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Osteoarthritis (OA) is a progressive disorder with high incidence in the ageing
human population that still has no treatment currently. This disorder induces
the breakdown of articular cartilage, leading to the exposure and damage of
bone surfaces. For a global understanding of OA development, the systematic
integration of known OA-related proteins with protein—protein interaction
(PPI) networks is required. In this work, the OA-related interactome was recon-
structed using multiple data sources to have the most up-to-date information on
OA-related proteins and their interactions. We then combined emergent con-
cepts in network medicine to detect new unclassified OA-related proteins.
The mapping of known OA-related proteins with PPI networks showed that
these proteins are locally connected to each other and agglomerated in a large
component. To expand this module, we applied a diffusion-based algorithm
that probabilistically induces more searches in the vicinity of the seed OA-
related proteins. As a result, the 10 topmost ranked proteins were connected
to the OA disease module, supporting the local hypothesis. We computed struc-
tural modules and selected those that had the highest enrichment of OA-related
proteins. The identified molecules show a link between structural topology and
disease dysfunctionality. Interestingly, the protein Q6EEV6 was highlighted for
OA association by both methods, reinforcing the potential involvement of this
protein. These results suggest that similar disease-connected modules may exist
in different human disorders, which could lead to systematic identification of
genes or proteins that have a joint role in specific disease phenotypes.

1. Introduction

Osteoarthritis (OA) is a progressive disorder mainly characterized by the break-
down of articular cartilage, leading to the exposure and damage of bone
surfaces [1]. OA is a widespread cause of joint degeneration, mostly affecting syno-
vial joints, such as those found in the knees, hips and fingers, and is one of the
leading disabling human conditions worldwide. Despite its high incidence, no
treatment currently exists that can replace damaged cartilage or prevent cartilage
degeneration [2]. A combination of various anti-inflammatory drugs that reduce
joint inflammation is currently the best method to treat OA patients, although
the most effective treatment appears to be weight loss to reduce the stress on
joint cartilage. This lack of appropriate pharmaceutical intervention suggests
that new approaches are needed to understand the functional perturbations
linked to OA and to identify key proteins that can be targeted for therapeutic use.

Cartilage is a type of connective tissue found in the nose and ears, as well as in
joints, such as the knees and fingers. Three major types are found in the human
body, including articular (hyaline), elastic and fibrocartilage. Articular cartilage
is the most prevalent and is found at the surface of synovial joints, primarily func-
tioning to facilitate joint motion and distribute the forces of weight bearing [3].
Chondrocytes are the only cell population found within mature articular
cartilage, constituting approximately 2—5% of the total tissue, with the rest con-
sisting of a tough and flexible extracellular matrix (ECM). Chondrocytes control
matrix turnover through the production and release of collagen, proteoglycans
and enzymes involved in cartilage metabolism [4]. Chondrocytes have been the
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most studied component of the disease system to determine
how changes in their function may be linked to OA. Whereas
healthy articular cartilage is believed to be permanent, consist-
ing of chondrocytes with low metabolic activity, in conditions,
for example OA, they enter a stage of maturation becoming pro-
liferative and then hypertrophic chondrocytes [5]. In this state,
chondrocytes increase ECM synthesis but cannot compensate
for the increased matrix degradation by proteolytic matrix
enzymes. This leads to an overall decrease in matrix synthesis
resulting in the breakdown of articular cartilage.

Biomedical knowledge combined with network science
tools aim to identify genes or proteins that can be probably
associated with specific disease phenotypes [6,7]. Several
computation-based methods have been proposed to uncover
disease-associated genes. Disease candidate molecules were
prioritized using linkage methods [8-10], where macro-
molecules that interact directly with a disease protein were
assumed to be associated with the same disorder. Another
approach seeks to exploit the fact that molecules which
belong to the same structural and functional module may
have a joint role. The extension of this concept to disease
phenotypes means that identifying an unclassified protein
that belongs to a disease module with high enrichment over
a random selection may indicate that the protein is likely to
be involved in the same disorder [11,12].

Diffusion-based methods were also used to identify pro-
teins that are related to specific disorders. The random walk
particles navigate through the complex interactome structure,
starting from those protein products originated by known
disease genes. The nodes most often visited by the random
walkers are considered to be more related to the known dis-
order genes. Several algorithmic versions of this concept have
been applied to human diseases, from prostate cancer to
Alzheimer’s disease [13,14]. One of the leading network-
based diffusion algorithms is the PageRank, which is not
only well known to rank web content but can also potentially
classify any type of nodes given a suitable network structure
[15,16]. The algorithm does not rank nodes using their intrinsic
features, rather it uses the collective wisdom of the network,
considering each link as a node that has as a direct vote to
increase the node’s ranking. Recently, the PageRank algorithm
has been successfully used to identify disease-causing genes
based on protein interactions, to detect cancer genes in protein
networks and to classify the metabolic network of the tuber-
culosis bacterium [17-19]. It is expected that the advent
of full-genome sequencing and genome-wide association
studies can help to provide more accurate disease gene
(seeds) as well as better validation methods.

Network and systems approaches have not been widely
applied to complex skeletal diseases as arthritis so far. A mol-
ecular interaction map was presented for processes ongoing in
patients affected by rheumatoid arthritis (RA) based on the
results of functional genomic analyses and pathways available
in the literature [20], which identified a new potential drug
target for the treatment of RA [21]. Gene expression data
from pooled joint tissue were overlaid with a protein inter-
action network to identify components that were significantly
upregulated during the development of OA [22]. However,
for a more global understanding of OA development, the sys-
tematic integration of known OA-related proteins with protein
interaction networks is required.

In this study, we combine the recently introduced concepts
in network medicine (structural proximity, modularity and
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diffusion algorithmic approach) to detect new unclassified
OA-related proteins using protein interaction networks [6].
We first constructed a manually curated interactome network
composed of all proteins linked to at least one chondrocyte
protein. We then overlaid OA-related proteins onto this protein
interaction network and showed that the non-random place-
ment of the OA-related proteins in the interactome offers a
new avenue for the prediction of OA relation. Next, the fully
connected component composed of only OA-related proteins
was extracted and the PageRank-based diffusion algorithm,
with a personalized vector constructed using the known OA-
related proteins, was applied to the interactome network. The
personalized PageRank algorithm has already been used for
biological applications in the context of protein interaction
networks [18].

The results show that the 10 topmost ranked proteins,
excluding natural overlaps with personalized vector pro-
teins, are neighbours of the main OA-related connected
component, which leads to an expansion of the OA disease
module. Moreover, the computation of the modularity applied
to the full network leads to the identification of a set of mod-
ules, in which the enrichment of OA-related proteins over a
random selection was significantly higher. Among them, one
module shared a protein already identified in the 10 topmost
ranked proteins, leading to the same prediction using two
independent methods.

2. Material and methods
(a) Datasets

To construct a suitable network for the investigation of OA, we first
used the complete list of protein—protein interactions from the
Human Protein Reference Database (HPRD) [23] as a baseline
protein interaction network. We then used several large-scale pro-
teomic studies to identify proteins that were detected in healthy
and osteoarthritic chondrocytes. Seventeen studies were used in
total (table 1), among which nine focused on healthy chondrocyte
proteomics, whereas the remaining eight contained data about
chondrocyte proteins that had their expression altered in OA. All
17 studies were used to build the chondrocyte protein interaction
network, as it was assumed that proteins detected in OA cells
were still present in healthy cells.

Each protein identified in these proteomic studies was queried
within the HPRD interaction network to extract all proteins interact-
ing with the query protein, assuming that if one interaction partner
is present in chondrocytes, the second partner must be present too
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Figure 1. The chondrocyte protein interactome network is composed of 2955 nodes, 168 out of them being OA-related proteins (labelled in red). Links between
OA-related proteins are denoted in red. Interactions between OA-related and non-OA-related proteins are indicated by orange links.

for the interaction to occur, even though the second partner may not
necessarily have been detected by the proteomic analysis. This pro-
cess resulted in a protein interaction network specific to chondrocyte
cells. All proteins names were converted to UniProt accession iden-
tifiers in order to eliminate any duplication owing to different
naming conventions. Proteins that have altered levels in OA were
extracted from the eight OA studies and labelled by a specific attri-
bute. The complete network comprised 2955 nodes, among which
168 were related to OA (figure 1). Background data for the full
network is provided in the electronic supplementary material.

(b) PageRank algorithm with personalized vector
The PageRank algorithm describes a diffusion process, where a
particle moves by following the links of the network and jumps
to randomly selected nodes with given probabilities. These prob-
abilities are parameters of the model. As a result, the frequency
of visitation of a node by the particle at the stationary state of
this diffusion process is the PageRank of the node and it is
used to determine its ranking relative to other nodes of the
network [15,16].

The fundamental PageRank algorithm can be described
using the following equation:

kT — TG 2.1)

where 7®Tis the PageRank row vector at the kth iteration. Each

component of the vector is associated with a node, therefore
7 Tgives the probability that the particle is at each node of the
network at time step k. The matrix G can be written as

T
G:(l—a)S-i—a%, (2.2)

where e is the row vector of all 1s and « is a parameter that
indicates the proportion of time the random surfer follows a
random teleportation process, or conversely 1 — a is the proportion
of time it is guided through the links on the network structure.
The stochastic matrix S reads as S = H + a(1/ne"), which is con-
structed using the row normalized probability transition matrix
H and the dangling node vector a. This column vector has 1 s in

components associated with nodes with no-outgoing links and
0's for the rest of the components.

Here, we can distinguish between random teleportation ar
and personalized teleportation «p probabilities [18]. Each i com-
ponent of the personalized vector takes the value 1/W if the node
i is a known OA-related protein, and 0 otherwise. Wis a normal-
izing weighted factor that represents the total number of
OA-related proteins.

Then, equation (2.2) can read as

eel
G= (1 — Of — ap)S + (Ol}? + Oép)T . (23)

By substituting the expression of matrix S and by defining a
personalized vector as vT = e!/n, then equation (2.1) reads as

T
kDT 1—ap— ap)qr(k)TH+ [(A—aF— a[))/ﬂ'(k)Ta + CY]:]%Jr apz;T.
(2.4)

Our computations were performed using ar= ap=0.15
and a value of & =0.0001 for the error of convergence of the
algorithm at the stationary state.

(c) Statistical significance of the observed size of the
osteoarthritis-related connected component

The OA-related network was randomized using a shuffling
algorithm that exchanges edges in the network but preserves
the degree distribution. For each of the 100 network samples,
we generated with the same size as the observed OA-related net-
work, we performed 200 shuffling edges steps. Then, the mean
value and standard deviation of the observed giant connected
component were computed. The statistical significance of the
analysis was examined using the two-tailed p-value, as shown
in the Results section.

(d) Modularity algorithm
To identify topological modules, we used a multi-scale method
in which modularity is optimized by means of a greedy local
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algorithm. The nodes that form a discovered partition are then
merged and a supernode for each new partition is created. The
processed is repeated in the re-scaled network [41].

The algorithm starts with as many different modules as there
are nodes. For each node i, the gain of modularity is evaluated
when removing node i from its module and by assigning it to
another module j. The node 7 will be finally assigned to the com-
munity that offers the highest gain and is positive. The process is
applied for all nodes until no new gains can be achieved. The
modularity of the network will increase in each iteration and
tends to maximize the following modularity functional form:

1 kik;
Q= %; [Aij - %} (cis ¢j),
where m is the number of edges, A; is an element of the
adjacency matrix of the network, k; denotes the degree of
node i and ¢; is the community to which node i is assigned.
The 8(x, y) function is 1 if x =y and 0, otherwise.

(e) Community analysis

The detection of communities in networks is a common method to
identify groups of closely related entities or functional modules.
We applied a community detection algorithm by Blondel ef al.
[41] to detect groups of highly connected OA-related proteins in
the protein—protein interaction (PPI) network. This algorithm con-
structs a hierarchical community structure for the network, where
modularity is maximized at each level. We focused on the first level
and tested the detected communities for OA enrichment. The prob-
ability of detecting a number n of OA-related proteins in a
community of size N, considering that the ratio of OA-related pro-
teins in the full network was 0.0569 (168/2955), was calculated
using the hypergeometric distribution. A community was
deemed to be significantly enriched in OA-related proteins if this
probability was lower than 0.05. As there is generally no unique
solution to decompose the network into communities maximizing
modularity, the exact composition of communities may vary when
the algorithm is run several times. We therefore repeated the analy-
sis 10 times and retained for each significant community the
composition observed the largest number of times.

3. Results

(a) The osteoarthritis-related proteins are locally
connected to each other and agglomerated
in a large component

The assembled interactome network is composed of 2955 nodes,
of which 168 are known OA-related proteins. The visualization
of the giant connected component of the network can be seen in
figure 1. Note that 37 nodes (including six OA-related proteins)
and 21 edges did not belong to the main component so they are
absent in figure 1. The total number of links is 5477 with 151
links connecting two OA-related proteins (red), 3310 connecting
OA-related to non-OA-related proteins (orange) and 2016 con-
necting non-OA-related proteins to each other.

Evidence of the non-random localizations of disease genes
is necessary in our network-based approach to identify unclas-
sified disease-related molecules. To investigate whether the
OA -related proteins were distributed randomly in the network,
we extracted all the OA-related proteins by keeping only edges
that were connecting two OA-related proteins. The resulting
network is shown in figure 2. Out of 168 proteins, 162 are con-
nected to the main component of the interactome and 89 nodes
form an OA-related connected component. These results show

Figure 2. Extracted giant connected component composed of OA-related pro-
teins. Links between OA-related and non-OA-related proteins were removed.
The layout of proteins is identical to figure 1.

that the OA-related proteins tend to be locally connected to
each other and a large fraction of them are agglomerated in a
large component (table 2).

The analysis of the degree distribution of the full interac-
tome network reveals a non-random structure. The network
follows a power law, a characteristic pattern of scale-free
networks. On the other hand, the OA-related network, which
is of smaller size, decays faster than a power law. The cumulat-
ive degree distributions of the networks are shown in figure 3.
The fact that the full interactome network follows a scale-free
distribution also allows the use of diffusion-based algorithms
to analyse the network.

(b) The osteoarthritis-related connected component
statistically emerges as disease module seed

to be expanded

To evaluate the significance of the OA-related connected network,
we performed two statistical analyses (see Material and methods
for details). The network was randomized with 2000 shuffling
edges for each of the 100 network samples. The component size
distribution for randomized networks is shown to be normal dis-
tribution (figure 4, light blue curve), which has a mean value of 97
and a standard deviation of 2.45. The results show that the
observed giant component (89) is over 3 s.d. from the mean of a
randomized network sample (97). The statistical significance
analysis leads to a two-tailed p-value of 8.70 x 10~°. This indi-
cates that the observed size of the OA-related connected
component would be highly unlikely in a random network.

(c) Expansion of the osteoarthritis-related
connected component

It has been hypothesized that molecular routes can overlap
with the shortest paths between known disease-related mol-
ecules. This network parsimony principle has supported the
idea of using diffusion-based algorithms. We therefore
applied the PageRank algorithm with personalized vector to
the interactome network in order to predict new disease can-
didate proteins that are likely to be associated with OA. As
shown in a recent work, the success of the PageRank algor-
ithm in ranking nodes in large networks is rooted in the fact
that the degree distribution follows a power law, which

L062€107 1187 8 205y 20l bioBusiqndfieposielorgds: g



(a) 1.0_ T T T T T 3 (b)l rrrrrrrryrrrrrorrrr]
E @®—@ complete protein network F [= OO AO giant component 2
f 0.1 = i i
X E = L 4
~ H ]
=]
1) K 7
E i T 01 —H
Z 001F = - 1
e = B - =4
(5] - - - -
= - e L _
= L _
'E‘ | i - -
:
S 0.001 | L .
o E =
- )| 0.01 —]
0.0001 Lol Ll I _1 I I T N T T T | l_
1 10 100 10 20
degree k degree k

Figure 3. (a) The cumulative degree distributions for both the fully connected

Table 2. Main statistical network features of the analysed networks.

full protein network

(giant connected component)

nodes 2955 (2918)
. averagedegree e TR
clustering degree 0.069
averagepathlength T

makes the top-ranked node easier to find and the ranking
more reliable when the networks grow in size [42]. Here, the
personalized vector is simply a vector that includes
the known OA-related proteins. This vector takes a non-
zero weighted probability for each protein that is associated
with OA, and a zero score for the remaining proteins, where
the sum of all scores is normalized to one. The PageRank
results showed that several already known OA-related pro-
teins appeared in the top ranks. Therefore, we selected the
10 top-ranked proteins excluding known OA-related proteins
(table 3). These proteins were added to the OA-related net-
work and are shown in figure 5 (green nodes). Interestingly,
the results show that the identified proteins are in the neigh-
bourhood of the OA-related connected component and
always adjacent to at least one OA-related protein. This fact
supports the idea of a disease module that can be expanded
using the collective wisdom of the full interactome network,
unveiling new potential disease-protein candidates.

(d) Module enrichment analysis

In network medicine, the disease module hypothesis assumes
that the molecules related to a specific disorder tend to be
located in the same network neighbourhood, forming a struc-
tural disease module. To support our analysis done on new
identified OA-related proteins using a diffusion algorithmic
method, we used a different approach based on maximizing
modularity in complex networks that detects modules with
the highest enrichment of OA-related proteins.

network and the extracted OA-related connected network.

OA-related extracted OA-related giant

network connected component
168 (89) 89
1.79 3.2
0.092 0.174
48 48
1F T T =
i observed giant component size distribution
| l for randomized network
ey
=101k -
z 10 3
3 C
O -
s
102 E
; 1 1 . I
60 80 100 120 140

giant connected component size

Figure 4. Statistical significance analysis of the giant connected component.
The expected value obtained in a randomized network (blue curve) is over
3 s.d. from the observed value. The statistical significance analysis gives a
two-tailed p-value of 8.70 x 1073 (blue curve).

The detection of communities in networks is a common
method to identify groups of closely related entities or
functional modules. We applied a community detection algor-
ithm by Blondel et al. [41] to detect groups of highly connected
OA-related proteins in the PPI network. This method optimizes
modularity using a greedy local algorithm, where nodes are
iteratively exchanged between modules as long as the modu-
larity can be increased and is positive. This method is widely
used owing to its efficiency to deal with large networks as
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Figure 5. Expansion of the OA-related giant component by adding the 10 top-ranked proteins by PageRank analysis excluding known OA-related proteins (green
nodes). Links between newly identified proteins are shown in green, whereas links between new proteins and known OA-related proteins are shown in yellow.

Table 3. List of top 10 candidate proteins predicted to be OA-related by the PageRank algorithm, excluding known OA-related proteins.

main biological activity

protein biosynthesis

mitogen-activated protéin kinase 1> (MAPK1) -

ubiquitin conjugation pathway
B ~ angiogenesis, regulation of apoptosis
cellular membrane organization
protemb|osynthe5|s S
S transcrlptlon regulatlon B
" cellular membrane organization

UnitProt standard name

P26641 elongation factor 1- (EEF1G)

Q6EEV6 small ubiquitin-related modifier 4 (SUM0-4)
oy protemkmase(a (PKCA) e ehineli
Coest 1433pr0te|ngamma(YWHAG)
e eIongat|onfactor1a1(EEF1A1) e
e otein ¢t/ dels (YWHAZ)

P35222 catenin [3-1 (CTNNB1)

well as the high quality of results it provides. It scored the high-
est rank when evaluated in computer-generated benchmark
problems [43,44].

We focused on those modules that showed highest
enrichment of OA-related proteins. Overall, four significant
communities enriched in OA-related proteins were detected
(figure 6). Ranked from the highest to lowest significance, the
first community contains three OA-related proteins out of
seven (p=0.005) (figure 6b), the next contains three OA-
related proteins out of 11 (p=0.021) (figure 6c), the next
contains two OA-related proteins out of five (p = 0.029)
(figure 6d) and the last contains two OA-related proteins

actin, aortic smooth muscle (ACTA2)

cell adhesion, transcription regulation
cellular membrane organization
cell motility

out of six (p=0.041) (figure 6e). All non-OA-related pro-
teins belonging to these communities are therefore likely to
be subjected to disease perturbations owing to their high
interconnectivity with disease-associated proteins.

We then filtered the proteins found in these modules to
investigate whether there is an overlap between them and
the 10 top-ranked proteins detected by the diffusion algor-
ithm (table 3). Interestingly, one protein was predicted by
these two independent methods, namely Q6EEV6 (figure 7).

The probability for this simultaneous detection to occur
randomly is only 2 x 1075, Q6EEV6 is the small ubiquitin-
related modifier 4 (SUMO-4). SUMO-4 was previously
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Figure 6. (a) Identified modules with significant OA enrichment connected to the main OA-related connected component. Nodes of each module are denoted by a
specific colour. (b—e) In each module, the OA-related proteins are highlighted in red.

associated with susceptibility to type I diabetes and cellular
response to oxidative stress, but no explicit link to cartilage
degradation or skeletal diseases was found. In total,
SUMO-4 was found to interact with 15 OA-related proteins,
including several proteins involved in glycolysis and redox
regulation (table 4). The potential involvement of this protein
in OA is hereby reinforced.

4. Discussion and conclusion

Network medicine is based on several widely used principles
related to network structure and functionality. The local
hypothesis or structural proximity suggests that proteins,
which belong to the same disorder, are assumed to interact
with each other. Next, the disease module hypothesis
assumes that the molecules related to a specific disorder
tend to be located in the same network neighbourhood,

leading to a structural disease module. Moreover, molecular
routes often overlap with the shortest paths between
known disease-related molecules. This network parsimony
principle has encouraged the usage of diffusion-based algor-
ithms. While the structural proximity has been very well
experimentally supported, the existence of disease modules
overlapping with structural modules and the parsimony
principles have been less well quantified or verified.

In this work, we have combined these three organizing
principles to analyse the OA-related network. The interactome
was reconstructed using multiple data sources and manual
curation to have the most up-to-date information on OA-
related proteins and their interactions. First, the integration of
known OA-related proteins with protein interaction networks
has shown that the OA-related proteins are locally connected
to each other and are furthermore agglomerated in a large com-
ponent. This component may represent the seed of the OA
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Figure 7. The protein Q6EEV6 was identified among the top 10 candidates for OA association by the PageRank analysis and also by the modularity analysis. Note

the complex interconnectivity in the protein’s neighbourhood.

Table 4. List of OA-related interacting partners of the Q6EEV6 (SUMO-4) protein.

UnitProt standard name
P00558 phosphoglycerate kmase 1 (PGK])
e Wheat ock conte 71 kDa proteln (HSP8) L
oo glyceraldehyde 5 phosphate dehydrogenase (GAPDH) R
P08107 heat shock 70 kDa protem 1A/1B (HSPA1A/1 B)
‘ “P30048” S mthloredoxm dependent perOX|de reductase mltochondnal (PRDX3) S
e Wperoxnedoxm6 (PRDX6) e
o e dehydrogenase B e, (LDHB) SO
e wvoltage dependent o Se|eCtIV€ channel protem 1 (VDAC1) I
e e heat shock oten, m|tochondr|al (HSPD1) e
s s (EN01)
‘“09UJZ1 S wstomatm i protem 2 m|tochondr|al (STOMLZ) e
L '78 kDa glucose regulated protein (HSPAS)
s prelamm A/C (LMNA)
' '000299” - Wchlonde |ntracellular channel protem 1 (CLIC1)
‘ “P30101 - protein dlsulﬁde isomerase A3 (PDIA3)

disease module, which can be expanded by identifying OA-
related proteins in the neighbourhood. To this end, we have
applied a diffusion-based algorithm with a personalized
vector that probabilistically induces more searches in the struc-
tural vicinity of the seed OA-related proteins. As shown in Ivan
& Grolmusz [18], this feature is essential to successfully ident-
ify new candidate disease proteins in protein—protein
interaction networks. In addition, we also allowed random tel-
eportation to explore distant locations on the network with the
same probability. As a result, the 10 topmost ranked proteins

main biological activity

glycolysis
” transcrlptlon'regulatlon stress response v
mglycolysm translation regulatlon .
profein fplding stress response '
redoxregulat|on A
redoxregulanon B
wglycolysw RO
jon transpon
'protem foldmg e
o glycolysis transcrlptlon regulatlon
wmltochondnal regulatlon
N vproteln complex assembly
wnuclear assembly R
o ansor I
} mredox regulat|on e

were connected to the OA disease module, supporting the
local hypothesis.

To investigate the overlap between the structural and dis-
ease module, we computed structural modules and selected
those ones that had the highest enrichment of OA-related
proteins. The identified molecules show a link between struc-
tural topology and disease dysfunctionality. In addition, they
confirm the local hypothesis because they are also connected
to the main OA-related connected component. Interestingly,
the protein Q6EEV6 (SUMO-4) was identified among the

L062€107 1187 § 205y 20l bioBunsiqndfeposielorqds:



top 10 candidates for OA association by the PageRank analy-
sis and was also detected in the modular analysis. SUMO-4
mutations were previously associated with other diseases.
A study by Guo et al. [45] suggested that a substitution in
the SUMO-4 gene is associated with increased risk of type I
diabetes mellitus. While subsequent studies confirmed these
findings in Asian populations [46,47], these observations
were not consistent in European Caucasians [48], suggesting
that further study is required to fully elucidate the relation-
ship between SUMO-4 mutations and type I diabetes
mellitus. The effect of SUMO-4 mutations in RA and systemic
lupus erythematosus has been investigated, showing no
consistent sign of predisposition to these diseases [49-51].
Several glycolytic enzymes were found among the top
candidate proteins predicted by our analysis to be involved
in OA. The importance of glycolysis in the prevention of car-
tilage breakdown and responses to apoptotic processes has
already been suggested [29,37]. Chondrocytes require a
large amount of energy to regulate the cartilage ECM
through the release of proteins, such as collagens and proteo-
glycans. Perturbation of this cellular function may lead to a
decrease in ATP production, thereby preventing the normal
control of matrix turnover and contributing to the gradual
breakdown of cartilage, as the decreased ECM is no longer
as effective in distributing the forces of weight bearing.
Other proteins are involved in the stress response and regu-
lation of apoptosis. The link between cartilage degeneration
and chondrocyte apoptosis has already been described and is
thought to play an important role in the pathogenesis of OA
[52]. In particular, the level of protein kinase C-a (P17252)
was found to be significantly increased in human knee OA car-
tilage by a recent study [53] in correlation with an increase in
chondrocyte apoptosis. This observation confirms that our net-
work analysis is a valid approach to identify candidate proteins

for disease association, as the link between P17252 and OA is
too recent to have been included in databases and did not
appear in our original dataset.

The third main group of proteins is related to cellular
adhesion and mechanotransduction. Actins are ubiquitously
expressed in eukaryotic cells and changes in the cytoskeleton
are believed to be associated with the onset of the disease
[54]. Protein kinase C-a itself is known to be involved in
the regulation of cell adhesion and motility [55]. Catenin {-
1 (P35222) is another detected protein that is involved in
the regulation of cell adhesion through the Wnt signalling
pathway. Although a direct link between catenin B-1 and
OA was not established, the activation of catenin B-1 signal-
ling was observed to lead to premature chondrocyte
differentiation in mice, which is a symptom of OA [56,57].

To summarize, we have reconstructed a large-scale OA-re-
lated interactome, in which the module of OA-related
proteins emerged as potential disease seed. The presence of a
main connected component of OA-related proteins enables
the discovery of newly identified proteins using network
diffusion algorithms. The promising results shown here suggest
that similar disease-connected modules may also exist in differ-
ent human disorders. The curation of a high volume of data for
other disorders and its overlapping with the background inter-
actome network could also lead to highly connected disorder
modules (seeds) that could be expanded using a rich variety
of computational methods [43]. This network medicine
approach could lead to systematic identification of genes or pro-
teins that can have a joint role in a specific disease phenotype.
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