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Increased potential for disease transmission among nest-mates means living

in groups has inherent costs. This increased potential is predicted to select

for disease resistance mechanisms that are enhanced by cooperative exchanges

among group members, a phenomenon known as social immunity. One

potential mediator of social immunity is diet nutritional balance because

traits underlying immunity can require different nutritional mixtures. Here,

we show how dietary protein–carbohydrate balance affects social immunity

in ants. When challenged with a parasitic fungus Metarhizium anisopliae,

workers reared on a high-carbohydrate diet survived approximately 2.8�
longer in worker groups than in solitary conditions, whereas workers reared

on an isocaloric, high-protein diet survived only approximately 1.3� longer

in worker groups versus solitary conditions. Nutrition had little effect

on social grooming, a potential mechanism for social immunity. However,

experimentally blocking metapleural glands, which secrete antibiotics,

completely eliminated effects of social grouping and nutrition on immu-

nity, suggesting a causal role for secretion exchange. A carbohydrate-rich

diet also reduced worker mortality rates when whole colonies were challenged

with Metarhizium. These results provide a novel mechanism by which carbo-

hydrate exploitation could contribute to the ecological dominance of ants

and other social groups.
1. Introduction
Social insects make up more than half of global insect biomass [1], an ecological

dominance that has arisen in spite of inherent costs associated with group

living. One such cost is the increased risk of parasite transmission among clo-

sely packed and closely related nest-mates [2]. It may be offset by increased

per capita investment in immune function [3] and by group-level defences

termed ‘social immunity’ [4,5]. Food availability is a likely mediator of social

immunity. It is generally considered an important constraint on immune func-

tion [6] owing to the high maintenance costs of immune functions relative to

other physiological costs [7]. Many studies have shown trade-offs between indi-

vidual immunity and other fitness-enhancing functions that become more acute

under starvation and caloric restriction treatments [8–10].

Both the quantity of food components and their relative availability can affect

the nature and extent of immune responses [11–14], as well as a range of physio-

logical and life-history traits [15]. If specific traits promoting immunity require

different nutritional mixtures, then scarcity of particular dietary components

should influence the relative costs of those different mechanisms promoting an

organism’s immune function [15,16]. Dietary protein (P) and carbohydrate (C),

both their distinct and interactive effects, have shaped immune function

[12,13,16] (reviewed in [17]) for a variety of solitary organisms. While protein nutri-

tion can constrain immune response in honeybees [18], we know of no study

investigating how diet macronutrient composition affects social immunity.

Here, we tested how dietary protein : carbohydrate (P : C) ratio affects social

immunity in a tropical ant, Ectatomma ruidum, combatting the parasitic fungus
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Metarhizium anisopliae, a model pathogen for studying social

immunity [19–22]. Ants have two prominent mechanisms for

social immunity (for additional mechanisms, see [23,24]). Allo-

grooming is a time-intensive [25] activity where nest-mates

clean each other’s cuticle, reducing the number of fungal

spores [20,26,27]. The metapleural gland, a structure unique

to ants [28], secretes antibiotics that reduce spore viability

[20,29–31]. Both allogrooming and metapleural gland pro-

duction can thus lower infection rates of ant workers exposed

to Metarhizium. As dietary P : C constrains many worker- and

colony-level traits [32], including storage biochemistry [33],

worker longevity [32] and possibly worker activity rates [34]

(but see [35]), we predicted that lower dietary P : C ratios

would increase nest-mate interaction frequency and, in turn,

the benefits of social grouping after exposure to Metarhizium.

Our results provide new insight into the social value of

carbohydrate resource exploitation.
:20132374
2. Material and methods
We conducted all work in June–July 2011, January 2012 and

June–July 2012 on Barro Colorado Island, a lowland, seasonally

wet forest in Lake Gatun of the Panama Canal. Ectatomma ruidum
(subfamily Ectatomminae) is a ground-nesting ant with zero to

four queens and approximately 10–150 workers per nest at this

site; queenless nests are common. Colonies commonly consist

of multiple nests. We excavated nests (58 in June 2011, 43 in

January 2012 and 24 in June 2012) and maintained them in circu-

lar containers (18 � 8 cm) lined with Fluon and covered with

mesh to prevent escape. In each container, we placed three nest

chambers, which were 20 � 100 mm glass test tubes half-full of

water at the base and stopped with cotton. We covered nest

chambers with foil. We maintained colonies in a covered shelter

at ambient understorey light, temperature and humidity.

(a) Nutrition effects on worker social immunity
In June 2011 and January 2012, we tested whether nutrition affects

social immunity in worker groups. We reared colonies (all

workers, pupae and larvae excavated from a nest; any queens

were excluded) on isocaloric, semi-synthetic diets that differed

only in P : C ratio (diet modified slightly from [36]; electronic sup-

plementary material, table S1). We used two P : C ratios (1P : 3C

and 3P : 1C) that are readily consumed by E. ruidum [37], differen-

tially affect colony growth and worker biochemistry [33], and

bracket the P : C ratio collected by E. ruidum in feeding trials in

the field [37]. We assigned 52 colonies (26 in June 2011, 26 in

January 2012) to diet treatment after ordering them by size

(sum of principal components from analysis of worker, pupa

and larva numbers); we split five nests with more than 60 workers

(three in June 2011, two in January 2012) and assigned halves to

different diets. We reared colonies for 18 days by providing

approximately 1 g blocks of food every second day (ad lib feed-

ing), and quantified food dry mass loss as in [33]. We also

counted and removed dead workers every 2 days.

For survival assays, we measured responses of solitary and

social ant groupings to treatment with M. anisopliae (strain

KVL02-73 collected at this site [38]). After the 18-day diet

manipulation, we created one-ant (solitary ants) or five-ant

(worker groups) sets from each colony. In June 2011, we assigned

10 solitary ants and two worker groups per colony to a Metarhi-
zium treatment; in January 2012, we assigned five solitary ants

and one worker group per colony to a Metarhizium treatment,

and the same number to a control treatment. The Metarhizium
treatment consisted of applying to the thorax of each ant 0.5 ml

of an LD50 concentration (6.92 � 1026, determined at the
outset) of Metarhizium spores suspended in 0.05% Triton-X. Con-

trol ants received 0.5 ml of 0.05% Triton-X. For treatment, we held

ants with sterilized forceps and applied the dose to the dorsal

surface of the thorax. We housed solitary ants and worker

groups in Petri dishes (3 cm diameter) with moistened cotton

(re-moistened every 2 days) and checked daily for mortality

over 14 days (in June 2011) or 22 days (in January 2012). We

removed dead ants, sterilized them (with 1% NaClO), placed

them on filter paper and monitored them for 7 days for signs

of Metarhizium infection (characteristic conidia growth that

occurs within 2–3 days).

(b) Allogrooming effects on nutrition-related social
immunity

In June 2012, we assessed whether diet affects allogrooming, an

established mechanism of social immunity in ants [20]. We

assigned 24 colonies to either the 1P : 3C or 3P : 1C diet, as above.

After an 18-day rearing period, we created solitary ant and

worker group sets, and treated them with either Metarhizium or

the control Triton-X solution. We then immediately began assaying

grooming behaviour after Walker & Hughes [39]. We observed be-

haviour for 30 s periods at every 10 min for 60 min, as most

grooming occurs immediately after solution application (A.D.K.

& A.J.B. 2011, personal observation; see also [26]). We recorded

the number of antennal self-grooming and allogrooming events.

Behaviours that occurred for more than a 5 s period were split

into multiple events.

(c) Metapleural gland effects on nutrition-related
social immunity

In January 2012, we tested whether secretions from the meta-

pleural gland (a specialized gland on the thorax of ants that

produces antibiotic secretions) influences diet-related immunity.

To do this, we reared 12 colonies on either the 1P : 3C or 3P : 1C

diet for 18 days. We then blocked the metapleural gland (using

nail polish) on 10 ants per colony, created five solitary ant or

one worker group sets and treated all ants with Metarhizium as

described above. We assessed survivorship as above. We used

workers sampled from field colonies to show that blocking meta-

pleural glands per se did not affect survivorship (Cox

proportional hazards: L-R x2 ¼ 0.087, d.f. ¼ 1, p ¼ 0.762, n ¼ 40).

(d) Nutrition effects on colony-level immunity
In June 2011 and January 2012, we tested how nutrition affects

colony-level immunity, and whether nutritional immunity

depended on the presence of larvae in colonies. Given that nutritional

feedbacks between workers and larvae influence P : C regulation in

ant colonies [32], we predicted that larval presence would enhance

nutritional effects on colony immunity.

For this test, we used 16 colonies in June 2011 and 10 in January

2012. We assigned colonies (blocked by size as above) to the 1P : 3C

or 3P : 1C diet and removed larvae from half of the colonies in each

treatment; we removed and returned larvae for control colonies.

We reared colonies for 21 days. During the rearing period, we chal-

lenged colonies with Metarhizium by placing headless ant corpses

covered in Metarhizium spores in each nest every 2 days. We used

this approach to challenge colonies (rather than direct application

to workers of spores in solution, as above) because we wanted to

sufficiently challenge colonies to test for differences among diet

treatments; spore-covered corpses could be added at regular inter-

vals, whereas periodic solution application to workers would have

considerably disturbed colonies. We counted the number of dead

ants in each colony (easily distinguishable from headless ant

additions) every 2 days and monitored each for signs of infection

(as above).
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Figure 1. The effects of diet composition, social grouping and challenge from the Metarhizium fungal parasite on ant worker survivorship. Ants are from colonies main-
tained on either a 1 protein (P) : 3 carbohydrate (C) ratio diet (red lines) or a 3P : 1C (blue lines) diet. Data in panel (a) are from 2011 and 2012. Data in panel (b) are from
2012 only. (a) Survivorship for Metarhizium-challenged ants when alone (solitary) or in 5-ant worker groups. (b) Survivorship for ants not facing Metarhizium challenge.
Different lower-case letters indicate survival curve differences at p , 0.01 in pairwise comparisons using Kaplan – Meier survival tests.
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(e) Statistical analyses
We analysed total carbohydrate and protein intake using the

restricted maximum-likelihood (REML) method, with year of

the study as a random factor and diet as a fixed factor. We ana-

lysed effects of diet and social grouping (fixed effects) on worker

survivorship using the Cox proportional hazards model (year

was included as a random factor). We analysed colony-level

effects of nutrition on Metarhizium resistance using REML. The

response variable was number of dead workers divided by

number of initial workers in the colony per day; explanatory

variables were diet and Metarhizium treatment (fixed effects),

and year of study was included as a random effect. We analysed

grooming behaviour using a repeated-measure ANOVA with

diet and Metarhizium treatment as fixed factors. We did not

include colony as a random factor in this analysis because

some colonies had too few workers to allocate to multiple treat-

ments. For these small colonies, worker groups were randomly

assigned to treatments. We tested whether ant mortality was associ-

ated with evidence of Metarhizium infection using a likelihood

ratio test. We conducted all analyses using JMP v. 8.0.1.
3. Results
(a) Nutrition effects on worker social immunity
Colonies consumed similar amounts of food in the two diet

treatments, resulting in approximately 3� higher carbohydrate

intake and approximately 3� lower protein intake for colonies

on the lower-P : C diet versus those on the higher-P : C diet (see

electronic supplementary material, figure S1).

A high-carbohydrate diet enhanced social immunity

in workers (figure 1; electronic supplementary material,

table S2). When workers were challenged with Metarhizium
(figure 1a), both the lower-P : C diet (Cox proportional

hazards: L-R x2 ¼ 15.886, d.f. ¼ 1, p , 0.001, n ¼ 745) and

social grouping (L-R x2 ¼ 86.871, d.f. ¼ 1, p , 0.001) increased

worker survivorship. Importantly, there was a significant

diet-by-social grouping interaction (L-R x2 ¼ 10.499, d.f. ¼ 1,

p ¼ 0.001), as the 1P : 3C diet increased worker survivorship

in worker groups more than for solitary ants. We conducted

Metarhizium challenge in both 2011 and 2012; survivorship dif-

fered between the two replicates of the experiment (main effect
of year: L-R x2 ¼ 24.748, d.f. ¼ 1, p , 0.001), but there was no

significant year-by-diet-by-social grouping interaction (L-R

x2 ¼ 0.689, d.f. ¼ 1, p ¼ 0.407) as the 1P : 3C diet enhanced

social immunity in workers in both years. We included ants

that were not challenged with Metarhizum (controls) in 2012.

With these data, we found that in the absence of Metarhizium
challenge (figure 1b), the lower-P : C diet (L-R x2 ¼ 36.143,

d.f. ¼ 1, p , 0.001, n ¼ 258) and social grouping (L-R

x2 ¼ 5.541, d.f. ¼ 1, p ¼ 0.019) increased worker survivorship,

but there was no significant diet-by-social grouping interaction

(L-R x2 ¼ 0.081, d.f. ¼ 1, p ¼ 0.777).

In Metarhizium treatments, fewer dead ants showed signs

of Metarhizium infection in worker groups (approx. 44%) than

in the solitary ant setting (approx. 93%; x2 ¼ 66.4, d.f.¼ 1, p ,

0.001), and evidence of infection did not differ significantly

with diet (x2 ¼ 1.06, d.f.¼ 1, p ¼ 0.303). About 5% of ants

showed signs of Metarhizium infection in control groups. This

probably represents a natural infection level owing to our use

of ants recently collected from the field. It does not affect our con-

clusions because our experiments explicitly compared these

control ants with ants treated with Metarhizium.
(b) Metapleural gland effects on nutrition-related
social immunity

Blocking metapleural glands eliminated effects of diet com-

position and worker grouping on survivorship for ants

facing Metarhizium challenge (figure 2). Survivorship for soli-

tary ants with blocked metapleural glands was similar to

levels in solitary ants with unblocked glands, regardless of

diet (figure 2a; Cox proportional hazards: blocking: L-R

x2 ¼ 0.682, d.f. ¼ 1, p ¼ 0.409, n ¼ 175; diet: L-R x2 ¼ 1.632,

d.f. ¼ 1, p ¼ 0.201; blocking-by-diet: L-R x2 ¼ 0.007, d.f. ¼ 1,

p ¼ 0.933). By contrast, blocking metapleural glands signifi-

cantly reduced survivorship in worker groups, particularly

for ants reared on the 1P : 3C diet (figure 2b; blocking: L-R

x2 ¼ 40.004, d.f. ¼ 1, p , 0.001, n ¼ 167; diet: L-R x2 ¼

13.682, d.f. ¼ 1, p , 0.001; blocking-by-diet: L-R x2 ¼ 3.862,

d.f.¼ 1, p ¼ 0.049). An analysis restricted to ants with blocked

metapleural glands showed that neither diet nor worker group-

ing affected survivorship under these conditions (diet: L-R
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x2 ¼ 2.249, d.f.¼ 1, p ¼ 0.134; grouping: L-R x2 ¼ 0.060,

d.f.¼ 1, p ¼ 0.807). Survivorship for Metarhizium-challenged

ants in solitary conditions with blocked glands (figure 2a) did

not differ significantly from survivorship for challenged, soli-

tary ants with unblocked glands (blockage: L-R x2 ¼ 0.682,

d.f.¼ 1, p ¼ 0.409), indicating that gland blockage itself did

not affect survivorship.

Almost all Metarhizium-treated ants with blocked meta-

pleural glands showed evidence of Metarhizium infection

(solitary 87.4%, social 86.6%), and evidence of infection did

not differ significantly with diet ( p . 0.75). Evidence of

Metarhizium infection did not depend on metapleural gland

blockage for solitary ants (x2 ¼ 0.010, d.f. ¼ 1, p ¼ 0.920);

in worker groups, evidence of Metarhizium infection was sig-

nificantly higher for ants with blocked metapleural glands

than it was for ants without blocked glands (x2 ¼ 86.428,

d.f. ¼ 1, p , 0.001).

(c) Allogrooming effects on nutrition-related
social immunity

We found little evidence for diet effects on grooming behaviour

(figure 3). Allogrooming frequency was significantly higher in

Metarhizium-challenged ant groups than in control groups

(repeated-measures ANOVA: F5,66 ¼ 3.128, p ¼ 0.014), but

it did not depend on rearing diet (F5,66¼ 0.762, p ¼ 0.580).

Self-grooming frequency was not significantly affected by

either Metarhizium challenge (F5,71¼ 2.32, p ¼ 0.052) or

rearing diet (F5,71 ¼ 1.053, p ¼ 0.393), and there was no signifi-

cant Metarhizium-by-diet interaction (F5,71 ¼ 1.803, p ¼ 0.123).

Allogrooming frequency was significantly higher in

Metarhizium-challenged ant groups (F5,66 ¼ 3.128, p ¼ 0.014)

but did not depend on rearing diet (F5,66¼ 0.762, p ¼ 0.580)

and there was no significant Metarhizium-by-diet interaction

(F5,66 ¼ 0.796, p ¼ 0.556).

(d) Nutrition effects on colony-level immunity
A high-carbohydrate diet also enhanced immunity in whole

colonies (figure 4). Regular addition of spore-covered corpses

to colonies (Metarhizium treatment) increased worker

mortality more in the 3P : 1C diet than in the 1P : 3C diet
(figure 4; diet-by-Metarhizium: F1,71 ¼ 11.339, p ¼ 0.001).

There was also a significant effect of larval presence on

diet-related immunity (figure 4; diet-by-larvae: F1,41 ¼ 4.167,

p ¼ 0.047). Most (77.4%) workers that died during the exper-

iment showed signs of Metarhizium infection, and the

likelihood of infection in dead workers did not depend on
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diet treatment or larval presence ( p . 0.56). Metarhizium-

challenged colonies had higher food consumption than did

control colonies, and food consumption was particularly

high for Metarhizium-challenged colonies with larvae on the

high-protein diet (figure S1).
4. Discussion
We show for the first time that diet macronutrient composition

affects immunity gains that arise from social grouping.

When challenged with a pathogenic fungus (M. anisopliae),

E. ruidum ants in worker groups survived longer when

reared on a high-carbohydrate (1P : 3C) diet than did those

reared on a high-protein (3P : 1C) diet, while solitary ants

had similarly low survival rates when reared on either diet.

These results do not simply reflect a general response to a

low-quality diet because benefits from the high-carbohydrate

diet only emerged in worker groups; there was no significant

effect of diet in solitary conditions. In addition, a carbo-

hydrate-rich diet reduced worker mortality rates when whole

colonies were challenged with Metarhizium. Together, these

results provide a novel mechanism by which nutrient balance

can affect social groups and suggest an evolutionary advantage

of carbohydrate exploitation by social insects.

As implied by the adage ‘feed a cold, starve a fever’, bulk

food availability is generally considered an important

mediator of immunity [6]. Immune functions have high meta-

bolic costs relative to other physiological systems [7], and many

studies have used starvation or caloric restriction treatments to

show how bulk energy availability impairs individual disease

resistance [8–10]. However, traits underlying immunity can

require different nutritional mixtures and, as a result, the

extent and nature of immune responses can depend on the rela-

tive availability of dietary components [12,18], including P : C

balance [16,17]. Our results provide the first evidence that the

immune consequences of nutrient balance can extend to
social groups and may emerge as a consequence of nest-mate

interactions.

Antibiotics played a key role in this nutrition-related

social immunity. Blocking metapleural glands, the main

source of antibiotic secretions, eliminated both diet and

social grouping effects on immunity (figure 2), and increased

the likelihood that cadavers showed signs of Metarhizium
infection. Metapleural gland function can account for

13–20% of basal metabolic rate [40], so carbohydrate scarcity

in a high-protein diet could reduce metabolite allocation to

metapleural glands or exact trade-offs on other metabolic

functions. Note that Metarhizium resistance does not depend

on the metapleural gland in some ant species [23,24], and

thus constraints on metapleural secretions will not explain

nutrition-related social immunity in all ants.

By contrast, our results do not support the hypothesis that

increases in energetically expensive allogrooming result from

a higher-carbohydrate diet. Even though carbohydrate-rich

diets can lead to higher metabolic rates [41], and possibly

higher activity rates in insects, we found no evidence for

nutritional effects on grooming frequency. Note, however,

that we only observed grooming behaviour for 50 min after

treatment (as in [26]); it is possible that significant grooming

frequency differences among treatments could emerge with a

longer observation period.

Results from the whole-colony experiment (figure 4) also

revealed the benefits of a high-carbohydrate diet to immune

function. These results suggest that colonies can buffer isolated

effects of high dietary protein or Metarhizium challenge, but the

effect of these factors in combination can overwhelm colony

resistance and lead to higher worker mortality rates. We also

found that removing larvae from colonies eliminated diet

effects on worker mortality rates when colonies were chal-

lenged with Metarhizium (figure 4). Larvae, which (unlike

workers) can digest protein, can serve to dampen effects of

nutritionally imbalanced diets for ants [32]. Our results suggest

that these protein digestion benefits may improve worker

immunity in colonies on high-carbohydrate diets.

Our results identify a neglected component to the story

of the rise of sociality as represented by eusocial insects

[42]. The diversification of the ants is closely tied to the rise

of angiosperms [43], which gave ants access to a particular

nutrient (carbohydrates) and a resource (‘honeydew’) that

they could exploit, farm and dominate [44]. Carbohydrates

have been suggested as a mechanism for maintaining the par-

ticularly high ant abundances in tropical canopies [45] owing

to changes in territorial behaviour [44,34], worker longevity

[32,35,33] and colony growth [46]. Our results suggest that

readily available carbohydrates, by fuelling the expensive

metapleural glands, also enhanced per capita immune func-

tion. Such an added benefit may have been crucial in

allowing more ants to live together in tightly confined

spaces. More generally, enhanced social immunity on a

high-carbohydrate diet provides a novel mechanism by

which carbohydrate exploitation could facilitate the evolution

of social behaviour.
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