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Review

STAT5 Activation in Hematopoietic Stem and 
Progenitor Cells

Hematopoiesis is a finely tuned process with intricate 
feedback mechanisms for regulating production of mature blood 
cells. Many of the lineage commitment and differentiation 
decisions of hematopoietic cells are dictated by the delicate 
balance of transcription factors. Most basal transcription factors 
are constitutively active, but some require activation in order to 
translocate to the nucleus and regulate gene expression. JAK-
STAT pathway activation provides a rapid way for extracellular 
signals to rapidly transduce signals resulting in STAT activation 
within minutes and gene expression within hours of the 
initial cytokine exposure. Once tyrosine phosphorylated, 
transcriptionally activated STATs accumulate in the nucleus.

Signal transducer and activator of transcription-5 (STAT5) 
comprises two separate genes,1 STAT5A and STAT5B, which 
collectively are major regulators of normal hematopoiesis 
with pleiotropic roles in hematopoietic stem cell (HSC),1-7 
hematopoietic progenitor cell (HPC),8-10 and mature cell 
populations.11-14 Although the differences in phenotype of mice 
lacking STAT5A vs. STAT5B15,16 were primarily assumed to be 
due to differences in tissue specific gene expression, functional 
differences have been more recently discovered. For example, 
ERβ regulation appears to be mediated only by STAT5B,17 

and STAT5B-deficient patients have been discovered that have 
reduced numbers of regulatory T cells and short stature.18-20 
These phenotypes are consistent with major non-redundant 
roles for STAT5B in regulation of target genes such as FoxP3 
and IGF1. Knockdown studies of STAT5A and STAT5B in 
human CD4+ T cells confirmed this specificity for FoxP321 
and knockdown studies in IL-3 stimulated murine BaF3 cells 
identified overlapping and unique sets of STAT5 target genes by 
chromatin immunoprecipitation.22

Interestingly, the ability for STAT5 binding to modulate gene 
expression appears to be under additional levels of regulation 
such as serine phosphorylation23-25 and glycosylation26 which 
may influence interactions with CREB-binding protein. Serine 
phosphorylation has been described for most STATs27,28 although 
the positive or negative influence of this modification has been 
debated.29 The normal role of STAT5 serine phosphorylation in 
hematopoiesis has not been tested and the effect may be very 
cell type and cell context specific. Serine phosphorylation could 
facilitate interaction of STAT5 with critical accessory proteins 
required for nuclear localization of tyrosine phosphorylated 
STAT5. Cooperative signals mediated by serine and tyrosine 
phosphorylation could also be lineage-specific and further 
studies of serine phosphorylation deficient STAT5 mutants are 
needed to fully understand this level of regulation in HSC and 
throughout hematopoiesis.

We have reported that STAT5 is required for HSC “fitness” 
with its deficiency resulting in greatly impaired long-term 
multilineage competitive repopulation capacity of fetal liver4,10 
and bone marrow2-7 HSC in lethally-irradiated transplant 
recipients and a reciprocal permissiveness for wild-type donor 
HSC to engraft when transplanted into STAT5-deficient hosts in 
the absence of myeloablation.2,7,10 In our study, using interferon-
induced Cre-mediated deletion, STAT5-deficient HSC were 
found to be persistently more actively cycling and become 
apoptotic, resulting in a reduction of long-term HSC number7 
(Fig. 1A). However in this model the interferon response could 
result in an initial stimulation of the HSC pool and contribute 
to the loss of quiescence phenotype. Although our analyses were 
done many months post interferon induction, the role of STAT5 
in the complete absence of induced interferon requires additional 
HSC-specific deletion approaches. Figure  1B summarizes the 
current state-of-the-art of STAT5 conditional knockout in 
hematopoietic lineages.

STAT5 is activated by several early acting cytokines such 
as IL-3,30-32 thrombopoietin (TPO),33-37 granulocyte-colony 
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Signal transducer and activator of transcription 5 
(STAT5) regulates normal lympho-myeloid development 
through activation downstream of early-acting cytokines, 
their receptors, and Janus kinases (JAKs). Despite a general 
understanding of the role of STAT5 in hematopoietic stem 
cell (HSC) proliferation, survival, and self-renewal, the 
transcriptional targets and mechanisms of gene regulation that 
control multi-lineage engraftment following transplantation 
for the most part remain to be understood. In this review, we 
focus on the role of STAT5 in HSC transplantation and recent 
developments toward identifying the relevant downstream 
target genes and their role as part of a pleiotropic STAT5 
mediated signaling response.
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stimulating factor (G-CSF),38,39 and granulocyte-macrophage 
colony stimulating factor (GM-CSF).38,40-42 Although initially 
all of these factors were believed to act on committee myeloid 
lineages, intracellular flow cytometry data from several groups 
using HSC/HPC fractions shows marked STAT5 activation.38,43,44 
In HSCs, Mpl synergizes with early acting cytokines45-48 and 
regulates multilineage progenitors and HSC self-renewal.49-51 
Interestingly, Mpl also promotes HSC quiescence.52 Our prior 
studies have found close parallels between Mpl deficiency and 
STAT5 deficiency2,3,7 (Fig. 2). These phenotypes include loss of 
multi-lineage engraftment ability, thrombocytopenia, decreased 
HSC self-renewal, loss of HSC quiescence, and decreased 
expression of Tie2 and p57. Although STAT5 may not be a 
major signaling partner utilized by TPO/Mpl in megakaryocytes 
and platelets, a direct functional link between Mpl/STAT5 is 
likely. Mpl promoter constructs driving STAT5A expression or 
generation of an inducible STAT5A expression vector crossed 
into a Mpl-deficient genetic background could address the role of 
STAT5 by testing rescue of function. Reciprocally, testing Mpl 
agonists in STAT5-deficient hosts might give important insight 
into whether STAT5 is essential for the hematopoiesis-promoting 
effects of these new clinically relevant agents.

Interestingly, in hematopoiesis, most of the classical 
bifurcation points in lineage development are regulated by at 
least two transcription factors that have antagonistic functions. 
Examples include Notch/Pax5 and C/EBPα/GATA-1 where 
progressive changes in the dosage of these factors results in a 
shift of lineage potential. Comparable antagonism may exist 

at the hematopoietic stem cell/progenitor cell 
commitment decision. Mpl appears to control 
myeloid commitment and its downregulation 
is associated with increased lymphoid priming 
in HSC.53 It will be interesting to determine 
whether STAT5 similarly controls HSC fate 
decisions, perhaps downstream of Mpl. Recent 
studies of MPP heterogeneity, highlight 
downregulation of c-Mpl marking the 
transition to the lymphoid-primed multipotent 
progenitor (LMPP)53 and we have previously 
linked c-Mpl to STAT5 in HSC maintenance 
and self-renewal3,7 but have not examined 
lineage commitment. IL-7 is a major activator 
of STAT5 in the common lymphoid progenitor 
and the IL-7, common gamma chain, JAK3, 
STAT5 signaling axis is required for normal T 
and B lymphocyte development.54 Expression of 
the IL-7 receptor marks the transition toward 
the common lymphoid progenitor (CLP). 
Additionally CD150low HSC are functionally 
B-lymphoid-biased55-57 and express flk2 
and CD86.55,58 Further, normal long-term 
repopulating HSC (LT-HSC) are CD150+48− 
but become B-lymphoid biased when localized 
to the central bone marrow microenvironment.59 
Understanding the heterogeneity at all levels of 
hematopoiesis is currently a major area of study 

and new information is being obtained through techniques such 
as single cell PCR and lineage tracing with knock-in transgenic 
mouse models.

STAT5 is potently activated by IL-3/IL-5/GM-CSF all of 
which utilize the common β chain in the myeloid lineage to 
produce mast cells, basophils, eosinophils, granulocytes, and 
monocytes, including the basophil/mast cell progenitor.14,60 It 
is clear that STAT5 deletion causes significant development 
defects in both lymphoid and myeloid lineages. Interestingly, 
when STAT5 is deleted in fetal liver HSC, we have observed 
increased myelopoiesis and decreased lymphopoiesis following 
transplant into lethally-irradiated adult hosts.6 However, STAT5 
is required at later stages for normal granulopoiesis.42 Therefore, 
STAT5 acts at many levels of hematopoiesis and the overall 
output in the peripheral blood lineages is a composite of the 
effects on HSC, primitive HPC, and the lineage committed 
progenitors. EPO is also a major activator of STAT5 in the 
erythroid lineage61-63 and it can synergize with SCF to activate 
STAT5,64 whereas activation of STAT5 by SCF alone in HSC/
HPC still remains unclear.13,38,65,66 In addition to the canonical 
receptor/JAK interactions, cytokine mediated functional 
activation of STAT5 may depend on additional factors such 
as lipid rafts, Src family kinase activation, or recruitment by 
Grb2-associated binding proteins (Gabs). Prospective isolation 
of committed progenitor pools has not yet been tested, so it is 
difficult to separate the role of STAT5 in hematopoietic stem 
cells from the various progenitor cells and the frequency and 
output of progenitor populations must be considered when 

Figure 1. Conditional knockout strategies for STAT5 deletion in the hematopoietic system. 
(A) We have previously studied HSC with interferon-induced deletion of STAT5 using the 
Mx1-Cre system. This approach gives conditional deletion of STAT5 in adult mice. The limita-
tion of the approach is the need to wait for the interferon response to subside before sub-
sequent analysis. (B) Since 2006 various other groups have conditionally knocked out STAT5 
floxed alleles of STAT5A and STAT5B that were generated by Lothar Hennighausen (NIDDK). 
These knockouts include expression of Cre recombinase in early hematopoietic stem cells 
(and vascular progenitors), as well as T cells, B cells, NK cells, and dendritic cell lineages.
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interpreting the outcome of long-term multilineage competitive 
repopulation assays.

STAT5 Regulation of Hematopoietic Stem Cell 
Transplantation

Recent advances in understanding HSC heterogeneity67,68 
have defined a gradient of high CD150 expression regulating 
self-renewal potential, quiescence in long-term repopulating 
HSC (LT-HSC), and myeloid lineage bias and low CD150 
expression associated with loss of self-renewal potential, loss 
of quiescence, and lymphoid-biased differentiation in short-
term repopulating HSC (ST-HSC).55-57,69,70 While intermediate 
term HSC are beginning to be identified, their genetic control 
is not well characterized. Regulation of quiescence by STAT5 
may be secondary to other defects in hematopoietic stem cell 
potential. Greater understanding of the impact of STAT5 on 
HSC heterogeneity and commitment may lead to improved 
methods for mobilization and stem cell engraftment in the 
absence of genotoxic myeloablative conditioning. It still remains 
to be determined whether enforced quiescence alone would be 
sufficient to correct function. Recently a method for induced 
quiescence was described that was based on pharmacologic 
stabilization of Hif-1α causing increased quiescence of HSC and 
accelerated recovery from myelosuppression.71

HSC niche occupancy is an essential ingredient for successful 
stem cell transplantation. In mice lacking STAT5, it is unclear 
why some niches are open and available to be filled by a donor 
graft. Interestingly, a percentage of the filled niches remain 
occupied by host cells and donor grafts do not eventually take 
over. Instead there is equilibrium between donor and host that 
is maintained long-term in the KLS compartment, although 
several peripheral blood lineages are dominated by wild-type 
grafts which selectively out-compete the STAT5-deficient host 
cells (Fig. 3). HSC could leave but not be able to compete for 
the niche once a specific set of HSC niches are filled. There are 
likely unique HSC and HPC niches and only the HPC niches 
may be fully open and able to accept wild-type donor HSC. HSC 
lacking STAT5 may also never leave the niche and instead act as a 
“dominant negative” by blocking niche space from the wild-type 
cells and continuing to produce blood cells, albeit at a reduced 
rate and without the production of mature T/B lymphocytes.

Mechanistic studies have provided insight into how 
STAT5 modulates HSC engraftment and self-renewal. STAT5 
transcriptional targets differ between human HSC and progenitor 
compartments.72 We observed that STAT5 promotes HSC 
quiescence and self-renewal but promotes proliferation in more 
differentiated cell types. More detailed molecular understanding 
of this dichotomy of function remains to be discovered. Roles 
for phosphorylated STAT5 in HSC vs. HPC might relate to the 
levels of phosphorylation. This is important because changes 
in phosphorylation might directly affect gene expression of 
distinct genes.73 STAT5 transcriptional function in cultured 
human cells has been described to involve Gata-dependent and 
independent pathways in control of megakaryocyte–erythrocyte 
development.74 STAT5 also controls key target genes such as 

Hif-2α to regulate HSC expansion in vitro.72 While constitutively 
active STAT5 cannot confer self-renewal on progenitors,75 STAT5 
targets differ between HSC and progenitors in human cells.72 
STAT5 is required for efficient lympho-myeloid repopulation and 
HSC quiescence7 and the hypoxia inducible gene Cited2 (STAT5 
target gene) plays similar roles in fetal76 and adult HSC.77

Perspective on Targeting STAT5 in Normal  
and Leukemic Hematopoiesis

Recycling of STATs between nucleus and cytoplasm and 
retention in the nucleus only occurring following activation has 
been described.78,79 It is now clear that molecules such as Rac-
GAP are important for STAT5 nuclear import.80 The negative 
regulation of this pathway is also critically important and much 
is known about the inducible negative regulators Cis and Socs. 
Hyper-activation of STAT5 is a validated leukemia driver and 
is currently a high value target for therapy. In chronic myeloid 
leukemia, unique roles for STAT5A and STAT5B in drug 
resistance downstream of BCR-ABL have been described.81 
Activating mutations of STAT5 (STAT5B Y665F and N642H) 
in leukemia are also found in large granular lymphocyte (LGL) 
leukemia.82 With STAT5, it is clear that phosphorylation by 
JAKs is the major mechanism of activation; however, other 
mechanisms appear to play important roles in non-canonical 
activation of STAT5. These mechanisms include activation by 
Src family kinases downstream of Flt3 mutations, although 
conflicting results have been reported.83,84 Roles for integrin 
signaling and the spleen tyrosine kinase (Syk) in activation of 
STAT5 in AML blasts, including MLL-AF9 positive AML have 
also been reported.85,86

Interestingly, retention of phosphorylated STAT5 in the 
cytoplasm has been observed in leukemias and the cytoplasmic 

Figure 2. Comparison between STAT5 and Mpl knockout phenotypes. 
While c-Mpl deficiency causes severe megakaryocyte and platelet pro-
duction defects, most other lymphoid and myeloid lineages are unaf-
fected. Interestingly, Mpl knockout also selectively impairs early HSC/
HPC function as determined by analysis of peripheral blood chimerism 
following transplantation. STAT5 knockout mice share the common HSC/
HPC level defects, do not have intrinsic megakaryocyte/platelet defects, 
but have severe combined immunodeficiency that is unique to the role 
of STAT5 downstream of the common gamma chain and JAK3.
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functions for STAT5 will be important to define. STAT5 nuclear 
accumulation occurs predominately in Flt3-ITD+ AML87 where 
other mutations and pathways could provide complimentary 
signals. Constitutively active STAT5 via Socs1 is capable of p53 
activation and induction of an oncogene-induced cell senescence 
response.88,89 Therefore, negative regulatory mechanisms may be 
overcome in AML through alternative pathway activation. In 
contrast, BCR-ABL driven leukemogenesis in CML and ALL 
may require engagement of mechanisms to restrain STAT5 
activation because of the principal requirement of STAT5 for 
leukemic progression and the absence of other compensating 
pathways. Notably, CML is associated with pSTAT5 localization 
in the cytoplasm at an unusually high level compared with 
normal cells.90 Since nuclear pSTAT5 might not be well tolerated 
in CML, understanding mechanisms controlling nuclear and 
cytoplasmic distribution of STAT5 has emerged as an important 
area.

It has been estimated that about half of STAT5 binding sites 
are in introns and half are in the promoter region.91,92 Nelson 
et al. propose about 200 highly conserved tandem STAT5 
binding sites.91 Perhaps providing clues to the activity of STAT5 

in HSC, transcriptional activation 
or repression determined by gene 
expression array has been completed 
in mouse embryonic fibroblasts 
lacking STAT5.93 Although STAT5 
targets in various tissues such 
as liver94 may have some likely 
conservation with hematopoietic 
cells, the microenvironment of 
these diverse cell types is different 
and the intrinsic genetic programs 
and co-activators are different. 
Importantly, it has recently been 
shown that STAT binding patterns 
are cell type specific.95 Perhaps 
better understanding the HSC and 
HPC niches will elucidate novel 
mechanisms of gene regulation that 
are niche-dependent. Furthermore, 
better understanding of how 
STAT5 switches from activation 
to repression and on what sites in 
HSC that STAT5 is active, will 
be important for moving the field 
forward. Recent work has suggested 
that in lymphocyte development 
STAT5 tetramers play an important 
role in normal cytokine responses 
and normal immune function.96

Therapeutics for improving the 
transplantation into non-ablated 

hosts is the “Holy Grail” for many biological disorders. Also, 
the same principles may apply for leukemic HSC and their 
targeted therapy. STAT5 targeted small molecules have been 
recently described but more sophisticated efforts may also 
help such as targeting protein:protein interactions with the 
N-domain or by targeting STAT5 activation signatures. STAT5 
serine phosphorylation also represents a potential new target.24 
Identification of the serine kinase(s) could yield druggable 
targets capable of eradicating pSTAT5 in leukemias. Due to the 
prime role of STAT5 at the intersection of normal and leukemic 
hematopoiesis, innovative approaches for modulating STAT5 
activation hold much promise for future therapeutic applications.
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Figure 3. Possible hematopoietic stem/progenitor fates in the absence of STAT5. We have observed high 
levels of HSC/HPC engraftment in mice lacking STAT5. However, due to the strong multilineage selective 
growth advantage of the wild-type donor cells vs. the STAT5 knockout cells, it has been difficult to assess 
the impact in HSC vs. HPC compartments of the bone marrow. It is possible that only a subset of niches 
are vacated in the absence of STAT5 and that competition for these niches is not selectively impaired 
(homing, engraftment). STAT5 deficient HSC may not leave the niches as part of normal trafficking but 
rather prevent donor HSC from occupying niches. STAT5 deficient HPC may be vacated from putative HPC 
niches resulting in greater multilineage engraftment from multipotent progenitors.
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