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Blooderetinal barrier (BRB) breakdown and related vascular changes are implicated in several ocular
diseases. The molecules and mechanisms regulating BRB integrity and pathophysiology are not fully
elucidated. Caveolin-1 (Cav-1) ablation results in loss of caveolae and microvascular pathologies, but
the role of Cav-1 in the retina is largely unknown. We examined BRB integrity and vasculature in Cav-1
knockout mice and found a significant increase in BRB permeability, compared with wild-type controls,
with branch veins being frequent sites of breakdown. Vascular hyperpermeability occurred without
apparent alteration in junctional proteins. Such hyperpermeability was not rescued by inhibiting eNOS
activity. Veins of Cav-1 knockout retinas exhibited additional pathological features, including i) eNOS-
independent enlargement, ii) altered expression of mural cell markers (eg, down-regulation of NG2 and
up-regulation of aSMA), and iii) dramatic alterations in mural cell phenotype near the optic nerve head.
We observed a significant NOedependent increase in retinal artery diameter in Cav-1 knockout mice,
suggesting that Cav-1 plays a role in autoregulation of resistance vessels in the retina. These findings
implicate Cav-1 in maintaining BRB integrity in retinal vasculature and suggest a previously undefined
role in the retinal venous system and associated mural cells. Our results are relevant to clinically
significant retinal disorders with vascular pathologies, including diabetic retinopathy, uveoretinitis,
and primary open-angle glaucoma. (Am J Pathol 2014, 184: 541e555; http://dx.doi.org/10.1016/
j.ajpath.2013.10.022)
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The retina is a photosensitive neural tissue lining the back of
the eye that develops as an extension of the diencephalon.1

It is supported by two distinct blood supplies: the fenes-
trated choroidal vasculature (which supports the nutrient and
waste exchange needs of the photoreceptors in the outer
retina) and the inner retinal vasculature (which supports
similar needs of the inner retinal neurons). The endothelial
cells of the inner retinal vasculature provide a tight inner
blooderetinal barrier (BRB), which is structurally and
functionally analogous to the bloodebrain barrier; the outer
BRB is provided by a network of lateral junctional com-
plexes that border adjacent cells of the monolayer retinal
pigment epithelium.2 An intact BRB is essential for the
maintenance of normal retinal structure and function, and
stigative Pathology.

.

loss of BRB structure and function is a pathological hall-
mark of several major vision-threatening diseases, including
diabetic retinopathy, age-related macular degeneration, and
retinopathy of prematurity.2,3 The discovery of vascular
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endothelial growth factor (VEGF) and the application of
anti-VEGF therapies represent major breakthroughs in the
clinical management of retinal vascular diseases.4,5 Not all
patients respond to such therapy, however, and antagonizing
VEGF activity could affect trophic support to the ciliary
body and retina.6,7 Thus, a more complete understanding of
the mechanisms and molecules that regulate BRB integrity
and pathophysiology is crucial for the development of
improved therapeutic interventions for such diseases.

Caveolin-1 (Cav-1) is the primary structural protein of
the cholesterol- and sphingolipid-rich, flask-shaped mem-
brane domains known as caveolae.8 Cav-1 intrinsically
participates in multiple caveolar functions, including lipid
trafficking, transcytosis, mechanosensing, and cell
signaling.8,9 Mice in which Cav-1 is globally deleted are
viable, but they exhibit several abnormalities, including
insulin resistance, alterations in lipid metabolism, defective
albumin uptake, pulmonary hypertension, and hypertrophic
cardiomyopathy.10e13 Loss of Cav-1 also increases pul-
monary hyperpermeability14,15 and induces abnormal
angiogenic responses to VEGF.16e18

Several of these pathologies are mediated by endothelial
nitric oxide synthase (eNOS), which is normally negatively
regulated by its interaction with Cav-1.19 Thus, Cav-1
knockout (KO) mice expectedly exhibit hyperactive eNOS
and impaired nitric oxide (NO) signaling.10,11 Furthermore,
vascular permeability and other cardiovascular phenotypes
in Cav-1 KO mice can be rescued either by pharmacological
inhibition of NO production or by re-expression of Cav-1 in
the vascular endothelium (which also inhibits NO produc-
tion).14,15 Cav-1 also promotes atherosclerotic lesion for-
mation, potentially by mediating lipoprotein trafficking
across the vascular endothelium.20 These various studies
highlight the important roles that Cav-1 plays both in
normal vascular physiology and in pathophysiology. Less is
known about the function or functions of Cav-1 in tight
barriereforming vascular beds, such as the inner BRB.

The inner BRB is composed of a monolayer of tightly
sealed endothelial cells with well-developed interendothelial
tight junctions (TJs) and adherens junctions (AJs).2

Furthermore, the retinal vascular endothelium actively in-
teracts with several additional support cells, including mural
cells (vascular smooth muscle cells and pericytes) and glia
(Müller glia and astrocytes).2,21 In the neural retina, vascular
cells (both endothelial and mural) and Müller glia pre-
dominantly express Cav-1.22 Cav-1 is also found in photo-
receptors.23,24 Interestingly, in retinal (and brain) vascular
endothelium and pericytes, caveolae are largely polarized
abluminally,25,26 raising doubts about whether caveolae
perform similar transcellular transport roles in the central
nervous system as are reported in the lung.27 Up-regulation
of Cav-1 transcripts in experimental diabetic retinopathy
correlates with BRB breakdown,28 as does an increase in the
number of caveolae on the abluminal surface of pericytes.29

Although this up-regulation correlates with enhanced path-
ological permeability, it is unclear whether Cav-1 plays a
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compensatory protective role or a pathological one. Of note,
similar Cav-1 up-regulation occurs in cerebral ischemic
injury; in that case, loss of Cav-1 enhances ischemic infarct
volumes, indicating a protective role for Cav-1 expression.30

However, direct, rigorous analysis of the role of Cav-1 in
BRB integrity has not been reported previously.
Our research group recently reported that Cav-1 KO mice

exhibit reduced retinal neuronal function in vivo as a
consequence of changes in the retinal microenvironment.31

Because the retinal microenvironment is largely dependent
on an intact BRB, we hypothesized that Cav-1 might be
important in the maintenance of the BRB. In the present
study, we tested this idea using mice deficient in Cav-1 and
found that loss of Cav-1 causes BRB hyperpermeability.
This BRB disruption generally localized to large branch
retinal veins in the superficial retina, which were also
abnormally enlarged. Although neither hyperpermeability
nor venous enlargement was dependent on eNOS expression
and activity, we did find alterations in the association of
mural cells with these enlarged veins, suggesting that Cav-1
plays an important role in endothelialemural cell in-
teractions in the retina.

Materials and Methods

Animals

All procedureswere performed in accordwith theAssociation
for Research in Vision and Ophthalmology’s Statement for
the Use of Animals in Ophthalmic and Visual Research and
were approved by the Institutional Animal Care and Use
Committees of the University of Oklahoma Health Sciences
Center and the Dean A. McGee Eye Institute. Experiments
were performed on Cav-1 KO mice,11 Cav-1 and eNOS
double KO (DKO) mice,32 and eNOS KO mice (stock no.
002684; Jackson Laboratory, Bar Harbor, ME) on a C57BL/
6J background. C57BL/6J mice (stock no. 000664; Jackson
Laboratory) were used as wild-type (WT) controls.

Quantification of BRB Breakdown

Mice were anesthetized and injected with 100 mL of fluo-
rescein isothiocyanate (FITC)edextran (4 kDa, 50 mg/mL;
Sigma-Aldrich, St. Louis, MO) into the circulation. After 15
minutes, approximately 100 mL of blood was collected, and
mice were perfused with PBS. Retinas were collected and
weighed, and FITC-dextran was extracted and filtered as
described previously.33 Blood samples were centrifuged
(7000 � g), and plasma was collected and diluted 1:1000 in
water. Fluorescence was measured (excitation 485 nm;
emission 538 nm) in a plate reader (BMG LABTECH,
Ortenberg, Germany), and the amount of FITC-dextran in
the retina and plasma was calculated based on a FITC-
dextran standard curve. Retinal autofluorescence was cor-
rected based on uninjected controls. BRB breakdown was
calculated using the equation
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BRBbreakdownZ
Retinal FITC� dextran ðmgÞ=retinal wet weight ðgÞ

Plasma FITC� dextran concentration ðmg=mLÞ � circulation time ðhourÞ ð1Þ
Results are expressed in units of (mL plasma/g retina wet
weight)/hour.

L-NAME Treatment and NO Measurement

Cav-1 KO and control mice were given an intraperitoneal
injection of 30 mg/kg N-u-nitro-L-arginine methyl ester (L-
NAME; Cayman Chemical, Ann Arbor, MI) or vehicle
control (PBS) at 2 hours before quantification of BRB
breakdown. L-NAME dosage was determined to be effec-
tive by measuring plasma nitrite and nitrate concentration
with a commercial colorimetric kit (Cayman Chemical)
according to the manufacturer’s instructions.

Retinal Flatmount Preparation, IHC, and Morphometry

Eyes were enucleated and immersion-fixed in 4% para-
formaldehyde in PBS. Retinas were carefully dissected under a
stereomicroscope (Carl Zeiss Microscopy, Jena, Germany),
permeabilizedwith 1%TritonX-100 in PBS, blockedwith 10%
normal horse serum, and incubated with the following primary
antibodies at 4�C overnight: hamster anti-CD31 (1:200; EMD
Millipore, Billerica, MA), rabbit antiecaveolin-1 (1:200; BD
Pharmingen, San Diego, CA), FITC-labeled goat anti-albumin
(1:200; Bethyl Laboratories, Montgomery, TX), rabbit and/or
guinea pig anti-NG2 (1:200),34,35 rabbit anti-PDGFRb
(1:200),36 rat anti-PDGFRb (1:500; eBioscience, San Diego,
CA), Cy3-conjugated anti-alpha smooth muscle actin (aSMA)
(1:400; Sigma-Aldrich), rat antieZO-1 (1:50; EMDMillipore),
mouse anti-occludin (1:50; Life Technologies, Carlsbad, CA),
rat antieVE-cadherin (1:50; BD Pharmingen), and FITC-
conjugated mouse antieclaudin-5 (1:200; Life Technologies).
After washingwith 0.1%TritonX-100 in PBS, the retinas were
incubated with the appropriate fluorophore-conjugated sec-
ondary antibodies [1:500 (Life Technologies) and/or 1:200
(Jackson ImmunoResearch Laboratories, West Grove, PA)] at
4�C overnight. After another washing with 0.1% Triton X-100
inPBS, four tofive radial cutsweremade in the retinas, from the
edge toward the optic nerve head (ONH), ganglion cell layer
up, for flat-mounting in glycerol:PBS (1:1, v/v). For junction
protein visualization, eyes were hemisected and fixed in
4% paraformaldehyde containing calcium and magnesium for
15 minutes.

For visualization of BRB breakdown, retinal frozen sec-
tions were prepared as described previously, with minor
modification.37 In brief, eyecups (with cornea and lens
removed) were fixed in 2% paraformaldehyde in PBS for 20
minutes, cryoprotected by sequential incubations in 10%,
15%, and 30% sucrose in PBS, and frozen in optimal cutting
temperature compound (Tissue-Tek OCT; Sakura Finetek,
Auburn, CA). Frozen sections of 14-mm thickness were cut
using a cryostat (Leica Biosystems, Buffalo Grove, IL) and
The American Journal of Pathology - ajp.amjpathol.org
processed for staining with rabbit anti-collagen IV (1:800;
EMD Millipore) and FITC-labeled goat anti-albumin
(1:200; Bethyl Laboratories); nuclei were counterstained
with DAPI (Sigma-Aldrich). Imaging was performed using
confocal laser scanning microscopes FV500 and FV1200
(Olympus, Tokyo, Japan); images were processed with
Photoshop CS5 (Adobe Systems, San Jose, CA).

For morphometric analysis of vein and artery diameters,
images were processed using ImageJ version 10.2 software
(NIH, Bethesda, MD). Defined and reproducible locations
were chosen for measurements. For measurement of branch
retinal vein diameter, the starting point was chosen at the
bifurcation and extended toward the ONH for approximately
500 mm. Four branch retinal veins were measured in each
mouse (two per retina), and values were averaged and
counted as one sample. For artery diameter, the starting point
was chosen at the ONH and extended toward the retinal pe-
riphery for approximately 500 mm. If the artery bifurcated
before 500 mm of distance, only the common artery trunk was
measured. In each mouse, 10 to 12 arteries were measured,
averaged, and counted as one sample. (Usually one retina has
five to six arteries entering from the ONH.)

RNA Extraction and RT-qPCR

Total RNA was isolated from previously snap-frozen retinas
with TRIzol reagent (Life Technologies) and treated with
DNase (DNA-free kit; Life Technologies). One microgram of
RNA was used for cDNA synthesis (iScript cDNA synthesis
kit; Bio-Rad Laboratories, Hercules, CA). The levels of NG2
and RPL19 (housekeeping gene) transcripts were measured by
quantitative real-time PCR (RT-qPCR) using a SYBR Green
PCR mix (SsoFast EvaGreen supermix; Bio-Rad Labora-
tories) and a CFX96 real-time PCR detection system (Bio-Rad
Laboratories) according to the manufacturer’s instructions.
Primers to NG2 and RPL19 were designed to span
introneexon boundaries, to avoid the chance of amplifying
potentially residual genomic DNA contamination. Primers
used were as follows: mouse NG2 forward primer (50-
CGTGATGGTGTCTTTCGATG-30) and reverse primer
(50-GAGTACATCATGCCGACTGC-30); mouse/rat/human
RPL19 forward primer (50-TCACAGCCTGTACCTGAAGG-
30) and reverse primer (50-TCGTGCTTCCTTGGTCTTAG-
30). Relative quantities of NG2 expression were calculated by
the comparative CT value method.37

Detergent-Resistant Membrane Fractionation

Detergent-resistant membranes were isolated from retinas as
described previously38,39 with slight modifications. Four
retinas each from WT and Cav-1 KO mice were pooled and
homogenized in TNE buffer [10 mmol/L Tris-Cl (pH 7.4),
543
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100 mmol/L NaCl, 1 mmol/L EDTA, supplemented with
protease inhibitor cocktail] (Calbiochem; EMD Millipore).
After centrifugation in a benchtop microcentrifuge
(Eppendorf, Hamburg, Germany), the supernatant was dis-
carded and the pellet was saved. The pellet was resuspended
in 250 mL of ice-cold TNE buffer containing 0.5% Triton X-
100, diluted with another 250 mL of TNE buffer, and ho-
mogenized. The homogenates were transferred to 4-mL
centrifuge tubes (Beckman Coulter, Brea, CA), placed at
the bottom of a discontinuous sucrose gradient [500 mL 80%
(w/v), 3 mL 35% (w/v), and 500 mL 5% (w/v)]. The
resulting 5% to 40% discontinuous sucrose gradient was
centrifuged at 40,000 rpm for 20 hours in a swing-bucket
rotor (model SW60Ti; Beckman Coulter). Five-hundred-
microliter fractions collected from top to bottom of the
gradient (fractions 1 to 8) were used for Western blotting.

Western Blotting and Immunoprecipitation

Retinas were lysed in radioimmunoprecipitation assay
buffer [50 mmol/L Tris (pH 7.4), 150 mmol/L NaCl, 1%
NP-40, 0.1% sodium deoxycholate, 2.5 mmol/L EDTA]
supplemented with protease inhibitor cocktail (Calbiochem;
EMD Millipore). Protein content was determined with a
Pierce BCA assay (Thermo Fisher Scientific, Rockford, IL),
using bovine serum albumin as a standard. Equal amounts
of protein were resolved on 4% to 20% or 4% to 12% Tris-
glycine gradient gels (Life Technologies). Proteins were
transferred to nitrocellulose membranes and then probed
with antibodies, using standard methods. Primary antibodies
and dilutions were as follows: rat antieZO-1 (1:1000; EMD
Millipore), rabbit anti-occludin (1:500; Life Technologies),
rabbit antieclaudin-5 (1:500; Life Technologies), rabbit
antieVE cadherin (1:1000; Abcam, Cambridge, MA), rab-
bit antiecaveolin-1 (1:3000; BD Pharmingen), and mouse
antiea-tubulin (1:500; Sigma-Aldrich). Immunoreactivity
was detected using horseradish peroxidase (HRP)econju-
gated secondary antibodies (1:5000; GE Healthcare, Little
Chalfont, UK) and imaged with a Kodak In Vivo F-Pro
system (Carestream, Rochester, NY).

Occludin phosphorylation was assessed by Western blot-
ting coupled with phosphatase treatment, as described pre-
viously.40 Phosphorylation of occludin results in its reduced
migration on SDS-PAGE gels, and these more slowly
migrating bands collapse to a single band after phosphatase
treatment. We therefore treated retinal lysates from Cav-1
KO and WT mice with or without 20 units of alkaline
phosphatase (New England Biolabs, Ipswich, MA), to
determine differential phosphorylation between genotypes.

Tyrosine phosphorylation of tight junction protein ZO-1
was determined by phosphotyrosine immunoprecipitation
followed by ZO-1 and phosphotyrosine immunoblotting.
Retinas were lysed as described above, and 240 mg of protein
was diluted to 1 mg/mL with radioimmunoprecipitation assay
buffer. A portion of the protein (40 mg) was saved as input;
the remaining 200 mg was precleared with protein A/G
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PLUS-agarose beads (Santa Cruz Biotechnology, Santa
Cruz, CA) before incubation with 2 mg anti-phosphotyrosine
antibody (clone 4G10; EMD Millipore) at 4�C overnight.
Protein A/G PLUS-agarose beads (10 mL) were added to the
samples and incubated under rotation for 1 hour at 4�C.
Protein-bound beads were collected by centrifugation, and
the resulting supernatants were saved as flow-through. Beads
were washed three times with 1� radioimmunoprecipitation
assay buffer and resuspended in 2� Laemmli sample buffer
for Western blotting analyses using both ZO-1 and phos-
photyrosine antibodies.

HRP Tracing and Transmission Electron Microscopy

HRP tracing was performed as described previously.41,42

HRP (type II, 500 mg/kg; Sigma-Aldrich) was injected
intravenously and allowed to circulate for 15 minutes. Eyes
were enucleated and immersion-fixed in Karnovsky’s fixative
[2% glutaraldehyde, 2% paraformaldehyde, 0.02% CaCl2 in
0.1 mol/L cacodylate buffer (pH 7.2)] for 3 hours. The eye-
cups were embedded in 2% agarose (Life Technologies) and
cut into 100-mm slabs using a vibratome (Leica Biosystems).
Slabs were washed in PBS (pH 7.4) at 4�C overnight, to
remove any fixative, and then were incubated with 3,30-dia-
minobenzidine (DAB) solution [5 mg DAB in 10 mL 50
mmol/L Tris-Cl buffer (pH 7.6)] at room temperature for 3
hours. The sections were then incubated with fresh DAB
solution containing 1% H2O2 (Sigma-Aldrich) at room tem-
perature for an additional 3 hours. Sections were then washed
and refixed in Karnovsky’s fixative and 1% OsO4 (Electron
Microscopy Sciences, Hatfield, PA), dehydrated in ethanol
gradients, and embedded in Spurr’s resin. Sections were cut
with a diamond knife, placed on copper grids, and viewed
with a JEOL 1200 EX transmission electron microscope
(JEOL USA, Peabody, MA). Mice without HRP injection
were used as controls for endogenous peroxidase activity.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism
software version 5 (GraphPad Software, La Jolla, CA). For
comparison of two means, Student’s t-test was used; for
comparing more than two means, one-way or two-way
analysis of variance with NewmaneKeuls post hoc anal-
ysis was used. P values of < 0.05 were considered signif-
icant. Data are expressed as means � SEM.

Results

Loss of Cav-1 Results in BRB Breakdown

We recently reported that loss of Cav-1 results in reduced
retinal photoresponses measured in vivo.31 However, when
Cav-1 KO retinas are placed in controlled medium in vitro,
photoresponses are similar to those of normalWT retinas. This
indicates that the reduced retinal function results from
ajp.amjpathol.org - The American Journal of Pathology
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perturbation of the retinal milieu in situ. Because a tight, intact
BRB is essential to the maintenance of the retinal environment
and because Cav-1 has been shown to modulate permeability
in other vascular beds,14,16,17 we hypothesized that loss of
Cav-1 would result in BRB breakdown. To quantitatively
measure BRB integrity, we adapted a previously published
FITC-dextran assay33 and observed a significant increase in
FITC-dextran accumulation in Cav-1 KO retinal tissues,
compared with WT controls [WT, 14.05� 2.185 (mL/g)/hour;
KO, 30.59 � 2.850 (mL/g)/hour] (P Z 0.0017) (Figure 1A),
indicating a loss in BRB integrity.

To localize the barrier defect, we directly stained for
endogenous albumin in retinal flatmounts (Figure 1, B and
C) or intravenously injected FITC-conjugated albumin
(Figure 1, D and E). The majority of leakage sites in the
superficial layer were associated with branch retinal veins in
Cav-1 KO retinas. Each mouse retina typically has two large
branch retinal veins that drain the circumferential vein. We
observed eight leakage sites in 20 KO branch retinal veins,
but only two sites in 20 WT branch retinal veins (n Z 10
retinas per genotype). We observed only rare leakage sites
associated with branch retinal arteries. There are typically
Figure 1 Loss of Cav-1 results in BRB hyperpermeability. A: Cav-1 KO
and WT mice were intravenously injected with 4-kDa FITC-dextran, and BRB
permeability was quantified. Cav-1 KO retinas exhibit a two-fold increase in
leakage. B and C: Endogenous albumin staining (green) of retinal flatmount
from WT (B) and Cav-1 KO (C) mice reveals leakage site (arrow) in the Cav-1
KO mouse. D and E: FITC-conjugated albumin was injected into WT (D) and
Cav-1 KO (E) mice; retinas were flat-mounted and visualized for albumin
extravasation. Compared with WT, the Cav-1 KO retina exhibits more
leakage (arrow), and over a larger area, around a vein. F and G: IHC of
albumin (green) on frozen sections of WT (F) and Cav-1 KO retinas (G).
Vessels were immunolabeled with antiecollagen IV antibody (red).
Extravasation of albumin is seen around the large vessels in the Cav-1 KO
retina (arrows), but not in the WT or in nonleaky vessels in the Cav-1 KO
retina. Representative images are shown. Data are expressed as means �
SEM. n Z 5. **P < 0.01 versus WT. Scale bar Z 50 mm. Alb, albumin; Col
IV, collagen IV.
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five to six such arteries stemming from the ONH; we
observed only three leakage sites in KO arteries and one
leakage site in WT arteries (>50 arteries per genotype; n Z
10 retinas). Thus, these large branch retinal veins were
hotspots for extravasation.

We stained frozen sections from Cav-1 KO and WT
retinas for albumin and observed that Cav-1 KO retinas
exhibited diffuse immunopositive albumin staining around
the large vessels in the superficial layer and deep capillary
plexus (Figure 1G), whereas albumin was confined to the
vessel lumen both in control retinal sections (Figure 1F) and
in nonleaky areas of Cav-1 KO retinal sections. This leakage
pattern is consistent with previous reports that early BRB
breakdown localizes to veins and capillaries in diabetic
retinopathy and uveoretinitis.43,44 The venous localization
of BRB breakdown in Cav-1 KO retinas correlated with the
vessels exhibiting the highest expression of Cav-1 in the
WT retinal vasculature (Figure 2). Cav-1 was highly
expressed in branch retinal veins and venules and was
expressed less predominantly in branch retinal arteries and
capillaries. These results indicate that loss of Cav-1 leads to
BRB impairment, and suggests a potential specific role of
Cav-1 in the venous system.

Loss of Cav-1 Results in Paracellular Permeability

Endothelial permeability can occur via paracellular or
transcellular routes; the former is determined by the
complexity of TJs and AJs and the latter involves caveolae
trafficking.45 Loss of Cav-1 impairs transcytosis of albumin
across the endothelium.46 However, if active albumin
transport requires caveolae and Cav-1 in the retinal vascu-
lature, why do we observe increased albumin extravasation
in the BRB of Cav-1 KO mice? Previous studies have
demonstrated crosstalk between paracellular and trans-
cellular pathways,45,47 but the existence of caveolae-
mediated transport in retinal vessels has been disputed.26

We therefore set out to determine, using ultrastructural
localization of HRP extravasation, whether the loss of
caveolae results in increased paracellular permeability.

HRP reaction product stained retinal vascular basement
membranes and leaked into the retinal parenchyma in Cav-1
KO mice (Figure 3B), but was confined to the vessel lumen
in the retinas of WT controls (Figure 3A). The presence of
caveolae was evident in the WT retinas, with many of them
facing the abluminal side of endothelium, as previously
reported25,26 (Figure 3, A and C, and Supplemental
Figure S1). Although HRP was apparent in vesicular com-
partments with caveolar characteristics in WT retinal
endothelium (Figure 3C), we could not determine whether
these were stable caveolae on the luminal surface or were
trafficking vesicles. The first possibility is suggested by the
lack of HRP reaction product on the abluminal side.
Importantly, we did not observe HRP passing through
endothelial junctions in WT vessels (Figure 3C). In Cav-1
KO vessels, morphologically identifiable caveolae were
545
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Figure 3 Hyperpermeability in Cav-1 KO retina occurs, at least in part,
through the paracellular pathway, as can be seen in electron micrographs.
A and B: HRP reaction products stain the basement membrane (arrows) in
Cav-1 KO vessels (B), but are confined to the lumen in WT vessels (A).
Caveolae (arrowheads) are evident in WT vasculature, but absent in KO
vasculature. C and D: At higher magnification, it can be seen that HRP
reaction product remains on the luminal side of the TJ (boxed region) in a
WT vessel (C), but passes through the junction (boxed region) in a Cav-1
KO vessel (D). In WT vessels (C), abluminal caveolae (arrowheads) and
luminal, HRP-laden caveolae (v) are apparent. Scale bar Z 500 nm. BM,
basement membrane; EC, endothelial cell; L, lumen; P, pericyte.

Figure 2 Cav-1 predominantly localizes to
branch retinal veins in adult WT retinal vascula-
ture. Retinas from adult WT mice were stained with
antibodies to Cav-1 (green) and CD31 (red) to
label the vasculature. Cav-1 strongly localizes to
branch retinal veins and is weakly expressed by
arteries and capillaries. Scale bar Z 100 mm. A,
artery; V, vein.
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undetectable (Figure 3, B and D, and Supplemental
Figure S1). HRP reaction product was frequently found
abluminal to morphologically identifiable TJs (Figure 3D)
and to prominently stain vascular basement membranes in
Cav-1 KO retinal vessels (Figure 3, B and D). Staining
abluminal to TJs indicated paracellular permeability, but
prominent basement membrane staining was also observed
at locations distant from TJs. We therefore cannot exclude
additional increases in transcellular permeability in Cav-1
KO retinal vessels. Because the harsh reaction conditions
necessary for the peroxidase reaction often resulted in
poorly preserved ultrastructural morphology, we also
examined vasculature in WT and Cav-1 KO retinas that
were not processed for HRP; we found no overt changes in
junctional appearance (Supplemental Figure S1).

Although the ultrastructural localization of HRP extrav-
asation provided unequivocal evidence of junction
dysfunction, we did not detect significant changes in the
protein levels of several TJ proteins (ZO-1, occludin, and
claudin-5) and AJ proteins (VE-cadherin) by Western blot
analysis (Figure 4, AeE). Because BRB breakdown was
largely localized to retinal veins, we suspected that Western
blot analysis of whole retinal protein extracts might not
detect such local changes in junction proteins; we therefore
examined TJ and AJ protein localization specifically in
branch retinal veins by immunostaining of flatmounts.
However, this analysis also failed to detect any changes in
localization (Figure 4, FeI) of junctional proteins in Cav-1
KO retinal vasculature, compared with WT controls.

Phosphorylation of TJ proteins is proposed to affect
junctional stability.40,48 Given that the loss of Cav-1 causes
basal hyperphosphorylation of several proteins [notably,
extracellular signal-regulated kinase (ERK), Akt, and
eNOS15,49] we examined the effect of Cav-1 loss on the
phosphorylation status of the TJ proteins ZO-1 and occlu-
din. We did not recover any detectable ZO-1 in immuno-
precipitates of tyrosine phosphorylated proteins from Cav-1
KO and WT retinal lysates (Supplemental Figure S2A),
using an antibody previously demonstrated to react with
phosphotyrosine sites in ZO-1.40 Interestingly, we did
recover several phosphotyrosine-positive proteins of un-
known identity in Cav-1 KO retinas, but not in controls,
validating our immunoprecipitation strategy and suggesting
that loss of Cav-1 results in hyperactive tyrosine phos-
phorylation (Supplemental Figure S2A). In separate
546
experiments, we examined the phosphorylation of occludin
by phosphatase-induced SDS-PAGE mobility shift.40 A
proportion of occludin was phosphorylated in both Cav-1
KO and WT retinas, to a similar extent (Supplemental
Figure S2B). Taken together, these results suggest that
loss of Cav-1 does not alter the phosphorylation status of
two major TJ proteins.
It has also been shown that Cav-1 mediates claudin-5

internalization during TJ remodeling in brain endothelial
cells.50 We therefore prepared detergent-resistant mem-
branes to determine whether claudin-5 distribution is
altered in the absence of Cav-1. Claudin-5 fractionated
similarly in WT and Cav-1 KO retinas (Supplemental
Figure S3). Overall, our results suggest that, although
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Junctional proteins are not affected in Cav-1 KO retina. A: Representative blots of TJ proteins (claudin-5, ZO-1, and occludin) and an AJ protein,
VE-cadherin, from retinal lysates from Cav-1 KO and WT retinas. BeE: Quantitative densitometric analyses of junctional proteins reveal no statistical dif-
ferences in protein levels between Cav-1 KO and WT retinas. FeI: IHC of claudin-5 (Cldn5) (F), ZO-1 (G), occludin (H), and VE-cadherin (I) labeled in green, in
Cav-1 KO and WT retinal vasculature. Vessels are labeled in red with anti-CD31 antibody. All assessed proteins localized to the vascular endothelium properly,
without apparent breaks or mislocalization. Data are expressed as means � SEM. n Z 6e9. Scale bar Z 20 mm. VE-Cad, VE-cadherin.

Cav-1 in Retinal Vascular Pathologies
some extravasation in the Cav-1 KO occurs through the
paracellular pathway, there are no overt concomitant al-
terations in expression, localization, phosphorylation, or
detergent-resistant membrane distribution of junctional
The American Journal of Pathology - ajp.amjpathol.org
proteins. Our results are consistent with recent work by
Armstrong et al,47 who showed that inhibiting the trans-
cellular pathway rapidly increases paracellular leakage
without affecting junctional proteins.
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Figure 5 BRB hyperpermeability in Cav-1 KO retinas is independent of
eNOS action. A: Cav-1 KO and WT mice were treated with L-NAME for 2 hours
and injected intravenously with FITC-dextran. Quantitative analysis of BRB
integrity was performed. L-NAME treatment did not rescue Cav-1einduced
vascular hyperpermeability, nor did it increase permeability inWT controls.B:
WT, Cav-1 KO, Cav-1 and eNOS DKO, and eNOS KO mice were injected intra-
venously with FITC-dextran and BRB breakdown was evaluated. Loss of eNOS
in the Cav-1 KO background did not correct BRB hyperpermeability. Data are
expressed as means� SEM. nZ 9 (WT PBS), nZ 8 (WT L-NAME), and nZ 5
(Cav-1 KO PBS and L-NAME) (A). nZ 4 (DKO and eNOS KO), nZ 7 (WT), and
n Z 10 (Cav-1 KO) (B). **P < 0.01 versus WT PBS; yyP < 0.01 versus WT L-
NAME (A). *P< 0.05, **P< 0.01, and ****P< 0.0001 versus WT (B). One-
way analysis of variance followed by NewmaneKeuls post hoc test.

Gu et al
BRB Breakdown Is Independent of eNOS Expression
and Hyperactivity

Cav-1 is a well-established regulator of eNOS activity,19 and
several vascular abnormalities observed when Cav-1 is lost,
including lung hyperpermeability, are rescued when eNOS is
inhibited.14 Furthermore, excess NO production is linked to
BRB breakdown in experimental diabetic retinopathy.51 To
assess whether excessive NO production is a mechanism for
BRB breakdown in response to Cav-1 loss, we administered
L-NAME (a well-characterized NOS inhibitor) to Cav-1 KO
and WT control mice and assessed acute permeability with
FITC-dextran permeability assay. Although L-NAME effec-
tively inhibited nitrate and nitrite levels by 65% in Cav-1 KO
serum (PBS, 11.89 � 1.937 mmol/L; L-NAME, 4.253 �
0.6186 mmol/L) (P Z 0.0021), it did not rescue BRB hyper-
permeability (P Z 0.7305) (Figure 5A).

Because the effect of chronic eNOS hyperactivity on the
BRB of Cav-1 KO retinas might not be corrected by transient
inhibition of NOS activity by L-NAME, we also examined
BRB breakdown in DKO mice, in which both Cav-1 and
eNOS were deleted. BRB hyperpermeability was not rescued
in DKO retinas (P Z 0.0028 WT versus DKO; P Z 0.7146
Cav-1 KO versus DKO) (Figure 5B), reinforcing the idea that
eNOS expression or hyperactivity is not responsible for the
BRB breakdown observed in Cav-1 KO retinas. This is in
contrast to what has been reported for other vascular beds14e16

and thus suggests a different mechanism at play in the retinal
vasculature. Interestingly, we did observe increased BRB
permeability in eNOS KO retinas (P Z 0.0293 WT versus
eNOS KO) (Figure 5B), which agrees with a previous report
that eNOS KO mice have slightly higher basal BRB
leakage and develop significantly higher permeability
under diabetic conditions.52 Of note, transient inhibition of
NOS activity in control mice did not induce BRB hyper-
permeability (Figure 5A), supporting the idea that the
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increased permeability observed in eNOS KO mice results
from vascular changes due to chronic loss of eNOS.

Loss of Cav-1 Increases Venous Diameter Independent
of eNOS Action

Because retinal veins were identified as hotspots for BRB
breakdown (Figure 1), and because Cav-1 is primarily
localized to branch retinal veins in WT retinal vasculature
(Figure 2), we focused our attention on other venous pa-
thologies. Interestingly, we observed apparent increases in
venous diameter in Cav-1 KO retinas, compared with WT
controls (Figure 6B). To quantify these changes, we
measured venous diameters at a defined and reproducible
location just adjacent to the bifurcation where peripheral
circumferential veins converge on branch retinal veins
(Figure 6A). Cav-1 KO branch retinal veins were signifi-
cantly enlarged, compared with WT controls (Figure 6, B
and C). We hypothesized that this enlargement results from
eNOS hyperactivity and overproduction of the potent
vasodilator NO. To test this hypothesis, we measured
venous diameters in DKO mice; contrary to our expecta-
tions, the venous enlargement was not corrected by eNOS
deletion (Figure 6, B and C). Similarly, transient inhibition
of NO production by L-NAME did not normalize venous
diameters to WT levels, nor did L-NAME treatment alter
venous diameter in WT retinas (Figure 6D). These results
indicate that loss of Cav-1 induces eNOS-independent
changes in venous diameter.
Because the influence of eNOSmight be more pronounced

on the arterial circulation, we also examined artery diameters
in Cav-1 KO and WT mice. Similar to retinal veins, branch
retinal arteries in Cav-1 KO mice were markedly dilated,
compared with WT controls (Supplemental Figures S4 and
S5). Unlike veins, however, this dilation was corrected by L-
NAME treatment in both WT and Cav-1 KO retinas
(Supplemental Figure S4), suggesting that dilation of retinal
arteries is attributable to constitutive release of NO, as has
been shown for isolated bovine retinal arteries.53 This is also
consistent with an earlier report of NO-mediated flow-
induced arteriole dilation in isolated porcine retinal vessels.54

Similar observations have been made in Cav-1 KO cerebral
arteries, which were significantly dilated, compared with
those ofWTmice; NOS inhibition constricted arteries in both
genotypes.55 In the present study, however, artery diameter in
DKO retinas was not normalized to WT level and was also
surprisingly increased in eNOS KO mice (Supplemental
Figure S5). Such effects may be due to multiple compensa-
tory mechanisms resulting from chronic loss of eNOS by
genetic ablation. Several local factors that induce arterial
dilation have been identified in the retina, including glial-
derived NO, prostaglandins, and an as yet unidentified
retinal-derived relaxing factor (reviewed by Delaey and Van
De Voorde56).
Taken together, these results indicate that venous

enlargement is not due to the excessive production of NO
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Loss of Cav-1 results in venous enlargement independent of eNOS action. Retinal flatmounts were prepared from WT, Cav-1 KO, Cav-1 and eNOS
DKO, and eNOS KO mice and were immunostained with anti-CD31 antibody to label the vasculature. A: Schematic representation of locations used for obtaining
diameter measurements. B: Representative images of branch retinal veins showing enlarged vessels in mice in which Cav-1 is deleted (ie, Cav-1 KO and DKO
mice). Scale barZ 50 mm. C: Quantification of venous enlargement shows the lack of eNOS effect on enlargement. D: Quantification of venous diameter in the
L-NAME- and vehicle-treated WT and Cav-1 KO retinas shows that transient NOS inhibition does not correct venous enlargement. Data are expressed as means�
SEM. nZ 13 (WT), nZ 15 (Cav-1), nZ 11 (DKO), and nZ 7 (eNOS KO) (A). nZ 4e7 per treatment group (B). **P < 0.01, ****P < 0.0001 versus WT; yP <
0.05, yyyP < 0.001 versus eNOS KO (C). **P < 0.01, ***P < 0.001 versus WT PBS; yyyP < 0.001, yyyyP < 0.0001 versus WT L-NAME (D). Scale bar Z 50 mm.
One-way analysis of variance followed by NewmaneKeuls post hoc test.

Cav-1 in Retinal Vascular Pathologies
from hyperactive eNOS action and suggest a novel mech-
anism for venous changes in the retina resulting from Cav-1
loss. Our results are also consistent with the idea that Cav-1
may regulate flow-dependent autoregulation in retinal arte-
rioles, but this remains to be determined empirically.

Loss of Cav-1 Causes Mural Cell Changes on Retinal
Veins

Given these results, we sought to determine what factors
might contribute to venous enlargement. Mural cells (ie,
pericytes and vascular smooth muscle cells) share the same
basement membrane with endothelial cells and perform key
functions to maintain vascular stability and integrity.57e59

Mural cells also possess contractile ability,57e59 which
suggests the possibility that, if Cav-1 deficiency causes a
loss or dysfunction of venous smooth muscle cells, the veins
The American Journal of Pathology - ajp.amjpathol.org
may be enlarged. To test this possibility, we immunolabeled
Cav-1 KO and WT retinas with NG2, a chondroitin sulfate
proteoglycan expressed by mural cells in the retinal
vasculature.36 Surprisingly, the enlarged veins in the Cav-1
KO retinas exhibited a dramatic reduction in NG2 immu-
noreactivity (Figure 7, E, F, K, L, and O), compared with
WT controls (Figure 7, A, B, I, J, and M). We initially
interpreted this result to indicate a loss of mural cell
coverage; however, subsequent analysis of veins labeled for
another mural cell marker, platelet-derived growth factor
receptor b (PDGFRb), revealed no significant difference in
coverage of vessels (Figure 7, C, G, I, K, and Q). When
signal intensities for NG2 were normalized to those of
PDGFRb, we observed a significant reduction in NG2
levels in Cav-1 KO branch retinal veins (Figure 7Q). The
NG2 reduction was most pronounced in these large veins;
postcapillary venules did not exhibit significant decreases in
549
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Figure 7 Loss of Cav-1 reduces NG2 on enlarged
branch retinal veins without affecting mural cell
coverage and increases concomitant venous aSMA
immunoreactivity. AeH: Retinas from WT and Cav-1
KO mice were immunostained with antibodies
against mural cell markers, NG2 (green) (A and F),
PDGFRb (blue) (C and G), and aSMA (red) (D andH).
Cav-1 deficiency in branch retinal veins signifi-
cantly reduced NG2 expression and increased aSMA
expression (F and H), compared with WT (B and D),
but loss of Cav-1 did not noticeably decrease
PDGFRb in either genotype (C and G). IeL: Higher
magnification images correspond to boxed regions
in panels A and E. Cav-1 KO veins are not devoid of
NG2þ cells (K and L), with weakly NG2þ cells visible
on branch retinal veins (arrowheads), but the in-
tensity is significantly weaker than in WT (I and J).
MeP: Retinas from WT (M and N) and Cav-1 KO (O
and P) mice were stained against CD31 (red) and
NG2 (green). CD31 immunoreactivity was similar in
both genotypes. Q: Fluorescence intensity was
quantified from CD31, NG2, PDGFRb, and aSMA
staining in WT and Cav-1 KO retinal vasculature.
Results suggest an intrinsic mural cell phenotype
alteration due to the loss of Cav-1, rather than to
altered mural cell coverage. Data are expressed as
means � SEM. n Z 5e8 per group. *P < 0.05,
****P < 0.0001 versus WT. Scale bars: 50 mm
(AeH); 10 mm (IeL); and 20 mm (MeP).
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NG2 immunoreactivity in either WT (Figure 7, J and M) or
KO (Figure 7, L and O) retinas.

The NG2 reduction remained evident in enlarged branch
retinal veins from DKO retinas, indicating that eNOS is
unlikely to contribute to this decrease (Supplemental
Figure S6). We also used RT-qPCR to examine the rela-
tive expression of NG2 transcripts from Cav-1 KO and WT
retinal total RNA. Although we observed a decrease in NG2
mRNA levels, this reduction did not reach our statistical
threshold (P Z 0.1142) (Supplemental Figure S7). In
addition to the reduction in NG2, we observed a concomi-
tant significant increase in immunoreactivity for the venous
smooth muscle contractile protein aSMA in both Cav-1 KO
(Figure 7) and DKO mice (Supplemental Figure S8).
Compared with eNOS KO retinas, DKO retinas had an in-
crease in aSMA (Supplemental Figure S8, A, C, E, and G)
and a concomitant reduction in NG2 immunoreactivity
(Supplemental Figure S8, A, B, E, and F), suggesting that
loss of Cav-1, rather than eNOS deficiency, mediates the
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observed phenotypes. We did not observe any appreciable
differences in CD31 immunoreactivity in either WT
(Figure 7, M and N) or KO (Figure 7, O and P) retinas. The
similarity of the PDGFRb/CD31 ratios in Cav-1 KO and
WT retinal vasculature strongly argues against the loss of
mural cells per se around the enlarged veins; however, the
dramatic reduction in the NG2/PDGFRb ratio in the absence
of Cav-1 suggests possible intrinsic alterations in mural cell
phenotype (Figure 7Q).
Strikingly, we identified additional mural cell morpho-

logical alterations on the branch retinal veins proximal to
their entering the ONH. In this location, NG2 staining in
Cav-1 KO veins was not dramatically reduced, compared
with WT controls, but the Cav-1 KO mural cells had a
spindly morphology with reduced coverage of attached
veins and numerous disorganized processes (Figure 8, C, D,
I, and J) not seen in WT controls (Figure 8, A, B, E, and F).
Higher magnification revealed that NG2þ mural cells in
Cav-1 KO retinas had thinner processes, compared with WT
ajp.amjpathol.org - The American Journal of Pathology
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Figure 8 Loss of Cav-1 alters the mural cell
phenotype in enlarged branch retinal vein proximal to
the ONH. WT (A and B) and Cav-1 KO (C and D) retinas
were immunostained with antibodies against CD31
(red) and NG2 (green). Boxed areas in A and C are
enlarged as panels B and D, respectively. NG2þ cells
on Cav-1 KO retinal veins have a spindly appearance
(arrowhead) (D). These cells, compared with coun-
terparts on WT retinal veins, had thinner processes
(arrows) (B and D). NG2 staining on arteries seemed
normal. Immunostaining of WT (EeH) and Cav-1 KO
(IeL) retinas with antibodies against mural cell
markers NG2 (green) (F and J), PDGFRb (blue)
(G and K), and aSMA (red) (H and L) confirmed the
spindly appearance of venous smooth muscle cells on
branch retinal veins immediately proximal to entering
theONH inCav-1KO retina (IandJ), comparedwithWT
retina (E and F). aSMA staining further supported the
observedphenotypic changes inmural cellmorphology
in WT (H) and KO (L) retinas. Mural cell staining on
arteries was similar inWT and Cav-1 KO retinas. E and I
representmerged images. Scale bars: 10mm (A, C, and
EeL); 5 mm (B and D). a, artery; v, vein.
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retinas (Figure 8, B and D). NG2 staining on the arterial
smooth muscle cells, on the other hand, appeared normal in
both Cav-1 KO (Figure 8, I and J) and WT (Figure 8, E and
F) retinas. However, aSMA staining was more intense on
the Cav-1 KO retinal veins (Figure 8, I and L), compared
with WT (Figure 8, E and H), suggesting increased stress
fiber formation.

As expected, another mural cell marker (PDGFRb)
exhibited similarly disorganized mural cell morphology in
Cav-1 KO retinas (Figure 8K). We also examined mural cell
morphology on the veins entering the ONH in eNOS KO
and DKO retinas. In the eNOS KO retinas, aSMAþ smooth
muscle cells possessed an organized ensheathment of the
veins (Supplemental Figure S8, I and K), whereas in DKO
retinas, these cells appeared disorganized and aSMA
staining was more intense (Supplemental Figure S8, M and
O), indicating that eNOS hyperactivity resulting from Cav-1
ablation does not play a role in the mural cell morphological
alterations.

Taken together, these results indicate that loss of Cav-1
results in spatially defined mural cell abnormalities in
branch retinal veins. Distal to the ONH, Cav-1edeficient
veins exhibited reduced NG2 and increased aSMA immu-
noreactivity; proximal to the ONH, Cav-1 deficiency
resulted in mural cells with a pronounced myofibroblast-like
phenotype with prominent aSMA stress fibers (Figure 8E).
Discussion
Caveolin and caveolar alterations are associated with
several ocular pathologies, including diabetic retinopathy,
posterior uveitis, and primary open-angle glaucoma, but
the pathophysiology linking caveolins to these diseases is
not understood.28,60,61 Notably, however, all of these dis-
eases exhibit pathological changes in retinal vasculature
The American Journal of Pathology - ajp.amjpathol.org
that are associated with disease severity. We recently re-
ported that ablation of Cav-1 impairs retinal function via
changes in the retinal microenvironment.31 Because a tight
BRB helps to maintain the retinal extracellular milieu, we
asked whether loss of Cav-1 function might affect BRB
integrity. In the course of this first detailed study of retinal
vasculature in Cav-1 KO mice, we have demonstrated that
i) vascular BRB integrity is impaired, and this impairment
is not dependent on eNOS expression or hyperactivity; ii)
hyperpermeability occurs, at least in part, paracellularly,
but junctional protein components appear unaffected; iii)
Cav-1 expression in the adult retina is predominantly
localized to the branch retinal veins; iv) branch retinal
veins in the superficial retina, which are hotspots of
leakage, are abnormally enlarged, and this enlargement is
not dependent on eNOS expression or hyperactivity; and v)
these enlarged veins have region-specific mural cell
phenotypic changes consistent with a transition to a more
contractile, myofibroblast-like phenotype.

Caveolae are known to be critical for transendothelial
albumin transport.46 However, loss of caveolae leads to
paradoxical microvascular hyperpermeability in several or-
gans, and this hyperpermeability occurs through the opening
of paracellular junctions in response to loss of the trans-
cellular pathway mediated by caveolae.14,45 This crosstalk
mechanism involves eNOS, which, in the inactive state, is
anchored to the cell membrane and inhibited by Cav-1 in
caveolae.8 Thus, hyperactivated eNOS is implicated in
several reported cardiovascular and pulmonary pathologies
in Cav-1 KO mice, and inhibiting eNOS rescues these pa-
thologies.14,15 Unlike the vascular beds in these other or-
gans, those in the retina and the brain both have a tight
barrier with a relatively polarized abluminal distribution
of caveolae in both endothelial and mural cells. This brings
up a long-debated question in the field: that is, whether
551
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caveolae are static structures or whether they participate in
transcellular transport in the retina.25,26 If they are static
structures that do not participate in albumin transport in the
retina, would their loss activate the eNOS-mediated cross-
talk pathway? Consistent with previous reports of micro-
vascular hyperpermeability,14e16 in the present study, Cav-1
KO retinas exhibited paracellular hyperpermeability; how-
ever, this hyperpermeability could not be rescued by phar-
macologically inhibiting eNOS activity, nor by genetically
deleting the eNOS gene in the Cav-1 KO background. We
did observe an increase in BRB permeability in eNOS KO
mice, suggesting that the effects of Cav-1 and eNOS on the
BRB may be through different mechanisms.

Studies of brain microvascular endothelium have shown
that transient knockdown of Cav-1 causes reduction in the
levels of both TJ and AJ proteins,62 and that caveolae mediate
the internalization of claudin-5 and occludin during CCL2-
induced TJ remodeling in brain endothelial cells.50 In the
present study, however, we could not detect differences in
junctional protein expression or localization in Cav-1 KO
retinal vessels, not even in the context of paracellular hyper-
permeability. We also found no differences in the distri-
bution of claudin-5 in detergent-resistant membrane
fractions from Cav-1 KO and WT retinas. Although phos-
phorylation of junctional proteins affects junctional stabil-
ity,40 we found no evidence that the phosphorylation status
of occludin and ZO-1 is altered as a consequence of Cav-1
loss. Although at the ultrastructural level we observed
clear examples of endothelial junctions permeable to HRP,
we could not detect ultrastructural differences in TJ mor-
phology. Thus, the present findings support the conclusion
that the hyperpermeability in Cav-1 KO retinas occurs (at
least in part) paracellularly, but does not affect the expres-
sion, distribution, or phosphorylation of junctional proteins.
This conclusion is consistent with a recent report by
Armstrong et al,47 who found that blockade of Cav-1e
dependent transcytosis rapidly increased paracellular
leakage without affecting junctional proteins or eNOS ac-
tivity; instead, they found that actin cytoskeletal remodeling
was involved. Caveolae dynamics are intricately related to
the cytoskeleton,9 but whether the cytoskeleton of the Cav-1
KO retinal endothelium is remodeled to account for the
hyperpermeability needs further investigation.

It is tempting to speculate that the increased permeability
associated with Cav-1 KO branch retinal veins results from
poor venous return and blood pooling, as is seen in venous
stasis retinopathy. Consistent with this idea, loss of Cav-1
resulted in venous enlargement. The mechanisms that regu-
late retinal venous diameter under physiological or patho-
physiological conditions are poorly understood (reviewed
in63), but our present findings imply a role for Cav-1 that is
independent of NO synthesis and eNOS activity. It is possible
that loss of Cav-1 results in up-regulation of other
endothelium-derived vasodilators, such as prostacyclin. We
consider this unlikely, however, given that prostacyclin
levels in arterial segments of Cav-1 KO mice have been
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found to be lower than in WT mice, not higher,64 and that
vasodilation via cyclooxygenase activity has greater dilatory
effects on retinal arteries than on retinal veins.65 In fact,
endothelium-derived autoregulatory signals such as NO,
prostacyclin, and endothelium-derived hyperpolarizing fac-
tor are more likely to affect arterial, not venous, caliber.
Similar to our findings for veins, we observed significant

enlargement of arteries in Cav-1 KO retinas, but (unlike the
case with veins) this enlargement was corrected by transient
NOS inhibition by L-NAME. Similar results have been
observed in isolated and perfused cerebral arteries,55 in
which NOS inhibition constricted control and Cav-1 KO
vessels (albeit without affecting myogenic tone). In the lung,
inhibition of NOS activity exacerbates pulmonary hyper-
tension in Cav-1 KO mice, suggesting that eNOS hyperac-
tivity compensates for the gross pathological changes to
pulmonary vasculature.66 Although considerably less is
known about retinal vessel autoregulation, there is evidence
that NO regulates both basal53 and flow-dependent54 arterial
tone. Our present findings provide compelling complemen-
tary evidence that retinal arteries are subject to intrinsic NO-
dependent control and, more importantly, provide the novel
finding that Cav-1 plays an endogenous regulatory role. The
implications of these findings for retinal vascular disorders
that result in altered autoregulation or abnormal vessel di-
ameters remain to be determined, but it is intriguing to note
that Cav-1 expression and/or polymorphisms are linked to
diabetic retinopathy and primary open-angle glaucoma, two
diseases with significant pathological alterations in vascular
diameter and/or autoregulation.
Mural cells possess contractile properties and thus

contribute to the mechanical stability of vessel walls.57e59

We therefore chose to localize a panel of retinal mural
cell markers (ie, NG2, PDGFRb, and aSMA67) in Cav-1
KO and WT retinas. Surprisingly, the enlarged branch
retinal veins were significantly deficient in NG2, but had
similar PDGFRb immunoreactivity and PDGFRb/CD31
ratios, indicating that reduced NG2 staining was not due to a
loss in mural cell coverage. In our analysis of NG2 tran-
script levels from total retinal mRNA, differences
approached, but did not reach, our statistical threshold.
However, given that our cDNA templates for RT-qPCR
were amplified from total retinal RNA, the transcriptional
reduction could nonetheless be significant in the subset of
retinal vessels (ie, branch retinal veins) in which NG2
protein levels were reduced.
NG2 is a chondroitin sulfate proteoglycan that requires

proper targeting to the membrane to function68 and that is
known to associate with basement membrane compo-
nents.69,70 Caveolae are polarized to the abluminal side of
central nervous system pericytes26 and have been shown to
colocalize with NG2 at the ultrastructural level in both
pericytes and endoneurial cells.71 Interestingly, Hughes and
Chan-Ling67 found that “pericyte maturation was charac-
terized by the restriction of NG2 expression to abluminal
cell bodies.” Thus, it is conceivable (although this remains
ajp.amjpathol.org - The American Journal of Pathology
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to be rigorously tested) that Cav-1 may play a role in NG2
trafficking or NG2 function at the cell surface, and possibly
also in pericyte maturation.

In addition to reductions in NG2 in branch retinal vein
smooth muscle cells, we also observed significant increases
in aSMA immunolabeling in Cav-1 KO retinal vessels
(Figure 7). The extent of aSMA expression by smooth
muscle cells in the retina normally increases with matura-
tion.67 However, we observed markedly increased aSMA
immunoreactivity along the entire branch retinal vein, as
well as morphological changes in smooth muscle cells near
the ONH, which suggested a transition to a myofibroblast-
like phenotype. Intriguingly, increased aSMA staining has
been observed in lung parenchyma, although (in contrast to
our findings), pulmonary postcapillary vessels did not
exhibit such increase.66 Whether the increase in aSMA
levels associated with retinal veins originates from existing
mural cells that have changed phenotype or from endothelial
cells that have undergone endothelialemesenchymal tran-
sition remains to be determined. However, spontaneous
endothelialemesenchymal transition has recently been
shown in pulmonary endothelial cells.72

We can only speculate on the spatial differences in mural
cell morphology. At present, we favor the hypothesis that
differences in mechanical forces along the retinal veins are
not sensed appropriately in the absence of caveolae. There is
abundant evidence of rhythmic, spontaneous venous pul-
sations in the central retinal vein (the major vein that drains
the branch retinal veins) of healthy human subjects. These
regular cycles of venous collapse and opening are associated
in a complex way with pressure gradients resulting from the
cardiac cycle and rhythmic fluctuations of intraocular and/or
intracranial pressures.73,74 These fluctuations are more
commonly observed in healthy subjects than in glaucoma
patients.75 Caveolae are now recognized as mechanosensors
in vascular cell membranes,9,76,77 and it is conceivable that
endothelial and mural cells in retinal veins of Cav-1 KO
mice are unable to cope with mechanical stresses resulting
from continuous venous pulsations. This speculation re-
mains to be tested, but could have profound clinical rele-
vance, because vascular changes near the ONH are strongly
associated with glaucoma progression, and because CAV1
polymorphisms have recently been associated with risk of
developing primary open-angle glaucoma.61
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