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Aquaporins, a multifunctional protein family branched from the 
major intrinsic protein (MIP) superfamily, are commonly pres-
ent in nearly all organisms. They facilitate the transport of water 
and certain small molecules across biological membranes, and are 
fundamentally important for the osmoregulation of organisms.1-5 
There are five groups of fungal aquaporins, with two groups 
of classical aquaporins and three groups of aquaglyceroporins. 
These aquaporins have been fully described in Saccharomyces cere-
visiae and filamentous fungi, but not in symbiotic mycorrhizal 
fungi.3,6,7 Most recently, we reported “First cloning and charac-
terization of two functional aquaporin genes from an arbuscular 
mycorrhizal fungus Glomus intraradices” in New Phytologist.8 
The study provided solid data and strong support to the direct 
involvements of AMF in plant drought tolerance. The aquapo-
rins could play important roles not only in helping AM fungi 
themselves to resist drought stress, but also in delivering water via 
AM fungi to host plants.

Briefly, based on G. intraradices expressed sequence tag (EST) 
database we cloned two aquaporin genes, namely GintAQPF1 
and GintAQPF2, by 5'-RACE and 3'-RACE techniques. The two 
genes had high similarities with the only two predicted aquapo-
rin genes existing in nonredundant virtual transcripts (NRVTs) 
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of G. intraradices (DAOM 197198) according to Tisserant et 
al. (2012).9 Aquaporin activities and water permeability were 
examined by heterologous gene overexpression in yeast. The two 
aquaporins showed high capacity to transport water and high 
activities in expose to PEG treatment, which is crucial for yeast 
cells to survive the osmotic stresses.

Here we conducted follow-up experiment to examine the 
aquaporin functions in AM fungi subjected to osmotic stress. 
We adopted the monoxenic culture system for AMF. In the sys-
tem, carrot (Daucus carota L.) roots transformed by Ri-T DNA 
were cultured with sterilized spores of G. intraradices AH01 in 
two-compartment Petri dishes.10 The root compartment (RC) 
contained solid minimal medium (M medium) to initiate the 
monoxenic culture, and the other compartment for hyphal devel-
opment (HC) was filled with liquid M medium without sucrose 
(M-C medium). After cultivation for around three months, 
osmotic stress was imposed to HC by adding a final concentra-
tion of 25% PEG 6000 for 5 d. Extraradical mycelium (ERM) in 
HC was then harvested for analysis of gene expressions (methods 
refer to Aroca et al.).11 The experimental data indicated that PEG 
stress significantly stimulated the expression of the two aquapo-
rin genes in ERM (Fig. 1), which was in accordance with the 
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heterologous system experiment. It is therefore reasonable to rati-
ocinate that the two aquaporin genes were responsible for AMF 
water absorption and tolerance to osmotic stress. Together with 
previous findings that the gene expressions during symbiosis were 
also significantly enhanced under drought stress,8 the study lent 
further support to the importance of AMF in balancing plant 
water relations.

As known to us, this is the first report on functional aquaporin 
genes from AM fungi. We provided molecular evidences for the 
direct involvement of AM fungi in plant drought tolerance, and 
had one step forward in understanding the mechanisms underly-
ing enhanced plant drought tolerance by AM associations. As 
Bonfante and Genre stated,12 there was cross talk between plants 
and AM fungi. Further research based on genomic and proteomic 
technologies are still necessary to reveal the interactions between 
the symbiotic partners under drought stresses.
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