
humans, only those with bacteremia made 
opsonic antibody responses to either CP 
or PNAG antigens, but, in the majority of 
these cases, the ratios of antibodies were in 
the inhibitory range.35,36 To detect the CP- 
or PNAG-specific opsonic killing activity, 

antibody.112 Eliminating most of the acetyl 
substituents results in a glycoform termed 
deacetylated PNAG (dPNAG) that readily 
elicits opsonic, protective antibody.84,85,113 
The protective antibodies effectively 
deposit complement opsonins onto the 
bacterial surface.110 Natural antibody to 
the native glycoform of PNAG found 
in all human sera we have analyzed are 
non-opsonic and non-protective in 95% 
of the samples,35,36 indicating a basis for 
the escape of S. aureus and other PNAG-
producing pathogens from natural immu-
nity to this antigen.

Under these circumstances, wherein 
natural antibody to both the CP and 
PNAG surface antigens are either low or 
ineffective, it seemed quite promising to 
combine these into a multi-component 
vaccine that could potentially cover all 
strains of S. aureus. When we attempted 
to determine the additive and/or synergis-
tic effects of having both antibody to CP 
and PNAG antigens in an immune serum, 
we were completely surprised to find they 
inhibited each other’s opsonic and pro-
tective activity when present in serum 
at specific ratios.35,36,108 Inhibition was 
due to a charge-dependent idiotype-anti-
idiotype binding of the variable regions of 

Figure 2. Quantification of the fluorescence intensity of the reactivity of S. aureus CP5 strain reynolds and CP8 strain mn8 to antibody to the homolo-
gous CP antigen and PnaG. Binding of primary rabbit antibody to purified CP5 or CP8 conjugate antigens to S. aureus cells detected with anti-rabbit 
IgG secondary antibody conjugated to alexaFluor (aF) 588 (red). Human mab F598 to PnaG directly conjugated to aF 488 (Green) was used to detect 
PnaG on the bacterial surface. Histograms depict analysis of the co-localization of red and green pixels in samples reacted with antibody to both CP 
and PnaG antigens across the distances, in microns (μm), depicted on the X-axis. arrows on photomicrographs indicate regions analyzed.
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Improvements leading to reductions in 
nosocomial infections such as better hand 
hygiene, surgical wound care,124-126 infec-
tion control including contact precautions 
with single room isolation or cohorting127 
and introduction of interventions such as 
routine use of chlorhexidine baths128 can 
effectively reduce infection rates with 
S. aureus, particularly when applied to 
MRSA. Thus, what might look like a good 
population to conduct a S. aureus vaccine 
trial in at the start of the trial might have 
marked reductions in infection rates as the 
trial progresses, confounding the ability to 
get a robust signal as to a vaccine candi-
date’s efficacy.

One population that emerges as a 
potentially robust target group are patients 
with a significant exposure to a health-care 
setting that are at high risk for community 
onset S. aureus infections, notably bacte-
remia and osteomyelitis caused by MRSA 
within 12 mo of the exposure.32-34,59,60 
This indicates a reasonable expectation 
of sufficient levels of infection such that 
a rationale clinical trial can be designed 
and implemented. Additionally, this is a 
heterogeneous group of individuals but 
they are identified during their hospital-
ization by an MRSA-positive culture from 
a superficial body site,34 so enrolling vol-
unteers is facilitated by the availability 
of hospital-based cultures. Furthermore, 
although many of these individuals have 
significant underlying disease leading 
to an immunodeficient state, or have an 
underlying rapidly fatal condition, they 
can be excluded from early vaccine tri-
als. Hemodialysis patients represent about 
20% of this at-risk group34 and their abil-
ity to respond to or effectively utilize a 
vaccine-induced immune effector could be 
problematic, although in the CP vaccine 
trials in this poplation immunogenicity of 
the conjugate vaccines did not appear to be 
a problem in the published studies.22,99,100 
Evaluations of immune responses and 
testing of all effectors needed for vaccine 
efficacy, such as phagocyte and comple-
ment function, in the blood of hemodi-
alysis patients should be undertaken in 
initial phase II trials to insure that efficacy 
won’t be impacted by sub-optimal func-
tion or availability of needed co-factors 
or rapid loss of antibody due to dialysis. 
Importantly, the individuals at risk for 

we have recently identified a large number 
of major human bacterial pathogens that 
lack a 4-gene operon homologous to either 
the staphylococcal ica or gram-negative 
pga loci that make PNAG, and addition-
ally found that fungal and eukaryotic 
parasites such as Candida albicans, 
Trichomonas vaginalis and Plasmodium 
falciparum make PNAG.120 How this will 
guide and impact the development of a 
PNAG vaccine or potentially even affect 
clinical trials of CP vaccines that could 
be incompatible with a PNAG vaccine is 
not yet known, but represent important 
questions that will affect S. aureus vaccine 
development as well.

The Challenges Coming from 
Finding an Effective Clinical  
Setting for Testing a Vaccine

The question of how to identify a clini-
cal setting or population to provide the 
results needed to validate the efficacy of 
a S. aureus vaccine is not only lacking a 
clear answer but it is a moving target. The 
CP vaccine trials in hemodialysis patients 
were chosen for the anticipated high 
infection rates experienced by this popu-
lation.78,99,121 Immunization of individu-
als undergoing cardiothoracic surgery for 
the evaluation of the V710/IsdB vaccine 
represented a clinical issue with a high 
medical need for an effective interven-
tion as well as a setting where the at-risk 
individuals could be identified sufficiently 
ahead of time to allow for vaccination to 
proceed prior to surgery.28 Trials of passive 
therapy targeting ClfA and LTA in low-
birth weigh neonates also represented a 
setting of high infection rates and medical 
need.122,123 None of these patient popula-
tions are ideal for vaccine/passive therapy 
evaluations but the choice is driven by 
numerous factors and it is unlikely there 
is an ideal population consisting of immu-
nocompetent individuals that can respond 
to a vaccine that also have a high risk for 
S. aureus infection.

Further impacting clinical trial design 
is the changing nature of patient care 
that evolves as the vaccine trials are being 
planned and populations evaluated for 
basal S. aureus infection rates in order 
to ascertain that a sufficient signal can 
be garnered in a reasonable time period. 

was a manufacturing problem leading to 
less-than-expected immunogenicity of the 
batch of vaccine used in the repeat trial. 
Such a situation could also exacerbate the 
potential for natural antibody to PNAG to 
be in the inhibitory range for the immuni-
zation-induced antibody to CP antigens. 
Overall, another barrier to an otherwise 
theoretically promising approach to a S. 
aureus vaccine emerged and these results 
likely preclude developing any multi-com-
ponent vaccine containing both CP and 
PNAG antigens.

What about inducing immunity to 
PNAG—would natural antibody to CP 
antigens be similarly inhibitory? This pos-
sibility does need to be evaluated but, as 
noted above, studies of antibody levels to 
the CP antigens in pre-immunization sera 
from conjugate-vaccine volunteers22,99,100 
and normal humans35 indicates little 
natural antibody to S. aureus CP anti-
gens arises from natural exposure. Also, 
we have reported that titers to CP5 and 
CP8 are markedly lower in most normal 
human sera when compared with titers 
to PNAG in the same sera.35 Of note, 
in a phase I safety and pharmacokinetic 
evaluation of a fully human IgG1 mAb to 
PNAG opsonic antibody to S. aureus was 
detected in all recipients within hours of 
infusion and maintained for 50 d,114 indi-
cating over this time period no interfer-
ence in functional activity emerged.

As of now, the development of vaccines 
and passive therapies targeting PNAG are 
progressing but whether they will be suc-
cessful or meet the same fate as S. aureus 
human vaccines that have gone before 
them won’t be known for several years at a 
minimum. The fully human mAb is being 
evaluated to determine what phase II trial 
would be best for obtaining a potential 
efficacy signal as well as additional safety 
and pharmacokinetic data in individuals 
at-risk for S. aureus infection. The oligo-
glucosamine-conjugate vaccine is being 
synthesized for phase I trials projected 
to commence in 2014 and potentially 
earlier in economically-valuable animals. 
Impacting the development of PNAG-
targeting vaccines is the finding that not 
only S. aureus and S. epidermidis make 
PNAG but gram-negative bacteria carry-
ing a biosynthetic genetic locus termed 
pga can make PNAG.84,115-119 Surprisingly, 
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humans to S. aureus as do capsular vac-
cines for other bacterial pathogens, but at 
the moment there are no data regarding 
susceptibility and resistance of humans to 
infection based on their PNAG antibody 
status. One encouraging finding in regards 
to PNAG expression among the variety of 
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guided by any strong association between 
human immune effectors and resistance to 
infection, there is still a major effort and 
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of confidence, that we will ultimately be 
successful in this endeavor and be able to 
prevent at least some of the more severe or 
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community onset MRSA infections often 
are not discharged with a standard of care 
that includes such treatments as routine 
antibiotic administration, so potential 
treatments that could reduce the occur-
rence of infection among controls is mini-
mized, although encouraging optimal 
practices such as chlorhexidine baths in 
such populations might impact infection 
rates. Routine monitoring by visits from 
home-health aides and keeping close track 
of post-discharge medical care32 should 
insure maximal determination of infec-
tion rates among vaccinees in this group. 
Better epidemiological studies of this pop-
ulation might be needed to substantiate 
that there is a sufficient number of rela-
tively immunologically-intact individuals 
that could enroll in a S. aureus vaccine 
trial, but if neither numbers of available 
volunteers or other confounding or con-
traindicating factors are found among this 
post-discharge, MRSA group they likely 
represent a good cohort to evaluate in any 
S. aureus vaccine approach.

Potential Ways Forward

With all of the barriers, failures and dif-
ficulties encountered to date on develop-
ing a universal vaccine for S. aureus we 
would nonetheless like to find some means 
to either target the more severe manifes-
tations of infection such as bacteremia, 
sepsis, bone infections and pneumoniae 
or prevent infections that are difficult to 
manage such as implant-related infections. 
Thus, instead of a universal S. aureus vac-
cine we may need to settle for one target-
ing specific clinical manifestations. Many 
individuals in the field advocate a multi-
valent vaccine approach,38,129 which, while 
logical and could even cover different 
manifestations of S. aureus infection, the 
idea is still not predicated on any human 
data, only results from pre-clinical ani-
mal studies.81,108,129 Given the cost of drug 
development it is unlikely a systematic 
approach wherein human testing of both 
individual and combined vaccine compo-
nents will ensue, so we might end up with 
an effective multi-component vaccine 
without any real knowledge of which of 
the antigens are essential. PNAG remains 
a potential single component vaccine if it 
induces infection-preventing immunity in 
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