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Experimental evolution provides a powerful manipulative tool for probing

evolutionary process and mechanism. As this approach to hypothesis testing

has taken purchase in biology, so too has the number of experimental sys-

tems that use it, each with its own unique strengths and weaknesses. The

depth of biological knowledge about Caenorhabditis nematodes, combined

with their laboratory tractability, positions them well for exploiting exper-

imental evolution in animal systems to understand deep questions in

evolution and ecology, as well as in molecular genetics and systems biology.

To date, Caenorhabditis elegans and related species have proved themselves in

experimental evolution studies of the process of mutation, host–pathogen

coevolution, mating system evolution and life-history theory. Yet these

organisms are not broadly recognized for their utility for evolution exper-

iments and remain underexploited. Here, we outline this experimental

evolution work undertaken so far in Caenorhabditis, detail simple methodo-

logical tricks that can be exploited and identify research areas that are ripe

for future discovery.
1. The tool of experimental evolution
Experimental evolution is the controlled study of evolutionary change as

it occurs under experimenter-imposed conditions in the laboratory or field.

At its most basic, experimental evolution combines two separate procedures:

the multi-generation culturing of populations, and the quantification of

change in those populations. Its great power is in being a broker between

theory and nature. Much of evolutionary theory has been formalized since

the early days of the great mathematical geneticists, and yet many aspects of

theory have proved difficult to test with traditional experiments or comparative

data. Experimental evolution provides a compelling methodological alternative.

Despite experimental evolution being a relatively recent paradigm in evolution-

ary biology, it has now established itself as a powerful method for testing

evolutionary theory [1,2].

The first evolution experiment, by Dallinger in 1878, described the adap-

tation to heat stress by ‘a minute septic organism’ [3]. In modern times,

Lenski et al. [4] pioneered and popularized long-term experimental evolution

with Escherichia coli, which has now been cultured for more than 55 000 gener-

ations [2]. This microbial beginning has since metastasized to test a broad

variety of theories about the mechanisms of evolution [1,2,5].

Short generation time and laboratory tractability constitute key prerequisites

for study organisms in carrying out long-term evolution in a compact period

of time. Consequently, the majority of such experiments exploit microbes.

Unfortunately, microbes cannot speak to the evolution of the many traits and

properties that are unique to eukaryotes and metazoans, such as sexual selec-

tion, development and behaviour. Thus, key systems of study have expanded

to include fruitflies, plants, fish and mice, among many others [6]. The nema-

tode Caenorhabditis elegans and its relatives offer another powerful, but

underexploited option for addressing ecological and evolutionary questions

with experimental evolution. In this review, we synthesize the current state of

what has been learned by applying experimental evolution to C. elegans with

its potential for establishing new discoveries.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.3055&domain=pdf&date_stamp=2014-01-15
mailto:asher.cutter@utoronto.ca
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Figure 1. (a) Life cycle of C. elegans at 258C, annotated with key life-history features pertinent to experimental study. (b) A schematic diagram indicating some of
the many genetic and environmental manipulations possible in rearing worms. See main text for more details on methods and examples.
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2. Virtues and vices of the Caenorhabditis
elegans experimental system

Caenorhabditis elegans is one of the supermodels of modern

biology. Since its debut in this capacity in 1974 [7], C. elegans
became the first metazoan to have its genome sequenced [8],

its complete cellular developmental pathway has been

mapped [9] and its neural connection networks determined

[10]. This focus of study has led to the invention and application

of many molecular experimental methods, further accelerating

C. elegans investigations; for example, RNA interference by

feeding [11] and green-fluorescent protein expression reporters

[12]. Thousands of laboratory mutants with a common genetic

background confer experimentally useful phenotypes, each

of which is publicly available and can be cryopreserved indefi-

nitely [13]. With the wealth of knowledge and tools gleaned

over nearly four decades of study, as well as intriguing organis-

mal biology in its own right, the worm has now expanded into

more diverse areas of biology, including evolution and ecology

[14].

In the laboratory, the C. elegans life cycle can be as short as

50 h, with a single egg hatching into a larva that undergoes

four moults before maturing into the adult hermaphrodite

that lays around 300 self-fertilized eggs over a period of about

a week (figure 1) [15]. C. elegans’s lifespan averages two

weeks, but crowding and starvation induce a diapause-like

‘dauer’ stage, in which worms stop feeding and can live for sev-

eral months. First-stage larvae survive cryopreservation in a

glycerol solution, permitting indefinite storage of populations

or isogenic strains. Worms grow readily to their adult length

of approximately 1 mm when reared on a diet of E. coli or on

many other bacterial species, or even in an axenic medium.

Populations may be reared in liquid culture, on an agar substrate

in Petri dishes or in three-dimensional environments.

Caenorhabditis elegans is androdioecious, meaning that self-

fertilizing hermaphrodites and rare males comprise natural

and laboratory populations. Sex determination is chromosomal,

with males being haploid for the X chromosome, but diploid

for the five autosomes (hermaphrodites are diploid for all

chromosomes). In N2, the commonly used reference strain,

males occur in populations at the frequency at which they

are expected to arise through X-chromosome non-disjunction
in meiosis, although alternative genetic backgrounds and

environmental conditions yield males with greater abundance

[16]. When mated to a male, a hermaphrodite’s sperm stores

are supplemented by the male, so that she lays more eggs; out-

crossed egg production occurs first owing to precedence of the

larger male sperm in fertilization [17,18]. A drawback to this

highly selfing sexual system for many purposes is that popu-

lations will inbreed at a high rate, creating extensive linkage

disequilibrium and diminished heterozygosity in genetically

variable populations. This issue can be circumvented by stan-

dard genetic modifications that transform hermaphrodites

into females [19] or by using one of the many related species

of Caenorhabditis that outcross obligatorily [20].

Indeed, C. elegans is no longer the only player for research in

theCaenorhabditisgenus,whichcontainsat least26species inlabo-

ratory culture [21]. These other members of the genus have

very similar life cycles to C. elegans (figure 1). Twelve of these

species have had their genomes sequenced (see http://www.

nematodes.org/nematodegenomes), permitting comparative

methods to analyse development and genetics. The relatively

compact size of Caenorhabditis genomes (100–150 Mb, approx.

25% of which is coding genes, approx. 17% repetitive DNA)

also makes genome sequencing of experimental evolution popu-

lations a viable strategy with high-throughput sequencing

[22,23]. Only Caenorhabditis briggsae, C. sp. 11 and C. elegans
have self-fertilizing hermaphrodites. All other species in the

genus share the ancestral gonochoristic (dioecious) reproductive

habit with a 1 : 1 ratio of males and females, allowing standard

crosses and experimental designs comparable with flies and

beetles. Despite the many species, ecological understanding

of this genus, as for many model organisms, is still in its

infancy [14]. Nevertheless, cryopreserved strain collections

from diverse populations around the world and numerous

phylogeographic analyses provide the basis for relating

experimental evolution to natural variation [24,25]. Ongoing

advances in automation, image processing and microfluidics

makes possible high-throughput studies for many traits [26].

Chemosensory, behavioural and fitness traits are particularly

amenable to such automation. However, the streamlined mor-

phology of all Caenorhabditis means that evolutionary study of

form is a challenge in these organisms, excepting relatively

subtle developmental phenotypes. The simplicity of form

http://www.nematodes.org/nematodegenomes
http://www.nematodes.org/nematodegenomes
http://www.nematodes.org/nematodegenomes
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and behaviour may therefore be viewed as a drawback or as a

benefit, depending on the focal question.

The molecular methods available to C. elegans researchers

are unparalleled. Reversible gene knockdown by RNAi is

straightforward in C. elegans by simply introducing or removing

a plasmid into the food bacteria [11], and RNAi libraries are

publicly available to target most genes in the genome. Publicly

available gene deletion strains are plentiful, and recent work on

TALENs and CRISPR/Cas9 has allowed targeted genome edit-

ing to engineer particular alleles in Caenorhabditis [27]. These

molecular tools offer powerful means of interrogating the

outcomes of experimental evolution in subsequent experiments.
 oc.R.Soc.B
281:20133055
3. Experimental evolution paradigms applied
to Caenorhabditis elegans

Evolution, by definition, requires genetic change over time.

Thus, there must be a source of genetic diversity for popu-

lations to undergo this change. In experimental evolution,

genetic diversity is generally obtained in one of three ways:

evolution from standing natural genetic variation, compe-

tition experiments between defined alternative alleles

or evolution from new mutational input (naturally arising, or

artificially elevated). Here, we describe these approaches as

applied to Caenorhabditis and then point to specific example

applications in the next section.

The large number of wild isolates of C. elegans available to

researchers provides a cross-section of natural variation in the

species as starting material with known genome sequence

[24,28]. In order to generate diversity for selection to act

upon quickly, an arbitrary number of strains can be crossed

using a careful design to reduce linkage [19], to be used as a

starting population [16,29]; established strain resources are

available that were derived in this way [19,30]. Outbreeding

species of Caenorhabditis harbour even greater genetic variation

in traits and DNA, with Caenorhabditis brenneri having the

highest molecular variation known for any eukaryote [31].

The starting genetic variation is more specific in exper-

iments in which the effect of a single gene is quantified. To

do this, an allele of a single gene (e.g. a knockout or gain

of function laboratory mutation) with an interesting phenoty-

pic effect can be tested in a common genetic background

or introgressed into multiple backgrounds [18,32–34]. The

strains can then be allowed to evolve together (figure 2).

This approach allows testing of hypotheses about differences

in fitness owing to single alleles under alternative controlled

environmental conditions, but requires the genetic construction

of appropriate tester strains.

It is possible to wait for the slow response to de novo
mutations from an isogenic ancestor [38], and this is exactly

the approach taken by mutation accumulation (MA) exper-

iments to measure the mutation process itself [39].

Alternatively, initially isogenic experimental populations can

be stocked with new mutations by chemical mutagenesis

[40–43] or with genetics, such as from a knockout of a mis-

match repair gene [44,45]. RNAi knockdown of DNA repair

genes provides an inducible means of introducing new

mutations with an endogenous mutational spectrum [46].

These mutagenic approaches introduce many more new

mutations than would occur naturally, allowing evolution to

proceed more quickly.
4. Current contributions from Caenorhabditis
elegans experimental evolution

Experimental evolution studies in Caenorhabditis have touched

on diverse areas of biology. This work offers improved under-

standings of general problems in evolution, as well as of

particulars about C. elegans biology. The first evolution exper-

iment carried out with C. elegans, in fact, pre-dates its

inception as a modern biological model [38]. Below, we discuss

some of the key topics for which C. elegans experimental

evolution has been important, including host–pathogen co-

evolution, fundamental mutational properties, mating

systems and life-history theory.
(a) Pathogenesis, coevolution and ecological
microcosms

To nematode worms, bacteria are simply food, but can be

pathogenic upon ingestion. With the amenability of both

microbes and worms to experimental evolution, coevolution

of host–pathogen dynamics is a natural extension to

pursue. Species interactions, environmental structure and

multi-species systems are classic areas of theoretical study,

and notoriously difficult to investigate from a microbial per-

spective. C. elegans, as a motile metazoan, allows a convenient

inroad for these topics.

Different Caenorhabditis strains and species vary in

their susceptibility to bacterial pathogens, including Serratia
marcescens [47] and Bacillus thuringiensis [29]. This fact has

been exploited to test models of host–pathogen dynamics by

tracking coevolution between worm host and bacterial patho-

gen, and then quantifying responses to selection imposed on

each of them. For example, trade-offs evolve between worm

growth rates and resistance to pathogens [29,48], local adap-

tation occurs between pathogens and hosts [49,50], and

outcrossing sex increases during host–pathogen coevolution

[51–53]. With the recent discovery of viruses that infect natural

populations of C. elegans and C. briggsae [54], viral coevolution

experiments provide a further dimension to test these and

related hypotheses.

In addition to coevolution, multi-species experiments can

test ecologically motivated questions as well. A tri-trophic

microcosm comprising C. elegans, Pseudomonas syringae and

phage F6 has been developed to study simple ecosystem

interactions [55]. Dispersal is an ecologically important trait,

and a system has been developed and modelled in C. elegans
to describe competition between strains that differ in disper-

sal rates under different ecological scenarios, made possible

by virtue of specific alleles that affect motility and fertility

[56,57]. By competing in a patchy environment, the exper-

iments showed that environmental variation can favour

the evolution of increased dispersal tendencies and that

alternative dispersal strategies can coexist under intermediate

rates of environmental disturbance [56,57]. Fragmented

environments have also been used to test hypotheses about

balancing selection for the maintenance of genetic variation

within a population, specifically associated with genetic con-

trol of feeding strategies [33]. While Petri dishes provide a

relatively uniform environment, imposing physical barriers

to dispersal has allowed study of dispersal propensity [52]

and construction of artificial dirt permits worms to perform

behaviour in a more realistic three-dimensional environment
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[58]. The inclusion of multiple species and environmental

heterogeneity into experimental designs suggests tantalizing

opportunities to test theories about predator–prey dynamics,

competition, biodiversity and ecosystem function.
(b) Understanding mutation
One of the most commonly undertaken applications in

C. elegans experimental evolution has been for MA. This

work has yielded great progress into characterizing the fun-

damental mutational parameters that underlie evolutionary

theory to describe the rate, fitness effects, biases and types

of mutation [39].

Keightley & Caballero [59] started MA in C. elegans by

repeatedly bottlenecking to a single individual for 60 gener-

ations. They found that reproductive output declined by

0.03% per generation. Recent studies have expanded to use

whole-genome sequencing of strains to quantify mutation

rates directly after more than 300 generations of MA
[22,23], as well as permutations on the MA scheme, including

manipulations of mutation rate, the per generation bottleneck

size, environmental conditions, natural genetic background

of strain founders and focal species (table 1).

In addition to the accumulation of new mutations, some

studies have explored the clearance of and interactions between

mutations. For example, experiments using different population

sizes confirmed theory that smaller populations fix more detri-

mental mutations [45]. The dynamics of recovery from MA have

been explored, showing that epistatic compensatory mutations

dominate [80]. Investigation of the clearance of mutations at dif-

fering mutation rates has found that an increase in mutation rate

can lead to a paradoxical increase in fitness [43]. Some theory

predicts gonochoristic species to have higher mutation rates

than selfing species, and results appear to support this [68].

Different androdioecious species also have been tested for

mutation rate differences, although the conclusions regarding

species differences vary depending on how mutation rate is

measured [23,69]. Further work with MA should focus on the



Table 1. Major hypotheses tested with experimental evolution in Caenorhabditis.

topic key question or idea finding references

coevolution is there genetic diversity for pathogen

resistance?

found for resistance to S. marsecens, B. thuringensis,

P. luminscens

[29,47,60]

does evolution of resistance to pathogens

have trade-offs?

an increase in resistance, but reductions in growth

and feeding rate

[29,48]

does coevolution and local adaptation

occur between host and pathogen?

populations showed higher resistance to their own

pathogens and genetic diversity between

populations increased

[49,50]

red queen hypothesis outcrossed sex allowed faster adaptation to parasites [51 – 53]

population structure

and ecosystems

can ecosystems be constructed? three species interactions and dependencies [55]

is dispersal beneficial in varying

environments?

dispersal is beneficial under random extinction, can be

regulated by a single gene and can be selected for

[33,42,56,57]

effects and

accumulation of

mutations

how do traits evolve with mutation

accumulation (MA)?

fitness, body size, behaviour, oxidizing state and other

traits degrade

[59,61 – 65]

does fitness recover after MA? restoring selection, or greatly increasing mutation rate

leads to fitness recovery

[43,66]

what is the rate and spectrum of new

mutations?

many mutations identified after 396 generations of

MA by genome sequencing

[22,23,67]

do mutation properties differ among

genetic backgrounds, species or

environments?

different strains, species and conditions do or do not

have differing mutation profiles

[23,68 – 71]

mating systems are males evolutionary relics? males reduce in frequency under the lack of selection,

depending on the strain and genetic background

[16,41,72,73]

does outcrossing sex promote removal of

detrimental mutations?

male frequencies increased under higher mutational

loads

[41,44]

does outcrossing sex accelerate

adaptation?

male frequencies increased under directional selection [42,51,52,74]

does outcrossing sex help retain

heterozygosity?

no difference between reproductive modes, balancing

selection dominates

[30]

do inbreeding and outbreeding depression

depend on reproductive mode?

inbreeders showed outbreeding depression and vice

versa

[75]

how does sexual selection by sperm

competition evolve?

competition led to larger sperm and restored male

sexual function

[34,76,77]

life history does increased lifespan have pleiotropic

costs?

fewer offspring for longer lived worms in one study,

but not in another

[78,79]

is individual vigour linked to lifespan? selection for good condition worms led to longer

lifespans

[20]

how does selection affect reproductive

life-history trade-offs?

selection between faster generation times and

offspring number changed the trade-off

[18]
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distribution of selective effects of mutations, and the relative rate

of beneficial and detrimental mutations.
(c) Mating systems
One especially appealing aspect of Caenorhabditis biology is the

existence of distinct mating systems among species, and the abil-

ity to manipulate mating and sex determination systems in C.
elegans using both genetics and exogenous treatments (e.g.

RNAi, temperature) [81,82]. The evolution of sex is a long-
standing problem in evolutionary biology [83], having attracted

many experimental evolution studies in a variety of organisms

[84]. While Caenorhabditis experiments cannot contrast sex

versus asex, studies have investigated the related problem of

selfing versus outcrossing [16]. This work also has attempted

to explain the incidence of males in populations, which relates

directly to the frequency of outcrossed reproduction, and the

effect of those outcrossing males on adaptation.

Why do functional males still occur in C. elegans, given

that they are not strictly necessary for reproduction? Males
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are rare in natural collections [85,86], and both modelling and

multi-generation experiments based on the standard N2

laboratory strain indicate rapid loss of males from populations,

suggesting that they are not necessary for population survival

[72,86–88]. However, the males of the N2 strain seem to have

particularly low sexual vigour compared with other wild iso-

lates and males of other species [73,89,90]. Experimental

evolution under elevated mutation rates, either endogenously

via mismatch repair mutants or exogenously via chemical

mutagenesis, results in males and outcrossing persisting for

longer durations within populations over time [41,44]. More-

over, different genetic backgrounds allow greater male

persistence and outcrossing across generations [16,41].

Theory also predicts that outcrossing sex will accelerate

the rate of adaptation under directional selection [91]. Exper-

imental evolution using starvation stress [92], directional

selection [42,74] and coevolution with pathogens [51,52] all

showed that outcrossing sex was favoured over selfing

under these conditions. Experiments with alternative repro-

ductive modes also suggest a role for balancing selection

maintaining variation in an experimental setting [30].

The differing reproductive strategies among closely

related species of Caenorhabditis allow comparative insights

into reproductive behaviour. For example, wild isolates of

Caenorhabditis remanei, a gonochoristic species, show strong

inbreeding depression (and a lack of purging of deleterious

mutations) when propagated over 13 generations, whereas

the highly selfing C. elegans and C. sp. 11 yield outbreeding

depression consistent with the presence of ‘coadapted gene

complexes’ [75,93].

Sexual selection also is a long-standing area of study in

evolutionary biology, and C. elegans provides a prime under-

exploited system for investigation. One study explored sperm

competition: in C. elegans, large sperm are competitively superior

[76]. When C. elegans populations were forced to reproduce by

outcrossing, which imposed male–male sperm competition,

selection appears to have driven the evolution of larger males

and males making larger sperm [34,94]. Natural genetic vari-

ation exists for a variety of mating traits, upon which

experimental selection pressures could act [18,90]. The sex deter-

mination pathway of C. elegans is well understood [95], and

mutations in this pathway can produce intersex individuals.

Worms which were intersex owing to mutations in tra-2 and

xol-1 re-evolved high levels of sexual dimorphism in response

to selection over the course of 50 generations, shedding light

into the developmental evolution of sexual dimorphism [77].

Although species differ in attractiveness to female mating phero-

mones and mating propensity [89], many aspects of worm

mating remain to be studied from an evolutionary perspective.
(d) Ageing and life history
Caenorhabditis elegans has become a model system for ageing

research [96], and this is a fruitful target for selection exper-

iments. Lifespan has long been predicted to show a trade-off

between long life and faster reproduction [97], and much

work attempts to determine whether this prediction holds

true generally. Worms are particularly attractive for this, as

they show ageing and senescence, unlike microbes, but have

life cycles on the order of weeks (rather than years, as is

common in many animals).

A strain of C. elegans carrying an allele of the age-1 gene—

known to increase lifespan, but also leading to increased
dauer formation—showed no cost of increased lifespan

under benign conditions [78]. However, upon cyclical star-

vation, the long-lived worms rapidly declined in frequency

in experimental populations owing to dauer formation, indi-

cating that there was an antagonistic pleiotropic effect to the

longer lifespan conferred by age-1. In other work, lifespan

and reproduction were again probed by selecting for early off-

spring [79]. As expected, early offspring numbers increased

and late offspring decreased. Yet lifespan did not show a corre-

sponding decline, casting doubt on the idea of antagonistic

pleiotropy between early- and late-acting genetic effects.

Some recent theory posits that while high mortality will

select for a decrease in lifespan, if mortality is condition-

dependent, then longer lifespans will evolve [98]. To test this,

C. remanei populations were subjected to condition-dependent

selection, with worms dying either randomly or following heat

stress, which preferentially kills low-condition worms [20].

The populations subjected to random mortality evolved a

reduced lifespan, as expected from classic theory, but those

with condition-dependent mortality evolved longer lifespans,

consistent with the updated theory. The wealth of data on

the molecular mechanisms of ageing in the worm offers a

possibility of uniting both new and long-standing theory

with evolutionary process and molecular function.

In C. elegans hermaphrodites, reproduction is often sperm-

limited [17]. This is due to sperm being produced before a

switch to oocyte production, leading to a trade-off between

number of sperm produced and the earliest time at which fer-

tilized eggs can be laid. Mutations known to influence sperm

number have been competed in order to test theory about

this fitness trade-off between early reproduction and total life-

time reproduction [18,99]. These examples illustrate the broad

range of life-history trade-offs that are tractable for study by

experimental evolution in the worm.
5. Prospects
Experimental evolution research in C. elegans has just

scratched the surface of what is possible. Caenorhabditis ele-
gans is an enviable research model in many respects, with

the benefits of short life cycle and laboratory amenability

combined with the trappings of a higher eukaryote, giving

it a superb potential as an experimental system for evolution-

ary studies. Here, we highlight a few areas that are ripe for

interrogation, or in need of development (table 2), in addition

to the suite of topics commonly addressed by experimental

evolution in other organisms [2].

(a) Sexual selection and behavioural evolution
Tests of ideas about sexual selection remain largely unexplored

in Caenorhabditis, despite the sperm competition work descri-

bed above. Worms have many compelling features for

investigating sexual selection and sexual conflict: sperm size

differences in sperm competition, mating plugs, mating phero-

mones, plastic re-mating propensities. Mating is one of

the most cognitively demanding procedures undertaken by

male worms [105], and elucidating and modifying the mate

recognition and decision systems by evolution would allow

a fascinating insight into behaviour. Worms perform both

learned and stereotyped behavioural responses, albeit simple

from an anthropocentric view [106]. The complete neural

network has been mapped, and worm behaviour on a



Table 2. Topics in need of development using Caenorhabditis experimental evolution.

topic comments

speciation The recently discovered species in the genus that can be hybridized in the laboratory offer the opportunity for an

experimental insight into speciation [100 – 103]. Laboratory experiments selecting for reproductive isolation and

reinforcement have a long heritage in Drosophila, and work in Caenorhabditis can complement this.

repeatability of

evolution

Caenorhabditis is a large genus and a large number of species allows a comparative approach. While recent studies have

tested the repeatability of evolution [104], this has occurred in a single ancestral genotype. Analysis of the genetic change

during adaptation in multiple closely related species would provide a fascinating insight into evolution in different genetic

backgrounds. Comparative experimental evolution work on genomic mutation rates [23] and sexual systems [72,75,77] also

will be extremely valuable. The diverse reproductive strategies have already been exploited for mutation studies, and

adaptive evolution is an obvious next direction to explore in detail.

ecological theory Host – parasite coevolution is, and will be, a prosperous area for C. elegans experimental evolution [49,52]. But this is just

one possible ecosystem. The literature on ecosystem dynamics and predator prey interactions is vast, and the systems

developed with nematodes offer a way to empirically test some of these models. Promising topics include dispersal,

predator – prey/consumer – resource dynamics, environmental variability and maintenance of biodiversity.
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two-dimensional plane (agar plates) offers a simple

environment in which to quantify behavioural evolution via

automated video image processing. In addition, there are

many relevant C. elegans manipulative genetic tricks, and the

transparent cuticle allows direct visualization of the reproduc-

tive tract contents [107], permitting a diversity of options for

experimental evolution and follow-up study of molecular

mechanism about evolutionary responses.

(b) Genotype – phenotype mapping
A persistent goal in evolutionary genetics is the mapping of

natural phenotypic differences to their genetic causes. Methods

such as bulk segregants analysis or X-QTL combine selection

and evolution with genotyping, allowing the elucidation

of this link. The recent construction and genome sequencing of

more than 2000 mutagenized and wild strains of C. elegans pro-

vides a compelling substrate for experimental evolution and for

connecting genotype to phenotype [28]. Until recent develop-

ment of automated high-throughput phenotyping [35,36],

fitness assays have not been as easy or as powerful as in many

microbial systems. As these techniques are refined, more indi-

viduals and populations can be assayed for fitness, allowing

better detection of phenotypic trait differences, fitness effects,

adaptive trajectories and connection to real-world ecologies.

(c) Integration with systems biology
The developmental genetics of C. elegans has been exceptio-

nally well characterized from traditional molecular genetic

approaches. The work of Chandler et al. [77] shows the promise

of evolutionary inroads into molecular and systems biology. By
altering one or a few genes, and then allowing compensatory

mutations to evolve through experimental evolution, one

can generate targets for subsequent molecular genetic analy-

sis. In addition to addressing intriguing hypotheses about the

evolution of development and genetic networks, this approach

provides a complementary method to quantitative gene-

tics (e.g. QTL mapping, GWAS) and standard forward and

reverse genetics (e.g. mutagenesis screens) to understand

gene–phenotype mapping and molecular mechanisms.
6. Concluding remarks
Recent years have seen increasing adoption of Caenorhabditis in

experimental evolution, but it is not yet mainstream. So far, the

major thrusts in C. elegans experimental evolution have tar-

geted understanding mutational properties, host–pathogen

coevolution and mating system evolution. Given the exper-

imental tractability and toolkit conferred on C. elegans by

decades of development for biomedical research, and the com-

pelling details of its organismal biology, the Caenorhabditis
system is primed to address topical issues throughout the dis-

ciplines of evolution and ecology with experimental evolution

(tables 1 and 2). The promise of high-throughput pheno-

typing and genome sequencing of experimental populations,

coupled with multi-species systems, can rapidly help connect

evolutionary process and mechanism.
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