International Journal of Applied Earth Observation and Geoinformation 22 (2013) 86-98

International Journal of Applied Earth Observation and

journal homepage: www.elsevier.com/locate/jag

Contents lists available at SciVerse ScienceDirect

Geoinformation

Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data
through the INLA and SPDE approaches: Applied to data observed between 1992
and 2010 in rural North East South Africa

Eustasius Musenge ®P* Tobias Freeman ChirwaP, Kathleen Kahn®9-¢, Penelope Vounatsou®

3 MRC/Wits Rural Public Health & Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
b Biostatistics and Epidemiology Division, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

¢ Swiss Tropical and Public Health Institute, Basel, Switzerland

d Centre for Global Health Research, Umed University, Umed, Sweden

¢ INDEPTH Network, Accra, Ghana

ARTICLE INFO

Article history:
Received 7 July 2011
Accepted 2 April 2012

Keywords:

GMRF

Big “N”

Zero inflated

INLA SPDE

HIV/TB mortality
Spatiotemporal
Agincourt South Africa

ABSTRACT

Longitudinal mortality data with few deaths usually have problems of zero-inflation. This paper presents
and applies two Bayesian models which cater for zero-inflation, spatial and temporal random effects.
To reduce the computational burden experienced when a large number of geo-locations are treated as
a Gaussian field (GF) we transformed the field to a Gaussian Markov Random Fields (GMRF) by triangu-
lation. We then modelled the spatial random effects using the Stochastic Partial Differential Equations
(SPDESs). Inference was done using a computationally efficient alternative to Markov chain Monte Carlo
(MCMC) called Integrated Nested Laplace Approximation (INLA) suited for GMRF. The models were
applied to data from 71,057 children aged O to under 10 years from rural north-east South Africa liv-
ing in 15,703 households over the years 1992-2010. We found protective effects on HIV/TB mortality
due to greater birth weight, older age and more antenatal clinic visits during pregnancy (adjusted RR
(95% CI)): 0.73(0.53;0.99), 0.18(0.14;0.22) and 0.96(0.94;0.97) respectively. Therefore childhood HIV/TB
mortality could be reduced if mothers are better catered for during pregnancy as this can reduce mother-
to-child transmissions and contribute to improved birth weights. The INLA and SPDE approaches are
computationally good alternatives in modelling large multilevel spatiotemporal GMRF data structures.

© 2012 Elsevier B.V. Open access under CC BY license.

1. Introduction

Public Health data on mortality have been growing increas-
ingly rich as more accurate information on “who”, “where” and
“when” becomes available. These form hierarchical (multilevel)
data structures which are correlated such that person-level (“who”)
information can be repeated, geo-statistical (“where”) data often
has spatial correlation and temporal (“when”) data can be auto-
correlated. Classical statistical techniques are usually based on
independent observations, but when applied to multilevel data
structures they often underestimate the standard errors. As a
result of this the statistical significance is overestimated leading
to erroneous results and subsequent inferences (Cressie, 1993).
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This defeats the main goal in epidemiological analysis, which is
to identify and quantify correctly any exposures, behaviours and
characteristics that may modify a population’s or individuals risk
and use these to implement more appropriate interventions (Rose,
2001).

In modelling hierarchical data we can take into account spatial
and temporal correlations by introducing in the model spatiotem-
poral random effects. Several other hurdles have to be overcome
when modelling hierarchical mortality data such as: zero infla-
tion when there is a greater proportion of non-occurrence for an
outcome, handling large data structures, repeated measures and
estimating many parameters rapidly and accurately. Bayesian tech-
niques with the aid of the Markov chain Monte Carlo (MCMC)
simulation methods have successfully overcome these hurdles
and fit spatiotemporal random effects for reasonably sized geo-
locations of Gaussian fields (GF) (Berliner et al., 2000; Gilks et al.,
1996; Casella and Robert, 1999; Wikle, 2003; Wikle et al., 1998).
However as the number of geo-locations increases, MCMC com-
putations of a dense GF m x m spatial correlation matrix become
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infeasible or extremely slow in the order of power three (O(m3)),
this problem is popularly known as the “big m” or “big N” (Banerjee
et al., 2004). Several approaches have been used to resolve the
“big m”. Banerjee et al. (2004) give brief summaries of these: sub-
sampling, spectral, lattice, dimension reduction and course fine
coupling methods (Banerjee et al., 2004, 2008; Banerjee and Carlin,
2003; Kamman and Wand, 2001; Johnson et al., 1990; French et al.,
2002). Generally these techniques attempt to reduce the dimension
of the GF by selecting a “representative” sub-sample or fixing some
parameters or changing the scale from continuous to discrete with
the aim of reducing the computational burden in running MCMC
simulations.

We addressed this problem using techniques proposed by Rue
and Held (2005) who changed the continuous scale GF to a discrete
scale Gaussian Markov Random Field (GMRF), for the Matérn fam-
ily of covariance structures (Rue and Held, 2005). More recently
Lindgren et al. (2011) provides the detail of how the GF and GMRF
relate via Stochastic Partial Differential Equations (SPDE) using
basis functions (Lindgren et al., 2011; Cameletti et al., 2012). Sec-
ondly we performed inference and prediction using Integrated
Nested Laplace Approximation (INLA) well suited for GMRF as
opposed to the commonly used MCMC (Rue et al., 2009). Hence
we greatly reduced the computational burden and could do in
hours what usually took days having reduced the computational
operations for a spatiotemporal model from power 3 to power 1.5
(0(m3)— 0(m312)).

The aim of this paper is to discuss and apply a Bayesian model
that can handle large zero-inflated spatiotemporal observational
data on mortality producing reliable estimates speedily. In Section
2 we explore the Bayesian methods and model fitting inference,
prediction and goodness of fit. Section 3 we apply the discussed
Bayesian spatiotemporal model to the data from Agincourt in rural
South Africa which has 71,057 children aged 0-9 years living in
15,703 households over the years 1992-2010. In Section 4 we
discuss the merits of our model and distil the Public Health impli-
cations of our results in interventional studies.

2. Methods
2.1. Spatiotemporal model structure

The outcome y;(s;, t) was the observed HIV/TB related death of
achildi=1, ..., N from a given household j=1, ..., m in a specific
yeart=1,...,Twhichisarealisation of the spatio-temporal process
(., .)eY(.,.). Assuming the outcomes distribution belongs to the
exponential family of distributions, we can fit flexible structural
additive models belonging to the generalized linear mixed models
(GLMM) (Brezger and Lang, 2006; Fahrmeir and Lang, 2001). Our
data may be represented by the equation:

f
Vils;, ) = X(s, OB+ Y _fOuji, £) + £i(s;, 1) (1)

j=1

where X(s;, t) is the design matrix with fixed p covariates, 8=(8,
... Bp) is the regression coefficients vector, f{.) which is one of the
f9) used to relax the linear relationship or introduce random effects
or both and &(s;, t)~N(0, 0?) are the error terms which are nei-
ther temporally nor spatially correlated (Cameletti et al., 2012).
As our data are spatially and temporally correlated we can intro-
duce random effects f{.) =f{s;, t) a Gaussian random field with a first
order autoregressive temporal effect &(s;, t—1) and coefficient ¢
and zero mean multivariate normal (temporally independent) spa-
tial effects w(s;, t)~MVN(0, X = 02 C(Is; — Skl| = h);j # k) resulting
in the equation:

flsj, t) = @&(sj, t = 1) + (s, t) (2)

where |§|<1 in case of stationarity, £(s;, 1)~N(0,02/(1 - ¢?)=
1/7,(1 — ¢2)) and the spatial effect is second order stationary and
isotropic. When the spatial correlation follows a Matérn covari-
ance structure we obtain C(h)=(1/(I"(v)2"~1))(xh)"K,(kh) for the
Euclidean distance lags h. The parameter v measures the degree
of smoothness and also the order of the modified Bessel function
(when v>0) of second kind K, and finally « > 0 is the scaling param-
eter with arange p = (v/8v/«) where the spatial correlation is close
to 0.1 for each v (Lindgren et al., 2011; Rue et al., 2009).

2.2. Zero inflated Poisson and Binomial spatiotemporal models

Observational binary outcome data are commonly analysed
using the logistic regression model, which has a logit linear pre-
dictor in the GLMMs canonical link structure. However this model
has problems of instability especially with spatial random effects,
which would be exacerbated due to zero inflation (Agarwal et al.,
2002). In epidemiological cohort studies a relative risk is more pre-
ferred than an odds ratio as this caters for temporality and also a
more intuitive measure of burden of morbidity or mortality (Barros
and Hirakata, 2003; Fekedulegn et al., 2010). In light of this and in
an endeavour to have better fitting models, two models that can
handle zero inflation were employed. The two conditionally inde-
pendent models fit were the zero inflated Poisson and zero inflated
Binomial with alog and a logit canonical link functions respectively:
Yelne, Oc ~ZIP(ut, 6¢) and ye|ne, pe, O¢ ~ ZIBin(ny, py, 6t ).

The mortality outcome (count/binary) data y(s;) observed at
the households in the Agincourt area are zero inflated and assumed
to follow either a Poisson (count) or Binomial distribution (binary).
We will occasionally drop the s; for notational convenience in the
rest of the article. We therefore resorted to the zero inflated models
to cater for the imbalance due to many zeros. The model that takes
care of zero inflation (6;) can then be represented as:

9t+(1 —Qt)n(Omt,Gt) if yt:O
7T(Yelne, 0r) = i (3)
(1 —6)m(1n,, 6r) if y.#0

With  canonical links of the expected means:
8(E(ye(.))=log(pme)=n: and g(E(ye(.))=logit(p:)=n: with means
are w:=exp(n;) and p; = (exp(n)/(1+exp(n:))) for the Poisson and
Binomial distributions, respectively. A spatiotemporal canonical
link (linear predictor) model can be expressed as

n(sj) = Xe(s;)B + fe(s;) + &c(sj)
Je(sj) = Pe_1(s;) + wi(s))

where &¢(s;)~N(0, o2Im) with identity matrix I, of dimension m x
m, w¢~N(0, X = 03)2) with a stationary AR(1) process & ~N( 0,
X|(1—¢?)) (Cameletti et al., 2012). The X is a dense GF m by
m dimensional matrix from a Matérn distribution with scale and
smoothness parameters « and v (which is fixed in all our com-
putations) respectively. As the size of m increases computations
become increasingly more difficult due to the “big m” as previously
highlighted.

(4)

2.3. Solving the “big m” using the SPDESs to estimate the spatial
random effects

To resolve the computational burden associated with the GF
Matérn covariance function we used a technique that changes
this to a GMRF proposed by Rue and Held (2005). Briefly the
locations are converted into areal triangulations firstly by making
them the initial triangle vertices before adding more vertices for
proper triangulation which extends the grid and very useful for
prediction. Fig. 1 shows how we employed triangulation to our
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Fig. 1. Agincourt original household locations (left), triangulation of all household (centre) and triangulation of households within 500 m (right).

data, the diagram on the right was made assuming households
within 500 m were similar we fit 488 vertices and 938 triangles.

The SPDE technique redefines the Matérn field as a finite “repre-
sentative” linear combination of basis functions on a triangulation
of the locations (Cameletti et al., 2012). Hence for our spatiotem-
poral random effects in GMRF representation we get @;~N(0, X~ =
Q") and &~N(0,(Q;'/(1-¢?))=Q; ") where Qs is a sparse
time-invariant precision matrix with dimension m* vertices from
the triangulations. A joint spatiotemporal GMRF f;~N(0, Q! =
(Qr ® Qs)™") whose precision matrix is the Kronecker product of
the temporal and spatial precision matrices; is such that f; ~ Bf;
where the basis B is a sparse matrix with unit elements for match-
ing triangle vertices and zero’s elsewhere (Lindgren et al., 2011).
Therefore Eq. (4) becomes n;=X;+ Bf; +&;, where we let x;={f,
B, 0;} be the vector of latent Gaussian fields and ¢, = {02, ¢, «, 02}
being a vector of unknown parameters. We can thus express
our model into a hierarchical Gaussian latent variable fashion as
follows, stage 1 — observational equation, stage 2 — latent Gaussian
field and stage 3 — parameter model (Simpson et al., 2011):

stage 1: %, @,~N(XcB + Bfi; 02Im) = N(iy, (@,) = Axe, Q' (9,))
stage 20 X|@~N(fy, (9:); Qe (@0)) (5)
stage 3: @~(g,)

where the precision matrices Q ~1(.) are either small enough (for
easier multiple factorisation) or sparse (Simpson et al., 2011b).
These models cover a wide range of models and are easily estimable
using INLA as shown in the next subsection.

2.4. Bayesian inference using INLA

In accordance with the Bayesian paradigm we aim to find the
posterior distribution of the processes and parameters updated by
data (Wikle, 2003). This could be expressed as:

Probability (process, parameters|data) o Likelihood
x(data|process, parameters) x Probability (process|parameters)

x Probability (parameters)

Applying this expression to our model, letting © =
(B, ¢, 0,02, k,0%) denote the vector of all parameters and
dropping the subscripts to present in vector form, &={&;} and

data y={y:} (Cameletti et al.,, 2012; Rue et al., 2009), their joint
posterior distribution is thus:

(0, & nly) « (y|©, § mn(n|§, O)n(§, O©) (6)

Fig. 2 gives a simplified pictographical view, where level 1 are
the data and assumed distributions, level 2 is a process, level 3 and
4 are parameters and level 5 gives the default hyper-parameters
used in the INLA package.

The posterior marginals are required, standard (i), nested
approximation (ii) and numerical integrations (iii) for latent fields
x={B, f, 6} and hyper-parameters ¢ = {¢, 02, k, 02} respectively
(Rue and Held, 2005; Rue et al., 2009):

Dr(x, ly) = / (xilg, y)n(ly)de (yily) = / (ely)de_;

ina(x, oly) = / 7(xilp, y)7(oly)de

(yily) = / (ely)de_;
A, W) = Y FAI0 YFHOIAL Ty o / (. oly)

de_;

(R0, ¥) | iorg)

k

(7

Using this technique we aim to initially get the terms “nested”
inside the integrand in Eq. (7ii) left hand side without integra-
tion (Simpson et al., 2011b). To do so we firstly estimate the
marginal 77(x|¢@,y) which is a Gaussian approximation of x with
mode x*(¢), for a given ¢. Secondly we estimate 7(x;|@,y) =
N(x;; ni(@), oiz((p)) using either Gaussian or Laplace or a simpli-
fied Laplace approximations (Rue et al., 2009). We computed these
marginals using the R package Integrated Nested Laplace Approxi-
mation (INLA) which uses the simplified Laplace approximations
(Rue and Held, 2005; Rue et al., 2009; R-cran, 2010). The INLA
procedure also enables easier spatial prediction since it computes
posterior conditionals for the spatial random effects on all triangu-
lation vertices including the extensions as shown in Fig. 1.

2.5. Model goodness of fit and convergence diagnostics

We assessed the accuracy of 7(¢|y) using the effective num-
ber of parameters, which can be approximated as the difference
between the dimension of the normalised integral {77(¢|y)} nand
the trace of the product of the prior precision matrix and the pos-
terior covariance (Spiegelhalter et al., 2002):

po(@) ~n —triQ(@)Q = (@)} (8)
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Fig. 2. Hierarchical structure of a zero inflated spatiotemporal model fit using INLA.

The deviance information criteria (DIC) was also used which is 3. Application
defined as the difference between twice the mean of the deviance
and the deviance of the mean according to Spiegelhalter et al. 3.1. Rural South Africa Agincourt HDSS data, study design and
(2002) and expressed as: ethics

The Agincourt health and demographic surveillance system

9) (HDSS) site was set up in the Agincourt sub-district in 1992 due
to its remote location, availability of several clinics and presence

of Mozambican in-migrants (Tollman et al.,, 1999). By 2010, the
Agincourt HDSS had a population of over 84,000 persons living in
approximately 17,000 households scattered throughout 27 neigh-
bouring villages. Cause of death data were obtained through verbal
autopsies conducted on every recorded death (Clark et al., 2007).
Interviews were conducted by trained field worker. This was done

D(x, @) = —2210g{7~1(y,-|x,-, @)} + constant

1

Interpretations of these is quite straight forward the smaller the
effective number of parameters the more parsimonious the model
and the smaller the DIC the better the model fit, more-so most
parsimonious is not always the best model.

40 45

35

Number of deaths from HIV/TB
1

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig. 3. Year specific child deaths due to HIV/TB from 1992 to 2010.
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Fig. 4. Posterior point estimates for ZIP (top) and ZIB (bottom) models.

within 1 year after a death, with the closest caregiver of the
deceased in their mother tongue. Cause of death was indepen-
dently determined by two medical practitioners with the third as
a tie breaker. Their consensus cause of death was classified accord-
ing to the World Health Organization’s International Classification
of Diseases (ICD10) (Kahn et al., 2000). HIV/TB mortality in chil-
dren was ascertained by the reported signs and symptoms, and
in some instances this was verified through the mother’s cause
of death (Kahn et al., 2000). Over 90% of the HDSS households
were geo-coded by 1992 and by 2010 all the households were geo-
coded, thus enabling spatial analyses at household as well as village
level. The study design was a retrospective cohort study cover-
ing households observed from the onset of the site to December
2010. The Agincourt HDSS site was granted ethical clearance by
the University of the Witwatersrand’s Committee for Research on
Human Subjects (No. 960720). This work was also granted ethical
clearance by the University of the Witwatersrand’s Committee for
Research on Human Subjects (M081145). Verbal informed consent
was obtained when the census rounds were conducted and also
when verbal autopsy data were collected from a close relative of
the deceased.

3.2. Dependent and independent variables

The persons included in the study were all the children aged
between 0 and under 10 years who lived or had lived in the
Agincourt HDSS between January 1992 and December 2010. The
independent variables used were: child’s gender, birth-weight cat-
egory, age category, slum (availability of water, electricity and
toilet) and number of mother’s antenatal clinic visits during preg-
nancy and year of observation. The household’s latitude and
longitude were used to construct the latent variables for the spatial
random effects and year the AR(1) temporal effects. The dependent
variable was death due to HIV and or tuberculosis (TB) determined
by the WHOs ICD10 verbal autopsy codes A16-A19! for HIV and
B20-B242 for TB. These data were extracted using Structured Query

1 Al6=respiratory tuberculosis; not confirmed bacteriologically or histologi-
cally; A17 =tuberculosis of nervous system; A18=tuberculosis of other organs;
A19 =miliary tuberculosis.

2 B20=human immunodeficiency virus (HIV) disease resulting in infectious and
parasitic diseases; B21 = human immunodeficiency virus (HIV) disease resulting in
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Table 1

Univariate and multiple regression results models using zero inflated Poisson adjusting for spatiotemporal random effects.

Variable Summary, n (%) or Univariate results, Non-spatial multiple = Temporal multiple Spatial multiple Spatiotemporal
mean + SD RR (95% credible  variable model, variable model, variable model, multiple variable
interval) adjusted RR (95% adjusted RR (95% adjusted RR (95% model, adjusted RR
credible interval) credible interval) credible interval) (95% credible interval)
Sex
Male 35,317(49.70) 1.00
Female 35,740(50.30) 0.89(0.74;1.07)
Birth weight category
Low weight 6,320(8.89) 1.00 1.00 1.00 1.00 1.00
Moderate weight 15,241(21.45) 0.81(0.61;1.07) 0.70°(0.53;0.93) 0.85(0.63;1.16) 0.71°(0.53;0.93) 0.85(0.63;1.16)
High weight 49,496(69.66) 0.39°(0.30;0.51)  0.57°(0.42;0.76) 0.73°(0.53;0.99) 0.58°(0.43;0.77) 0.73°(0.53;0.99)
Age category
0-1 years 8,580(12.07) 1.00 1.00 1.00 1.00 1.00
1-5 years 19,619(27.61) 0.21°(0.17;0.26)  0.20°(0.16;0.25) 0.18°(0.23;0.64) 0.20°(0.16;0.25) 0.18°(0.14;0.22)
5-9 years 42,858(60.31) 0.05°(0.04;0.07)  0.04'(0.03;0.05) 0.04'(0.05;0.54) 0.04(0.03;0.05) 0.04'(0.03;0.05)

Slum (electricity, water and toilet)
None of the three 10,051(14.14)

At least one 27,329(38.46)
At least two
All three 5,748(8.09)

(

(
21,871(30.78)
(

(

Antenatal clinic visits
Zero inflation parameter
Precision for year

Rho for year

Kappa

Tau

6.00(+1.50)

1.00
0.78(0.60;1.01)

0.74°(0.56;0.97)
0.57°(0.37;0.86)
0.98°(0.97;0.99)

1.00
0.79(0.61;1.02)
0.73'(0.56;0.96)
0.55°(0.35;0.83)
0.98'(0.97;0.99)
0.06°(0.002;0.25)

0.96°(0.94;0.97)
0.05'(0.003;0.18)
0.91°(0.23;2.19)
0.88°(0.72;0.97)

1.00
0.77(0.60;1.00)

0.71°(0.54;0.93)
0.53°(0.34;0.81)
0.98°(0.96;0.99)
0.07'(0.003;0.28)

1.98°(1.09;3.66)
1.37°(0.18;2.600

0.96'(0.94;0.97)
0.04'(0.002;0.15)
0.86°(0.16;2.32)
0.89'(0.70;0.98)
1.55'(1.41;1.63)
2.317(1.19;9.08)

Moran’s Indexes:
Observed(Expected + standard

deviation)
Effective number of parameters 12.05(0.05)
DIC 4855.31

0.32°(2.1+3.33x10°3)

25.61(1.10)
4532.69

23.18(5.04)
4846.13

29.16(6.33)
4532.31

" Statistical significance at the 5% level.

Language (SQL). Preliminary data analyses and data management
were done using STATA 10.1 (StataCorp, 2007). The Bayesian anal-
ysis was done using an R software package called INLA (Rue et al.,
2009; R-cran, 2010).

3.3. Descriptive statistics

There were similar proportions of boys and girls (50.3%) with
an average age of 6.14 years (standard deviation of 3.38). Almost
9% of the births were low-weight, the majority (60.3%) of the chil-
dren were only observed after their 5th birthday. Only 8.09% had
access to all three: clean tap water, flush toilet inside house and
electricity, which is expected in typical rural areas. Health check-
ups during pregnancy averaged about 6 visits, with the majority
(73%) still not going at all. A total of 456 deaths were HIV/AIDS
(including HIV/tuberculosis) which was a small proportion of the
population indicative of the presence of zero inflation. Mortality
was moderate in the early to mid 1990s before gradually growing
from 1999 and reaching a peak in 2001, remaining high for several
years before gradually declining from 2007 as shown in Fig. 3.

3.4. Zero inflated Poisson and Binomial spatiotemporal modelling
results

We performed univariate and multiple variable analyses using
both the ZIP and ZIB models. Multiple variable models were fit sys-
tematically starting with one without random effects, spatial only,
temporal only and finally spatiotemporal random effects. The R-
codes using INLA are given in Appendix 1. From our results shown

malignant neoplasms; B22 =human immunodeficiency virus (HIV) disease result-
ing in other specified diseases; B23 =human immunodeficiency virus (HIV) disease
resulting in other conditions; B24=unspecified human immunodeficiency virus
(HIV) disease.

in Tables 1 and 2, our discussion will be centred on the ZIP spa-
tiotemporal model which was the best fitting model since this had
the lowest DIC (4532.31) and catered for spatiotemporal random
effects, as later indicated in Section 3.5.

Two variables consistently showed significant associations with
child HIV/TB mortality, firstly the age category of the child, which
showed a decrease in mortality with increase in age (Chi-Square
p-value<0.001). Those aged 1 to under 5 (127/19,619) were 82%
{0.18(0.14; 0.22)} less likely to experience a death due to HIV/TB
compared to those under 1(262/8580) and those over 5 and
under10 (67/42,858) were 96%{0.04(0.03;0.05)} less likely to die

-2
1

5 T T T T
0 5 i0 15

PostMean 0.025% 0.5% 0.975%

Fig. 5. Posterior means (bold), medians (0.5%=50th percentiles, middle), lower
credible limits (0.025% = 2.5th percentiles) and upper credible limits (0.975% = 97.5th
percentiles).
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Table 2
Multiple regression results of four models using zero inflated Binomial adjusting for spatiotemporal random effects.

Variable Non-spatial multiple Temporal multiple Spatial multiple Spatiotemporal
variable model, variable model, variable mode, multiple variable
adjusted OR (95% adjusted OR (95% adjusted OR (95% model, adjusted OR
credible interval) credible interval) credible interval) (95% credible interval)

Sex

Male

Female

Birth weight category

Low weight 1.00 1.00 1.00 1.00

Moderate weight 0.70°(0.52;0.92) 0.86(0.62;1.20) 0.70°(0.52;0.93) 0.005°(0.003;0.07)

High weight 0.62°(0.46;0.83) 0.67°(0.48;0.95) 0.63°(0.47;0.85) 0.05°(0.007;0.04)

Age category

0-1 years 1.00 1.00 1.00 1.00

1-5 years 0.07°(0.05;0.09) 0.05°(0.04;90.07) 0.07°(0.06;0.09) 0.18°(0.14;0.22)

5-9 years 0.006"(0.004;0.008) 0.005"(0.003;0.95) 0.006"(0.004;0.008) 0.04°(0.03;0.05)

Slum (electricity, water and toilet)

None of the three 1.00

At least one 0.77(0.60;1.01)
At least two 0.717(0.54;0.95)

All three 0.527(0.34;0.81)
Antenatal clinic
visits
Zero inflation 0.22°(0.042;0.66)
parameter

Precision for year

Rho for year

Kappa

Tau

Moran’s Indexes:
Observed(Expected + standard

deviation)

Effective number of 11.10(0.080)
parameters

DIC 5179.43

0.94'(0.92;0.96)
0.43°(0.19;0.79)

0.78'(0.17;1.96)
0.87'(0.67:0.97)

24.58(1.03)

4754.60

1.00
0.76'(0.58;0.99)
0.69'(0.52;0.93)
0.517(0.32;0.78)
0.97°(0.95;0.98)

0.15°(0.031;0.45)

1.98°(1.14;3.55)
1.37°(0.27;2.54)

22.97(5.09)

5180.50

0.94'(0.93;0.96)
0.42°(0.18;0.67)
0.80°(0.20;1.93
0.87°(0.69;0.97)
1.54°(1.41;1.62)
2.23'(1.22;6.91)
0.30°(2.1+£3.33x 1073)
31.12(5.18)

4803.93

" Statistical significance at the 5% level.
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Fig. 6. Posterior density plots of log-means for fixed effects of the ZIP spatiotemporal model.
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from HIV/TB relative to the under 1s keeping all other variables
constant. Secondly the category of the birth weight was signifi-
cantly associated with deaths due to HIV/TB, showing a decreasing
trend with greater birth weight (Chi-Square p-value <0.001). Those
who had a birth weight of 3.5 kg and above (232/49,496) were 27%
{0.73(0.53;0.99)} less likely to die due to HIV/TB relative to those
who were born with a low birth weight of less than 2.5 kg (76/6329)
independent of other risk factors. The only other significant pro-
tective factor was the number of antenatal clinic visits made by
the mother; for every additional visit the mother attended the risk
of losing the child from HIV/TB decreased by 4% {0.96(0.94;0.97)}
keeping other variables constant as shown by the spatial only and
no-random effects model. Those who had access to all three elec-
tricity, water and flush toilet (who in this area are the more affluent)
experienced fewer deaths due to the HIV/TB compared to those who
had none. We show the posterior marginal point estimates from the
ZIP and ZIB models in Fig. 4 top and bottom respectively.

As shown in Fig. 4, the region with the greatest risk of child
HIV/TB mortality is the central region with a trend towards the
south-westerly. In the context of our findings, this is the region
whose households have lower birth weights, greater under 1 mor-
tality and having lower visits to the health facility compared to
households in other regions. The lowest risk region is the top north-
easterly with the ZIP model showing few clusters than the ZIB
model. The standard error maps indicate the greatest errors on the
peripherals which are also the regions where the extensions of the
triangulation shown in Fig. 1. Also consistent with our results from

PostDens [(Intercept)]

PostDens [sex]

93

Tables 1 and 2 there is a greater margin of error with the ZIB model
as compared with the ZIP model.

3.5. Model assumptions, goodness of fit and convergence
diagnostics

Using the final spatiotemporal models in both ZIB and ZIP we
investigated the presence of zero inflation, temporal and spatial
correlation. The null hypothesis for zero inflation was that the
inflation parameter 6; is zero (no zero inflation) our results in
Tables 1 and 2 indicate significant presence of zero inflation of 0.04
and 0.42 for ZIP and ZIB respectively. Investigation of temporality
was done by testing the ¢ coefficient of the first order autocorrela-
tion model with null hypothesis that the process was not stationary
|¢|>1. Both our models indicated significance presence of station-
arity that is 0.86 and 0.87 for ZIP and ZIB respectively. Fig. 5 shows
the posterior means plus 95% credible bands, time series plots
from the modelling which resembles the observed data shown in
Fig. 3. Lastly on checking model assumptions we investigated the
presence of spatial effects by inspecting the significance of the com-
ponents (k and t) of the Matérn covariance (see Tables 1 and 2). Also
this was investigated with the classical Moran’s indices on the spa-
tial residuals testing the null hypothesis that there is zero spatial
autocorrelation which from both tests yielded significant results,
hence rejecting the null.

We compared the two models the ZIB and ZIP and found that
the latter fitted better in all the variants from the no-random effects
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Fig. 7. Posterior density plots of log-means for fixed effects of the ZIB spatiotemporal model.
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model to the spatiotemporal as this yielded smaller DICs and model
parsimony. Some of the parameter estimates were similar, except
for the zero inflated parameter, age categories and birth weights.
The ZIP model also showed more stable estimates and consistent
results in the adjusted relative risks (adjusted RRs) compared to the
ZIB and narrower credible intervals. As a way of showing the con-
vergence pictographically for some parameter estimates we show
the fixed effects logarithmic form posterior means density plots in
Figs. 6 and 7.

The plots in Figs. 6 and 7 show that the parameters fitted well as
GMREF since they are symmetrical about thus the mean equals the
mean and mode.

4. Conclusions

The Public Health rational of our results is centred on lack of
health seeking behaviour in rural areas. Interventions could tar-
get two groups of mothers (also caregivers) those not yet infected
and those already infected. For both groups maternal attendance
of health facility can minimize the risk of under one mortality and
possibly giving birth to low-weight children. For those mothers’
already infected several options are there; before child birth (pre-
vention of mother to child) and after birth (anti-retro-virals - ARV
uptake) and also early treatment on ARVs for the parent to increase
their longevity. A significant decline in mortality can already be
observed in our cohort post 2007 the year when ARVs were started
in the area. Poverty however still remains the greatest challenge in
the developing countries and mostly interventions when available
are very scarce. As such our results from spatiotemporal Bayesian
modelling coupled with maps can be very handy in allocation of
the limited resources of aid.

Modelling that controls for potential confounding is an add-
on to epidemiological studies and gives strength to the estimates
derived from such modelling procedures. Our modelling approach
caters for potential spatial and temporal confounders. This
approach was able also to cater for “large” zero inflated spatiotem-
poral data. The years 1992-2010 cover a span of 19 years (76%) of
the United Nation’s Millennium Development Goals (MDG) period
of 25 years. Goal 4.1 aims at reducing child (under five) mortal-
ity by two thirds over that period (Black et al., 2003). Our results
demonstrate such a significant decline in mortality due to HIV/TB.

A major limitation in developing nations is lack of reliable and
user friendly analyses software, which was addressed by using INLA

a package available on the public domain. Zero inflated Poisson
(ZIP) and zero inflated Negative Binomial (ZINB) models were used
for log link function linear predictors and also catered for spatial
random effects (Lambart, 1992; Ridout et al., 2001). It has also been
noted from other studies that the log link function linear predictor
models were more stable than logit link function models when they
contained a spatial component. This finding was also confirmed in
our study as we observed that models from the exponential family
with a log-linear predictor were more stable and able to converge
better than the logit-link function model. This motivated us to treat
the outcome as a discrete measure as opposed to binary mostly
used for logistic regression (Agarwal et al., 2002). We demon-
strated that the “big m” can be resolved with great ease for Public
Health mortality hierarchical structures with the aid of SPDEs and
INLA.
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Appendix A. Zero inflated Poisson R-code using INLA adapted from http://www.r-inla.org/ (Lindgren et al., 2011)

#1.#IMPORTING LIBRARIES
Tibrary(foreign)
Tibrary(INLA)
Tibrary(coda)
Tibrary(fields)

#2.# Read data:
decdata = read.dta("c:/jagnovredo/childleveldec.dta")
attach(decdata)
names (decdata)

#3.# Build triangular mesh of locations within 0.5 km see figure 1
mesh123 = (inla.mesh.create(cbind(decdata$coordlongx,/1000,
decdata$coordlaty/1000), refine=TRUE, cutoff=0.5))

plot(mesh123)

#4.# Store the data-->vertex mapping:
## ( mesh$idx$loc[m] is the mesh vertex for data location number m )
decdata$hhid = mesh123$idx$Toc

#5.# Create the SPDE/GMRF model, (kappaA2-Delta)(tau Xx) = W:
spdel23 = inla.spde.create(meshl123, model="matern")

#6.# Functions of four models multivariate models fit

#6a.No random effects model with household and individual random effects
norand=hivtb2~sex+as.factor(slumrurall)+as.factor(age_cat)+as.factor(birthwei
ght_cat)+antenatalvisits+f(hhid, model="1iid")+f(idno, model="1iid")

#g?.Tempora1 random effects model with household and individual random
effects
temponly=hivtb2~sex+as.factor(slumrurall)+as.factor(age_cat)+as.factor(birthw
eigh%_ﬁ@tar?ntenata1visits+f(year, model="arl")+f(hhid, model="1iid")+f(idno,
model1="11

#6c.Spatial random effects model with individual random effects
spatonly=hivtb2~sex+as.factor(slumrurall)+as.factor(age_cat)+as.factor(birthw
eight_cat)+antenatalvisits+f(idno,model="1id")+f(hhid,model=spdel23)

#6d.Spatiotemporal random effects model with individual random effects
spatiotemp=hivtb2~sex+as.factor(slumrurall)+as.factor(age_cat)+as.factor(birt
hweight_cat)+antenata1visits+f(year, model="arl")+f(idno,
model="171id")+f(hhid,model=spdel23)

#7.# Running INLA models on the four stated in step 6

norand = inla(norand, family="zeroinflated.poissonl",data =

decdata, control.results=Tist(return.marginals.random=TRUE, return.marginals.pr
edictor=TRUE),control.compute=Tist(dic=TRUE,Ccpo=TRUE))

summary (norand)

spatonly = inla(spatonly, family="zeroinflated.poissonl",data =
decdata,control.results=1list(return.marginals.random=TRUE, return.marginals.pr
edictor=TRUE),control.compute=1ist(dic=TRUE,Cpo=TRUE))

summary(spatonly)

temponly = inla(temponly, family="zeroinflated.poissonl",data =
decdata,control.results=list(return.marginals.random=TRUE, return.marginals.pr
edictor=TRUE),control.compute=T1ist(dic=TRUE, Ccpo=TRUE))

summary (temponly)
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spatiotemp = inla(spatiotemp, family="zeroinflated.poissonl",data =
decdata,control.results=Tist(return.marginals.random=TRUE, return.marginals.pr
edictor=TRUE),control.compute=Tist(dic=TRUE,cpo=TRUE))

summary(spatiotemp)

#saving output for model to store posterior estimates and other
save(spatiotemp, file="c:/resultsdec/spatiotemp.Rdata")

#8.#Loading data from previous analyses in new session
spatiotemp<-load(file="c:/jagnovredo/spatiotemp.Rdata")
names (spatiotemp)

#9.#Assessing for posteriors Spatial auto-correlation (Moran’s I)
Tibrary(ape)

D.dists <- as.matrix(dist(cbind(mesh123%$loc[,1], mesh123$loc[,2]1)))
D.dists.inv <- 1/D.dists

diag(D.dists.inv) <- 0
Moran.I(spatiotemp$summary.random$hhid[, "mean"], D.dists.inv)

#10.# Diagnostic plots see figures 6 or 7
plot.inla(spatiotemp,
plot.fixed.effects = TRUE,constant=FALSE,
plot.lincomb = TRUE,
plot.random.effects = TRUE,
plot.hyperparameters = TRUE,
plot.predictor = TRUE,
plot.q = TRUE,
plot.cpo = TRUE)

#11.# Extract the SPDE parameters, point and interval estimates
tauconf = exp(spatiotemp$summary.hyperpar([2,])
kappaconf = exp(spatiotemp$summary.hyperpar[3,]1/2)

tau = exp(spatiotemp$summary.hyperpar[2,"mean"])
kappa = exp(spatiotemp$summary.hyperpar[3,"mean"]/2)

#12a.#_Get the spatial precision matrix_(Qs) see equation section 2.1 and 2.3
Q = inla.spde.query(spdel23, precision=list(tau=tau,
kappa2=kappaA2))$precision

#12b.# Reference point for covariance/correlation comparisons:
ref.s = (which.min((mesh123%$loc[,1]-mean(range(mesh123$loc[,1])))A
(mesh123%$Toc[,2]-mean(range(mesh123%$Tloc[,2])))A2))

#12c.# Calculate covariances (S) and correlations (SS):
S = so1ve(Q

= diag(1l/sqrt(diag(s))) %*% S %*% diag(l/sqrt(diag(s)))
D = as.matrix(dist(mesh123%$Toc))

#12d.# Theoretical Matérn correlations and covariances:
dd = (0:1000) /1000

SS.theory = (dd*kappa)*besselk(dd*kappa,l)

SS.theory[1] = 1

S.theory = SS.theory/(4*pi*kappaA2)/tauA2



E. Musenge et al. / International Journal of Applied Earth Observation and Geoinformation 22 (2013) 86-98 97

#13.# Prediction,

plotting posterior prediction maps figure 4

## Calculate mapping between triangulation vertices and grid points:

## Resolution for gridded output was dims=c(300,300)
proj = inla.mesh.projector(meshl23, dims=c(300,300))

## Construct greyscale palette function:
my.grey.palette = function (n,
## Use it:

my.palette = my.grey.palette

## Construct map data appropriate for easy plotting:
mm = calc.map(map)

## Plot results:

par(mfrow=c(1,2))
## Map resulting posterior mean field to a grid:

.) { return (grey.colors(n,0.05,0.95,...))}

plotdata = inla.mesh.project(proj, spatiotemp$summary.random$hhid[,"mean"])

## Plot PM contours:

postmap = (levelplot(row.values=proj$x,
mm=mm, panel=Tlevelplotmap,
col.regions=my.palette,

column.values=proj$y, x=plotdata,

xTim=range(proj$x), ylim=range(proj$y), aspect="iso",

contour=TRUE, cuts=11,
x1lab="Easting",ylab="Northing",
zero inflated Poisson'))
plot(postmap)

Tabels=FALSE, pretty=TRUE,
main="Posterior mean for

## Map resulting posterior standard deviation field to a grid
plotdata = inla.mesh.project(proj, spatiotemp$summary. random$hh1d[, 'sd"])

## Plot std.dev. contours:
#dev.new()
postmap2 = (levelplot(row.values=projs$x,

mm=mm, panel=Tlevelplotmap,
col.regions=my.palette,

column.values=proj$y, x=plotdata,

x1im=range(proj$x), ylim=range(proj$y), aspect="iso",

contour=TRUE, cuts=11, s
o xlab="Easting",ylab="Northing"
deviation for zero inflated Poisson"))

plot(postmap2)
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