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a  b  s  t  r  a  c  t

Longitudinal  mortality  data  with  few  deaths  usually  have  problems  of  zero-inflation.  This  paper  presents
and  applies  two  Bayesian  models  which  cater  for  zero-inflation,  spatial  and  temporal  random  effects.
To  reduce  the  computational  burden  experienced  when  a large  number  of  geo-locations  are  treated  as
a Gaussian  field  (GF)  we  transformed  the  field  to a Gaussian  Markov  Random  Fields  (GMRF)  by  triangu-
lation.  We  then  modelled  the spatial  random  effects  using  the  Stochastic  Partial  Differential  Equations
(SPDEs).  Inference  was  done  using  a computationally  efficient  alternative  to  Markov  chain  Monte  Carlo
(MCMC)  called  Integrated  Nested  Laplace  Approximation  (INLA)  suited  for  GMRF.  The  models  were
applied  to  data  from  71,057  children  aged  0 to under  10  years  from  rural  north-east  South  Africa  liv-
IV/TB mortality
patiotemporal
gincourt South Africa

ing  in  15,703  households  over the  years  1992–2010.  We  found  protective  effects  on  HIV/TB  mortality
due  to  greater  birth  weight,  older  age  and  more  antenatal  clinic  visits  during  pregnancy  (adjusted  RR
(95% CI)):  0.73(0.53;0.99),  0.18(0.14;0.22)  and  0.96(0.94;0.97)  respectively.  Therefore  childhood  HIV/TB
mortality  could  be  reduced  if mothers  are  better  catered  for during  pregnancy  as this  can  reduce  mother-
to-child transmissions  and contribute  to  improved  birth  weights.  The  INLA  and  SPDE approaches  are
computationally  good  alternatives  in  modelling  large  multilevel  spatiotemporal  GMRF  data  structures.

© 2012  Elsevier  B.V.  

Open access under CC BY license.
. Introduction

Public Health data on mortality have been growing increas-
ngly rich as more accurate information on “who”, “where” and
when” becomes available. These form hierarchical (multilevel)
ata structures which are correlated such that person-level (“who”)

nformation can be repeated, geo-statistical (“where”) data often
as spatial correlation and temporal (“when”) data can be auto-
orrelated. Classical statistical techniques are usually based on
ndependent observations, but when applied to multilevel data

tructures they often underestimate the standard errors. As a
esult of this the statistical significance is overestimated leading
o erroneous results and subsequent inferences (Cressie, 1993).

∗ Corresponding author at: MRC/Wits Rural Public Health & Health Transitions
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itwatersrand, 7 York road, Parktown 2193, Johannesburg, South Africa.
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This defeats the main goal in epidemiological analysis, which is
to identify and quantify correctly any exposures, behaviours and
characteristics that may  modify a population’s or individuals risk
and use these to implement more appropriate interventions (Rose,
2001).

In modelling hierarchical data we  can take into account spatial
and temporal correlations by introducing in the model spatiotem-
poral random effects. Several other hurdles have to be overcome
when modelling hierarchical mortality data such as: zero infla-
tion when there is a greater proportion of non-occurrence for an
outcome, handling large data structures, repeated measures and
estimating many parameters rapidly and accurately. Bayesian tech-
niques with the aid of the Markov chain Monte Carlo (MCMC)
simulation methods have successfully overcome these hurdles
and fit spatiotemporal random effects for reasonably sized geo-

locations of Gaussian fields (GF) (Berliner et al., 2000; Gilks et al.,
1996; Casella and Robert, 1999; Wikle, 2003; Wikle et al., 1998).
However as the number of geo-locations increases, MCMC com-
putations of a dense GF m × m spatial correlation matrix become

dx.doi.org/10.1016/j.jag.2012.04.001
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:Eustasius.Musenge@wits.ac.za
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nfeasible or extremely slow in the order of power three (O(m3)),
his problem is popularly known as the “big m”  or “big N” (Banerjee
t al., 2004). Several approaches have been used to resolve the
big m”.  Banerjee et al. (2004) give brief summaries of these: sub-
ampling, spectral, lattice, dimension reduction and course fine
oupling methods (Banerjee et al., 2004, 2008; Banerjee and Carlin,
003; Kamman and Wand, 2001; Johnson et al., 1990; French et al.,
002). Generally these techniques attempt to reduce the dimension
f the GF by selecting a “representative” sub-sample or fixing some
arameters or changing the scale from continuous to discrete with
he aim of reducing the computational burden in running MCMC
imulations.

We addressed this problem using techniques proposed by Rue
nd Held (2005) who changed the continuous scale GF to a discrete
cale Gaussian Markov Random Field (GMRF), for the Matérn fam-
ly of covariance structures (Rue and Held, 2005). More recently
indgren et al. (2011) provides the detail of how the GF and GMRF
elate via Stochastic Partial Differential Equations (SPDE) using
asis functions (Lindgren et al., 2011; Cameletti et al., 2012). Sec-
ndly we performed inference and prediction using Integrated
ested Laplace Approximation (INLA) well suited for GMRF as
pposed to the commonly used MCMC  (Rue et al., 2009). Hence
e greatly reduced the computational burden and could do in
ours what usually took days having reduced the computational
perations for a spatiotemporal model from power 3 to power 1.5
O(m3) → O(m3/2)).

The aim of this paper is to discuss and apply a Bayesian model
hat can handle large zero-inflated spatiotemporal observational
ata on mortality producing reliable estimates speedily. In Section

 we explore the Bayesian methods and model fitting inference,
rediction and goodness of fit. Section 3 we apply the discussed
ayesian spatiotemporal model to the data from Agincourt in rural
outh Africa which has 71,057 children aged 0–9 years living in
5,703 households over the years 1992–2010. In Section 4 we
iscuss the merits of our model and distil the Public Health impli-
ations of our results in interventional studies.

. Methods

.1. Spatiotemporal model structure

The outcome yi(sj, t) was the observed HIV/TB related death of
 child i = 1, . . .,  N from a given household j = 1, . . .,  m in a specific
ear t = 1, . . .,  T which is a realisation of the spatio-temporal process
(. , .) ∈ Y(. , .). Assuming the outcomes distribution belongs to the
xponential family of distributions, we can fit flexible structural
dditive models belonging to the generalized linear mixed models
GLMM)  (Brezger and Lang, 2006; Fahrmeir and Lang, 2001). Our
ata may  be represented by the equation:

i(sj, t) = X(sj, t)  ̌ +
nf∑

j=1

f (j)(uji, t) + εi(sj, t) (1)

here X(sj, t) is the design matrix with fixed p covariates,  ̌ = (ˇ0,
 . . ˇp)′ is the regression coefficients vector, f(.) which is one of the
(j) used to relax the linear relationship or introduce random effects
r both and εi(sj, t)∼N(0, �2

ε ) are the error terms which are nei-
her temporally nor spatially correlated (Cameletti et al., 2012).
s our data are spatially and temporally correlated we can intro-
uce random effects f(.) = f(sj, t) a Gaussian random field with a first
rder autoregressive temporal effect �(sj, t − 1) and coefficient �
nd zero mean multivariate normal (temporally independent) spa-

ial effects ω(sj, t)∼MVN(0,  ̇ = �2

ωC(||sj − sk|| = h); j /= k) resulting
n the equation:

 (sj, t) = ��(sj, t − 1) + ω(sj, t) (2)
Observation and Geoinformation 22 (2013) 86–98 87

where |�|<1 in case of stationarity, �(sj, 1)∼N(0,  �2
ω/(1 − �2) =

1/�ω(1 − �2)) and the spatial effect is second order stationary and
isotropic. When the spatial correlation follows a Matérn covari-
ance structure we  obtain C(h) = (1/(� (	)2	−1))(
h)	K	(
h) for the
Euclidean distance lags h. The parameter 	 measures the degree
of smoothness and also the order of the modified Bessel function
(when 	 > 0) of second kind K	 and finally 
 > 0 is the scaling param-
eter with a range � = (

√
8	/
) where the spatial correlation is close

to 0.1 for each 	 (Lindgren et al., 2011; Rue et al., 2009).

2.2. Zero inflated Poisson and Binomial spatiotemporal models

Observational binary outcome data are commonly analysed
using the logistic regression model, which has a logit linear pre-
dictor in the GLMMs  canonical link structure. However this model
has problems of instability especially with spatial random effects,
which would be exacerbated due to zero inflation (Agarwal et al.,
2002). In epidemiological cohort studies a relative risk is more pre-
ferred than an odds ratio as this caters for temporality and also a
more intuitive measure of burden of morbidity or mortality (Barros
and Hirakata, 2003; Fekedulegn et al., 2010). In light of this and in
an endeavour to have better fitting models, two  models that can
handle zero inflation were employed. The two  conditionally inde-
pendent models fit were the zero inflated Poisson and zero inflated
Binomial with a log and a logit canonical link functions respectively:
yt|�t, �t ∼ ZIP(�t, �t) and yt|�t, pt, �t ∼ ZIBin(nt, pt, �t).

The mortality outcome (count/binary) data yt(sj) observed at
the households in the Agincourt area are zero inflated and assumed
to follow either a Poisson (count) or Binomial distribution (binary).
We will occasionally drop the sj for notational convenience in the
rest of the article. We  therefore resorted to the zero inflated models
to cater for the imbalance due to many zeros. The model that takes
care of zero inflation (�t) can then be represented as:

(yt |�t , �t) =
{

�t + (1 − �t)(0|�t , �t) if yt = 0

(1 − �t)(1|�t , �t) if yt /= 0
(3)

With canonical links of the expected means:
g(E(yt(.)) = log(�t) = �t and g(E(yt(.)) = logit(pt) = �t with means
are �t = exp(�t) and pt = (exp(�t)/(1 + exp(�t))) for the Poisson and
Binomial distributions, respectively. A spatiotemporal canonical
link (linear predictor) model can be expressed as

�t(sj) = Xt(sj)  ̌ + ft(sj) + εt(sj)

ft(sj) = ��t−1(sj) + ωt(sj)
(4)

where εt(sj)∼N(0, �2
ε Im) with identity matrix Im of dimension m ×

m, ωt∼N(0,  ̇ = �2
ω

˜̇ ) with a stationary AR(1) process �1 ∼ N( 0,
˙/(1 − �2)) (Cameletti et al., 2012). The  ̇ is a dense GF m by
m dimensional matrix from a Matérn distribution with scale and
smoothness parameters 
 and 	 (which is fixed in all our com-
putations) respectively. As the size of m increases computations
become increasingly more difficult due to the “big m”  as previously
highlighted.

2.3. Solving the “big m” using the SPDEs to estimate the spatial
random effects

To resolve the computational burden associated with the GF
Matérn covariance function we  used a technique that changes
this to a GMRF proposed by Rue and Held (2005).  Briefly the

locations are converted into areal triangulations firstly by making
them the initial triangle vertices before adding more vertices for
proper triangulation which extends the grid and very useful for
prediction. Fig. 1 shows how we  employed triangulation to our
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Fig. 1. Agincourt original household locations (left), triangulation of a

ata, the diagram on the right was made assuming households
ithin 500 m were similar we fit 488 vertices and 938 triangles.

The SPDE technique redefines the Matérn field as a finite “repre-
entative” linear combination of basis functions on a triangulation
f the locations (Cameletti et al., 2012). Hence for our spatiotem-
oral random effects in GMRF representation we get ω̃t∼N(0,  ̇ =
−1
s ) and �1∼N(0, (Q−1

s /(1 − �2)) = Q−1
T ) where Qs is a sparse

ime-invariant precision matrix with dimension m* vertices from
he triangulations. A joint spatiotemporal GMRF f̃t∼N(0, Q−1 =
QT ⊗ Qs)

−1) whose precision matrix is the Kronecker product of
he temporal and spatial precision matrices; is such that f̃t ≈ Bft
here the basis B is a sparse matrix with unit elements for match-

ng triangle vertices and zero’s elsewhere (Lindgren et al., 2011).
herefore Eq. (4) becomes �t = Xt  ̌ + Bft + εt, where we  let xt = {ˇ,
, �t} be the vector of latent Gaussian fields and ϕt = {�2

ω, �, 
, �2
ε }

eing a vector of unknown parameters. We  can thus express
ur model into a hierarchical Gaussian latent variable fashion as
ollows, stage 1 – observational equation, stage 2 – latent Gaussian
eld and stage 3 – parameter model (Simpson et al., 2011):

stage 1 : yt |xt , ϕt∼N(Xt  ̌ + Bft ; �2
ε Im) = N(�yt

(ϕt ) = Axt , Q−1
yt

(ϕt ))

stage 2 : xt |ϕt∼N(�xt
(ϕt ); Q−1

xt
(ϕt ))

stage 3 : ϕt∼�(ϕt )

(5)

here the precision matrices Q−1
. (.) are either small enough (for

asier multiple factorisation) or sparse (Simpson et al., 2011b).
hese models cover a wide range of models and are easily estimable
sing INLA as shown in the next subsection.

.4. Bayesian inference using INLA

In accordance with the Bayesian paradigm we aim to find the
osterior distribution of the processes and parameters updated by
ata (Wikle, 2003). This could be expressed as:

robability (process, parameters|data) ∝ Likelihood

×(data|process, parameters) × Probability (process|parameters)

× Probability (parameters)
Applying this expression to our model, letting � =
ˇ, �, �t, �2

ω, 
, �2
ε } denote the vector of all parameters and

ropping the subscripts to present in vector form, � = {�t} and
sehold (centre) and triangulation of households within 500 m (right).

data y = {yt} (Cameletti et al., 2012; Rue et al., 2009), their joint
posterior distribution is thus:

(�, �, �|y) ∝ (y|�, �, �)(�|�, �)(�, �)  (6)

Fig. 2 gives a simplified pictographical view, where level 1 are
the data and assumed distributions, level 2 is a process, level 3 and
4 are parameters and level 5 gives the default hyper-parameters
used in the INLA package.

The posterior marginals are required, standard (i), nested
approximation (ii) and numerical integrations (iii) for latent fields
x = {ˇ, f, �} and hyper-parameters ϕ = {�, �2

ω, 
, �2
ε } respectively

(Rue and Held, 2005; Rue et al., 2009):

i)(x, ϕ|y) =
∫

(xi|ϕ, y)(ϕ|y) dϕ (ϕj |y) =
∫

(ϕ|y) dϕ−j

ii)̃(x, ϕ|y) =
∫

̃(xi|ϕ, y)̃(ϕ|y) dϕ ̃(ϕj |y) =
∫

̃(ϕ|y) dϕ−j

iii)̃(x, ϕ|y) =
∑

k

̃(xi|ϕk, y)̃(ϕk |y)�k ̃(ϕj |y) ∝
∫

(x, ϕ|y)
̃G(x|ϕ, y)

∣∣∣
x=x∗(ϕ)

dϕ−j

(7)

Using this technique we aim to initially get the terms “nested”
inside the integrand in Eq. (7ii) left hand side without integra-
tion (Simpson et al., 2011b). To do so we  firstly estimate the
marginal ̃G(x|ϕ, y) which is a Gaussian approximation of x with
mode x * (ϕ), for a given ϕ. Secondly we  estimate ̃(xi|ϕ, y) =
N(xi; �i(ϕ), �2

i
(ϕ)) using either Gaussian or Laplace or a simpli-

fied Laplace approximations (Rue et al., 2009). We  computed these
marginals using the R package Integrated Nested Laplace Approxi-
mation (INLA) which uses the simplified Laplace approximations
(Rue and Held, 2005; Rue et al., 2009; R-cran, 2010). The INLA
procedure also enables easier spatial prediction since it computes
posterior conditionals for the spatial random effects on all triangu-
lation vertices including the extensions as shown in Fig. 1.

2.5. Model goodness of fit and convergence diagnostics

We assessed the accuracy of ̃(ϕ|y) using the effective num-
ber of parameters, which can be approximated as the difference
between the dimension of the normalised integral {̃(ϕ|y)} n and

the trace of the product of the prior precision matrix and the pos-
terior covariance (Spiegelhalter et al., 2002):

pD(ϕ) ≈ n − tr{Q (ϕ)Q ∗ (ϕ)−1} (8)
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The deviance information criteria (DIC) was  also used which is
efined as the difference between twice the mean of the deviance
nd the deviance of the mean according to Spiegelhalter et al.
2002) and expressed as:

(x, ϕ) = −2
∑

i

log{̃(yi|xi, ϕ)} + constant (9)
Interpretations of these is quite straight forward the smaller the
ffective number of parameters the more parsimonious the model
nd the smaller the DIC the better the model fit, more-so most
arsimonious is not always the best model.
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Fig. 3. Year specific child deaths due
d spatiotemporal model fit using INLA.

3. Application

3.1. Rural South Africa Agincourt HDSS data, study design and
ethics

The Agincourt health and demographic surveillance system
(HDSS) site was set up in the Agincourt sub-district in 1992 due
to its remote location, availability of several clinics and presence
of Mozambican in-migrants (Tollman et al., 1999). By 2010, the
Agincourt HDSS had a population of over 84,000 persons living in
approximately 17,000 households scattered throughout 27 neigh-

bouring villages. Cause of death data were obtained through verbal
autopsies conducted on every recorded death (Clark et al., 2007).
Interviews were conducted by trained field worker. This was done

20102009200820072006200520042003200201

 to HIV/TB from 1992 to 2010.



90 E. Musenge et al. / International Journal of Applied Earth Observation and Geoinformation 22 (2013) 86–98

for ZIP

w
d
d
a
i
o
d
i
o
w
c
l
i
2
t
H
c
R
w
w
t

variable was death due to HIV and or tuberculosis (TB) determined
by the WHOs ICD10 verbal autopsy codes A16-A191 for HIV and
B20-B242 for TB. These data were extracted using Structured Query
Fig. 4. Posterior point estimates 

ithin 1 year after a death, with the closest caregiver of the
eceased in their mother tongue. Cause of death was  indepen-
ently determined by two  medical practitioners with the third as

 tie breaker. Their consensus cause of death was classified accord-
ng to the World Health Organization’s International Classification
f Diseases (ICD10) (Kahn et al., 2000). HIV/TB mortality in chil-
ren was ascertained by the reported signs and symptoms, and

n some instances this was verified through the mother’s cause
f death (Kahn et al., 2000). Over 90% of the HDSS households
ere geo-coded by 1992 and by 2010 all the households were geo-

oded, thus enabling spatial analyses at household as well as village
evel. The study design was a retrospective cohort study cover-
ng households observed from the onset of the site to December
010. The Agincourt HDSS site was granted ethical clearance by
he University of the Witwatersrand’s Committee for Research on
uman Subjects (No. 960720). This work was also granted ethical
learance by the University of the Witwatersrand’s Committee for

esearch on Human Subjects (M081145). Verbal informed consent
as obtained when the census rounds were conducted and also
hen verbal autopsy data were collected from a close relative of

he deceased.
 (top) and ZIB (bottom) models.

3.2. Dependent and independent variables

The persons included in the study were all the children aged
between 0 and under 10 years who lived or had lived in the
Agincourt HDSS between January 1992 and December 2010. The
independent variables used were: child’s gender, birth-weight cat-
egory, age category, slum (availability of water, electricity and
toilet) and number of mother’s antenatal clinic visits during preg-
nancy and year of observation. The household’s latitude and
longitude were used to construct the latent variables for the spatial
random effects and year the AR(1) temporal effects. The dependent
1 A16 = respiratory tuberculosis; not confirmed bacteriologically or histologi-
cally; A17 = tuberculosis of nervous system; A18 = tuberculosis of other organs;
A19 = miliary tuberculosis.

2 B20 = human immunodeficiency virus (HIV) disease resulting in infectious and
parasitic diseases; B21 = human immunodeficiency virus (HIV) disease resulting in
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Table  1
Univariate and multiple regression results models using zero inflated Poisson adjusting for spatiotemporal random effects.

Variable Summary, n (%) or
mean ± SD

Univariate results,
RR (95% credible
interval)

Non-spatial multiple
variable model,
adjusted RR (95%
credible interval)

Temporal multiple
variable model,
adjusted RR (95%
credible interval)

Spatial multiple
variable model,
adjusted RR (95%
credible interval)

Spatiotemporal
multiple variable
model, adjusted RR
(95% credible interval)

Sex
Male 35,317(49.70) 1.00
Female 35,740(50.30) 0.89(0.74;1.07)
Birth weight category
Low weight 6,320(8.89) 1.00 1.00 1.00 1.00 1.00
Moderate weight 15,241(21.45) 0.81(0.61;1.07) 0.70*(0.53;0.93) 0.85(0.63;1.16) 0.71*(0.53;0.93) 0.85(0.63;1.16)
High  weight 49,496(69.66) 0.39*(0.30;0.51) 0.57*(0.42;0.76) 0.73*(0.53;0.99) 0.58*(0.43;0.77) 0.73*(0.53;0.99)
Age  category
0–1 years 8,580(12.07) 1.00 1.00 1.00 1.00 1.00
1–5  years 19,619(27.61) 0.21*(0.17;0.26) 0.20*(0.16;0.25) 0.18*(0.23;0.64) 0.20*(0.16;0.25) 0.18*(0.14;0.22)
5–9  years 42,858(60.31) 0.05*(0.04;0.07) 0.04*(0.03;0.05) 0.04*(0.05;0.54) 0.04*(0.03;0.05) 0.04*(0.03;0.05)
Slum  (electricity, water and toilet)
None of the three 10,051(14.14) 1.00 1.00 1.00
At  least one 27,329(38.46) 0.78(0.60;1.01) 0.79(0.61;1.02) 0.77(0.60;1.00)
At  least two 21,871(30.78) 0.74*(0.56;0.97) 0.73*(0.56;0.96) 0.71*(0.54;0.93)
All  three 5,748(8.09) 0.57*(0.37;0.86) 0.55*(0.35;0.83) 0.53*(0.34;0.81)
Antenatal clinic visits 6.00(±1.50) 0.98*(0.97;0.99) 0.98*(0.97;0.99) 0.96*(0.94;0.97) 0.98*(0.96;0.99) 0.96*(0.94;0.97)
Zero  inflation parameter 0.06*(0.002;0.25) 0.05*(0.003;0.18) 0.07*(0.003;0.28) 0.04*(0.002;0.15)
Precision for year 0.91*(0.23;2.19) 0.86*(0.16;2.32)
Rho  for year 0.88*(0.72;0.97) 0.89*(0.70;0.98)
Kappa 1.98*(1.09;3.66) 1.55*(1.41;1.63)
Tau 1.37*(0.18;2.600 2.31*(1.19;9.08)
Moran’s Indexes:

Observed(Expected ± standard
deviation)

0.32*(2.1 ± 3.33 × 10−3)

Effective number of parameters 12.05(0.05) 25.61(1.10) 23.18(5.04) 29.16(6.33)
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p-value < 0.001). Those aged 1 to under 5 (127/19,619) were 82%
{0.18(0.14; 0.22)} less likely to experience a death due to HIV/TB
compared to those under 1(262/8580) and those over 5 and
under10 (67/42,858) were 96%{0.04(0.03;0.05)} less likely to die
DIC 4855.31

* Statistical significance at the 5% level.

anguage (SQL). Preliminary data analyses and data management
ere done using STATA 10.1 (StataCorp, 2007). The Bayesian anal-

sis was done using an R software package called INLA (Rue et al.,
009; R-cran, 2010).

.3. Descriptive statistics

There were similar proportions of boys and girls (50.3%) with
n average age of 6.14 years (standard deviation of 3.38). Almost
% of the births were low-weight, the majority (60.3%) of the chil-
ren were only observed after their 5th birthday. Only 8.09% had
ccess to all three: clean tap water, flush toilet inside house and
lectricity, which is expected in typical rural areas. Health check-
ps during pregnancy averaged about 6 visits, with the majority
73%) still not going at all. A total of 456 deaths were HIV/AIDS
including HIV/tuberculosis) which was a small proportion of the
opulation indicative of the presence of zero inflation. Mortality
as moderate in the early to mid  1990s before gradually growing

rom 1999 and reaching a peak in 2001, remaining high for several
ears before gradually declining from 2007 as shown in Fig. 3.

.4. Zero inflated Poisson and Binomial spatiotemporal modelling
esults

We performed univariate and multiple variable analyses using

oth the ZIP and ZIB models. Multiple variable models were fit sys-
ematically starting with one without random effects, spatial only,
emporal only and finally spatiotemporal random effects. The R-
odes using INLA are given in Appendix 1. From our results shown

alignant neoplasms; B22 = human immunodeficiency virus (HIV) disease result-
ng  in other specified diseases; B23 = human immunodeficiency virus (HIV) disease
esulting in other conditions; B24 = unspecified human immunodeficiency virus
HIV) disease.
4532.69 4846.13 4532.31

in Tables 1 and 2, our discussion will be centred on the ZIP spa-
tiotemporal model which was  the best fitting model since this had
the lowest DIC (4532.31) and catered for spatiotemporal random
effects, as later indicated in Section 3.5.

Two  variables consistently showed significant associations with
child HIV/TB mortality, firstly the age category of the child, which
showed a decrease in mortality with increase in age (Chi-Square
Fig. 5. Posterior means (bold), medians (0.5% = 50th percentiles, middle), lower
credible limits (0.025% = 2.5th percentiles) and upper credible limits (0.975% = 97.5th
percentiles).
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Table 2
Multiple regression results of four models using zero inflated Binomial adjusting for spatiotemporal random effects.

Variable Non-spatial multiple
variable model,
adjusted OR (95%
credible interval)

Temporal multiple
variable model,
adjusted OR (95%
credible interval)

Spatial multiple
variable mode,
adjusted OR (95%
credible interval)

Spatiotemporal
multiple variable
model, adjusted OR
(95% credible interval)

Sex
Male
Female
Birth weight category
Low weight 1.00 1.00 1.00 1.00
Moderate weight 0.70*(0.52;0.92) 0.86(0.62;1.20) 0.70*(0.52;0.93) 0.005*(0.003;0.07)
High  weight 0.62*(0.46;0.83) 0.67*(0.48;0.95) 0.63*(0.47;0.85) 0.05*(0.007;0.04)
Age  category
0–1 years 1.00 1.00 1.00 1.00
1–5  years 0.07*(0.05;0.09) 0.05*(0.04;90.07) 0.07*(0.06;0.09) 0.18*(0.14;0.22)
5–9  years 0.006*(0.004;0.008) 0.005*(0.003;0.95) 0.006*(0.004;0.008) 0.04*(0.03;0.05)
Slum  (electricity, water and toilet)
None of the three 1.00 1.00
At  least one 0.77(0.60;1.01) 0.76*(0.58;0.99)
At  least two 0.71*(0.54;0.95) 0.69*(0.52;0.93)
All  three 0.52*(0.34;0.81) 0.51*(0.32;0.78)
Antenatal clinic

visits
0.94*(0.92;0.96) 0.97*(0.95;0.98) 0.94*(0.93;0.96)

Zero  inflation
parameter

0.22*(0.042;0.66) 0.43*(0.19;0.79) 0.15*(0.031;0.45) 0.42*(0.18;0.67)

Precision for year 0.78*(0.17;1.96) 0.80*(0.20;1.93
Rho  for year 0.87*(0.67;0.97) 0.87*(0.69;0.97)
Kappa 1.98*(1.14;3.55) 1.54*(1.41;1.62)
Tau 1.37*(0.27;2.54) 2.23*(1.22;6.91)
Moran’s Indexes:

Observed(Expected ± standard
deviation)

0.30*(2.1 ± 3.33 × 10−3)

Effective number of
parameters

11.10(0.080) 24.58(1.03) 22.97(5.09) 31.12(5.18)

DIC  5179.43 4754.60 5180.50 4803.93

* Statistical significance at the 5% level.
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Fig. 6. Posterior density plots of log-means for fixed effects of the ZIP spatiotemporal model.
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rom HIV/TB relative to the under 1 s keeping all other variables
onstant. Secondly the category of the birth weight was signifi-
antly associated with deaths due to HIV/TB, showing a decreasing
rend with greater birth weight (Chi-Square p-value < 0.001). Those
ho had a birth weight of 3.5 kg and above (232/49,496) were 27%

0.73(0.53;0.99)} less likely to die due to HIV/TB relative to those
ho were born with a low birth weight of less than 2.5 kg (76/6329)

ndependent of other risk factors. The only other significant pro-
ective factor was the number of antenatal clinic visits made by
he mother; for every additional visit the mother attended the risk
f losing the child from HIV/TB decreased by 4% {0.96(0.94;0.97)}
eeping other variables constant as shown by the spatial only and
o-random effects model. Those who had access to all three elec-
ricity, water and flush toilet (who in this area are the more affluent)
xperienced fewer deaths due to the HIV/TB compared to those who
ad none. We  show the posterior marginal point estimates from the
IP and ZIB models in Fig. 4 top and bottom respectively.

As shown in Fig. 4, the region with the greatest risk of child
IV/TB mortality is the central region with a trend towards the

outh-westerly. In the context of our findings, this is the region
hose households have lower birth weights, greater under 1 mor-

ality and having lower visits to the health facility compared to
ouseholds in other regions. The lowest risk region is the top north-

asterly with the ZIP model showing few clusters than the ZIB
odel. The standard error maps indicate the greatest errors on the

eripherals which are also the regions where the extensions of the
riangulation shown in Fig. 1. Also consistent with our results from
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Fig. 7. Posterior density plots of log-means for fix
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Tables 1 and 2 there is a greater margin of error with the ZIB model
as compared with the ZIP model.

3.5. Model assumptions, goodness of fit and convergence
diagnostics

Using the final spatiotemporal models in both ZIB and ZIP we
investigated the presence of zero inflation, temporal and spatial
correlation. The null hypothesis for zero inflation was that the
inflation parameter �t is zero (no zero inflation) our results in
Tables 1 and 2 indicate significant presence of zero inflation of 0.04
and 0.42 for ZIP and ZIB respectively. Investigation of temporality
was done by testing the � coefficient of the first order autocorrela-
tion model with null hypothesis that the process was not stationary
|�|>1. Both our models indicated significance presence of station-
arity that is 0.86 and 0.87 for ZIP and ZIB respectively. Fig. 5 shows
the posterior means plus 95% credible bands, time series plots
from the modelling which resembles the observed data shown in
Fig. 3. Lastly on checking model assumptions we investigated the
presence of spatial effects by inspecting the significance of the com-
ponents (
 and �) of the Matérn covariance (see Tables 1 and 2). Also
this was  investigated with the classical Moran’s indices on the spa-
tial residuals testing the null hypothesis that there is zero spatial

autocorrelation which from both tests yielded significant results,
hence rejecting the null.

We compared the two  models the ZIB and ZIP and found that
the latter fitted better in all the variants from the no-random effects
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odel to the spatiotemporal as this yielded smaller DICs and model
arsimony. Some of the parameter estimates were similar, except
or the zero inflated parameter, age categories and birth weights.
he ZIP model also showed more stable estimates and consistent
esults in the adjusted relative risks (adjusted RRs) compared to the
IB and narrower credible intervals. As a way of showing the con-
ergence pictographically for some parameter estimates we  show
he fixed effects logarithmic form posterior means density plots in
igs. 6 and 7.

The plots in Figs. 6 and 7 show that the parameters fitted well as
MRF since they are symmetrical about thus the mean equals the
ean and mode.

. Conclusions

The Public Health rational of our results is centred on lack of
ealth seeking behaviour in rural areas. Interventions could tar-
et two groups of mothers (also caregivers) those not yet infected
nd those already infected. For both groups maternal attendance
f health facility can minimize the risk of under one mortality and
ossibly giving birth to low-weight children. For those mothers’
lready infected several options are there; before child birth (pre-
ention of mother to child) and after birth (anti-retro-virals – ARV
ptake) and also early treatment on ARVs for the parent to increase
heir longevity. A significant decline in mortality can already be
bserved in our cohort post 2007 the year when ARVs were started
n the area. Poverty however still remains the greatest challenge in
he developing countries and mostly interventions when available
re very scarce. As such our results from spatiotemporal Bayesian
odelling coupled with maps can be very handy in allocation of

he limited resources of aid.
Modelling that controls for potential confounding is an add-

n to epidemiological studies and gives strength to the estimates
erived from such modelling procedures. Our modelling approach
aters for potential spatial and temporal confounders. This
pproach was able also to cater for “large” zero inflated spatiotem-
oral data. The years 1992–2010 cover a span of 19 years (76%) of
he United Nation’s Millennium Development Goals (MDG) period
f 25 years. Goal 4.1 aims at reducing child (under five) mortal-

ty by two thirds over that period (Black et al., 2003). Our results
emonstrate such a significant decline in mortality due to HIV/TB.

A major limitation in developing nations is lack of reliable and
ser friendly analyses software, which was addressed by using INLA
Observation and Geoinformation 22 (2013) 86–98

a package available on the public domain. Zero inflated Poisson
(ZIP) and zero inflated Negative Binomial (ZINB) models were used
for log link function linear predictors and also catered for spatial
random effects (Lambart, 1992; Ridout et al., 2001). It has also been
noted from other studies that the log link function linear predictor
models were more stable than logit link function models when they
contained a spatial component. This finding was also confirmed in
our study as we  observed that models from the exponential family
with a log-linear predictor were more stable and able to converge
better than the logit-link function model. This motivated us to treat
the outcome as a discrete measure as opposed to binary mostly
used for logistic regression (Agarwal et al., 2002). We  demon-
strated that the “big m”  can be resolved with great ease for Public
Health mortality hierarchical structures with the aid of SPDEs and
INLA.
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ppendix A. Zero inflated Poisson R-code using INLA adapted from http://www.r-inla.org/ (Lindgren et al., 2011)

1.#IMPORT ING L IBRA RIES
ibrary(foreign )
ibrary(INLA)
ibrary(co da)
ibrary(fi elds)

2.# Read  data:
ecdata =  read. dta( "c:/j agnovr edo/c hild leveld ec.d ta")
ttach(dec data)
ames(decd ata)

3.# Build  tria ngul ar me sh of  locat ions  withi n 0.5  km  see f igure  1
esh123 = (inla .mes h.cre ate(cb ind(d ecda ta$coo rdlo ngx/10 00, 
ecdata$co ordla ty/1 000),r efine =TRUE ,cut off=0. 5))
lot(mesh1 23)

4.# Store  the  data -->ve rtex  mappin g:
# ( mesh$idx$loc[m] is  the me sh ve rtex  for d ata l ocat ion n umber m )
ecdata$hh id =  mesh 123$i dx$loc

5.# Creat e the  SPD E/GMR F mode l, (k app a^2-Del ta)(t au x)  = W:
pde123 =  inla. spde .crea te(mes h123,  mod el="ma tern")

6.# Funct ions  of f our m odels  multi vari ate mo dels  fit 
6a.No ran dom e ffec ts mo del wi th ho useh old an d in dividu al r andom  effec ts
orand=hivtb2~s ex+a s.fac tor(sl umrur al1) +as.fa ctor( age_c at)+ as.fac tor( birthw ei
ht_cat)+a ntena talv isits +f(hh id, mo del= "iid") +f(i dno, m odel ="iid")

6b.Tempor al ra ndom  effec ts mo del w ith  househ old  and in divi dual r andom 
ffects
emponly=hivtb2~sex+as.factor(slumrural1)+as.factor(ag e_cat )+as.f actor (birt hw
ight_cat) +ante nata lvisit s+f(y ear,  mode l="ar1 ")+f (hhid,  mod el="ii d")+f (idno , 
odel="ii d")

6c.Spatia l ran dom  effect s mod el wi th i ndivid ual  random  eff ects
patonly=hivtb2~sex+as.factor(slumrural1)+as. fact or(age _cat )+as.f actor (bir thw
ight_cat) +ante nata lvisit s+f(i dno,m odel ="iid" )+f(h hid, model =spde1 23)

6d.Spatio tempo ral  rando m eff ects m odel  with  indi vidual  ran dom ef fects
patiotemp=hivt b2~s ex+as .facto r(slu mrur al1)+a s.fa ctor(a ge_c at)+as .fact or(bi rt
weight_cat)+antenatalvisits+f(year, mo del="a r1") +f(idn o, 
odel="ii d")+f( hhid ,mode l=spde 123)

7.#  Runn ing I NLA  model s on t he fo ur s tated  in s tep 6
orand = inla(norand, f amily= "zero infl ated.p oiss on1", data  = 
ecdata,control.results=list(return.marginals.random=TRUE,return.marginals.pr
dictor=TR UE),c ontr ol.co mpute= list( dic= TRUE,c po=T RUE))
ummary(norand)

patonly = inl a(sp atonl y, fam ily=" zero inflat ed.po isson 1",d ata = 
ecdata,co ntrol .res ults= list(r eturn .mar ginals .ran dom=TR UE,r eturn. margi nals. pr
dictor=TRUE),control.compute=list(dic=TRUE,cpo=TR UE))
ummary(spatonly)
emponly = inl a(te mponl y, fam ily=" zero inflat ed.po isson 1",d ata = 
ecdata,co ntrol .res ults= list(r eturn .mar ginals .ran dom=TR UE,r eturn. margi nals. pr
dictor=TR UE),c ontr ol.co mpute= list( dic= TRUE,c po=T RUE))
ummary(temponly)

http://www.r-inla.org/
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patiotemp = i nla( spati otemp , fami ly=" zeroin flat ed.poi sson 1",dat a = 
ecdata,co ntrol .res ults= list(r eturn .mar ginals .ran dom=TR UE,r eturn. margi nals. pr
dictor=TR UE),c ontr ol.co mpute= list( dic= TRUE,c po=T RUE))
ummary(sp atiot emp )

Saving ou tput  for  model  to st ore p oste rior e stima tes a nd o ther
ave(spati otemp , fi le="c :/resu ltsde c/sp atiote mp.Rd ata" )

---- ----- ----- --- ------ ------ ----- --- ------- ----- ----- ---- ------ ---- #

8.#Loadin g dat a fr om pr evious  anal yses  in n ew se ssion
patiotemp <-loa d(fi le="c :/jagn ovred o/sp atiote mp.Rd ata")
ames(spatiotem p)

9.# Assess ing f or p oster iors Spati al a uto -co rrela tion (Mor an’s I)
ibrary(ap e)
.dists < - as. matri x(dis t(cbin d(mes h123 $loc[, 1],  mesh12 3$lo c[,2]) ))
.dists.in v < - 1/D. dists
iag(D.dis ts.in v) < - 0
oran.I(sp atiot emp $summar y.ran dom$h hid[ ,"mean "], D .dist s.in v)

10.# Diag nosti c pl ots se e fig ures  6 or  7
lot.inla( spati otemp, 

plot.f ixed. effect s = T RUE, consta nt=FA LSE,
plot.l incom b = TR UE,
plot.r andom .effec ts =  TRUE,
plot.h yperp aramet ers =  TRU E,
plot.p redic tor =  TRUE,
plot.q  = TR UE,
plot.c po = T RUE)

11.#  Extr act t he S PDE p aramet ers,  poin t and  inter val e stim ates
auconf =  exp( spati otemp $summ ary.hy perp ar[2,])
appaconf  = exp (spa tiotem p$su mmary. hype rpar[3 ,]/2 )

au = exp( spati otemp$summ ary.h yperp ar[2 ,"mean "])
appa = ex p(spa tiot emp$su mmary .hype rpar [3,"me an"]/ 2)

12a .# Get  the  spat ial pr ecisi on ma trix  (QS) see equa tion  section  2.1  and 2 .3
 = inla.s pde.q uery (spde 123, p recis ion= list(t au=ta u, 
appa2=kap pa^2) )$pr ecision

12b .# Ref erenc e po int f or cov arian ce/c orrela tion  compa riso ns:
ef.s = (w hich. min( (mesh 123$lo c[,1] -mea n(rang e(mes h123$ loc[ ,1])) )^2 +

(mesh 123$lo c[,2] -mea n(rang e(mes h123$ loc[ ,2])) )^2))

12c .# Cal culat e co varia nces ( S) an d co rrelat ions  (SS):
 = solve( Q)
S = diag( 1/sqr t(di ag(S) )) %*%  S %* % di ag(1/s qrt( diag(S )))
 = as.mat rix(d ist( mesh1 23$loc ))

12d .# The oreti cal  Matér n cor relati ons  and co vari ances:
d = (0:10 00)/1 000

S.theory  = (dd *kap pa)*bessel K(dd*k app a,1)
S.theory[ 1] = 1
.theory =  SS.t heor y/(4* pi*kap pa^2) /tau ^2

---- ----- ----- --- ------ ------ ----- --- ------- ----- ----- ---- ------ ---- ---#
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# figure  4

# nd gri d poin ts:
#
p

#
m ors(n, 0.05,0 .95,. ..))}
#
m

#
m

#

p
#
p .rando m$hhi d[,"me an"])
#

p =proj$ y, x=p lotd ata,

y), as pect=" iso" ,
 prett y=TRUE,
="Post erior  mean  for 

z
p

# o a gr id:
p .rando m$hhi d[,"sd "])
#
#
p s=proj $y, x= plotd ata,

y), as pect=" iso",
 prett y=TRUE,
"Poste rior s tanda rd 
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13.# Pre dictio n, p lottin g pos terio r pr edict ion ma ps  

# Calcula te ma ppin g bet ween t riang ulation ve rtice s a 
# Resolut ion f or g ridded  outp ut wa s di ms=c( 300, 300)
roj = inl a.mes h.pr oject or(mes h123,  dim s=c(3 00,300 ))

# Constru ct gr eysc ale p alett e func tion:
y.grey.pa lett e = f uncti on (n, ...)  { re turn  (grey. col 
# Us e it:
y.palett e = my .gre y.pal ette

# Constru ct ma p da ta ap propri ate f or e asy p lottin g:
m = calc. map(m ap)

# Plot re sults :

ar(mfrow= c(1,2 ))
# Map res ultin g po steri or mea n fie ld t o a g rid:
lotdata =  inla .mes h.pro ject(p roj,  spat iotemp $summ ary 
# Plot PM  cont ours:

ostmap =  (leve lplo t(row .value s=pro j$x,  colum n.val ues 
mm=mm, p anel= level plot map,
col.reg ions=m y.pal ette,
xlim=ra nge(pr oj$x) , yl im=r ange(pr oj$ 
contour =TRUE,  cuts =11 , label s=FAL SE, 
xlab="E asting ",yla b="N orthin g", m ain 

ero infla ted P oiss on"))
lot(postm ap)

# Map res ultin g po steri or sta ndard  dev iatio n fiel d t 
lotdata =  inla .mes h.pro ject(p roj,  spat iotemp $summ ary 
# Plot st d.dev . co ntours:
dev.new()
ostmap2 =  (lev elpl ot(ro w.valu es=pr oj$x , colu mn.v alue 

mm=mm, p anel= level plot map,
col.reg ions=m y.pal ette,
xlim=ra nge(pr oj$x) , yl im=ran ge(pr oj$ 
contour =TRUE,  cuts =11 , label s=FAL SE, 
xlab="E asting ",yla b="N orthin g",ma in= 

eviation  for z ero  infla ted Po isson "))

lot(postm ap2)
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