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Treefall gaps play an important role in tropical forest dynamics and in deter-

mining above-ground biomass (AGB). However, our understanding of gap

disturbance regimes is largely based either on surveys of forest plots that

are small relative to spatial variation in gap disturbance, or on satellite ima-

gery, which cannot accurately detect small gaps. We used high-resolution

light detection and ranging data from a 1500 ha forest in Panama to: (i) deter-

mine how gap disturbance parameters are influenced by study area size, and

the criteria used to define gaps; and (ii) to evaluate how accurately previous

ground-based canopy height sampling can determine the size and location

of gaps. We found that plot-scale disturbance parameters frequently differed

significantly from those measured at the landscape-level, and that canopy

height thresholds used to define gaps strongly influenced the gap-size distri-

bution, an important metric influencing AGB. Furthermore, simulated

ground surveys of canopy height frequently misrepresented the true location

of gaps, which may affect conclusions about how relatively small canopy

gaps affect successional processes and contribute to the maintenance of

diversity. Across site comparisons need to consider how gap definition,

scale and spatial resolution affect characterizations of gap disturbance, and

its inferred importance for carbon storage and community composition.
1. Introduction
In mature tropical forests, the most common type of disturbance initiating forest

regeneration is the creation of canopy gaps by tree falls [1]. Consequently, the

extent, frequency and distribution of canopy gaps across space and time play

a central role in our understanding of community dynamics as well as key eco-

system processes, notably carbon storage. Gap disturbance regimes are

typically characterized by the proportion of forest area in gaps (the gap area

fraction) and by the gap-size-frequency distribution (the relative frequency of

gaps across gap-size classes). Common values for the gap area fraction of tro-

pical forests range from less than 1 to 10% [2–7], but values more than 10%

are also sometimes reported [8,9]. The gap-size-frequency distribution has

often been found to follow a power-law distribution [10–12], but deviations

from this pattern are also possible [13].

The relationship between the gap area fraction and carbon storage or commu-

nity dynamics is likely to be relatively straightforward; an increase in the gap area

fraction implies reduced basal area and therefore above-ground biomass (AGB),

and potentially increased representation in the forest stand of light-demanding

species with low wood density that recruit exclusively in newly formed gaps

[14]. On the other hand, the influence of variation in the gap-size distribution
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on community and ecosystem processes is less clear. If species

recruitment success is influenced not only by the presence of

gaps, but also by gap size, then changes in the gap-size-

frequency distribution could result in compositional shifts in

tree communities with impacts on AGB.

The gap-size distribution is also critical in scaling estimates

of AGB from the plot to the landscape scale. Large canopy

gaps (1000–10 000 m2), resulting from infrequent windstorms

or landslides, influence AGB at the landscape scale [15] but

may be inadequately sampled in forest plot datasets, even

when the plot size is quite large. Based on simulations [11],

the minimum area required to generate unbiased estimates

of fluxes in AGB was found to depend largely on the relative

frequency of large canopy gap disturbances.

To date, most estimates of gap disturbance are based on

interpolations from ground surveys of canopy height made at

a grid of sample points [16–18]. As these studies are limited in

spatial extent (1–50 ha), they are unlikely to adequately charac-

terize rare, large-scale disturbance events [11]. In the most

detailed analysis of gap disturbance rates based on ground

data, Hubbell et al. [16] recorded the frequency of forest gaps

in a 50 ha plot on Barro Colorado Island (BCI), Panama. Gaps

were defined as sample points on a 5 m grid with less than

5 m canopy height, with adjacent low canopy points (excluding

diagonals) aggregated into individual gaps. Analysis of 1284

gaps identified this way in 1983, 1988 and 1999 revealed that

the BCI plot is dominated by small gaps, with more than 99%

of gaps less than 400 m2, and the largest gap 1150 m2 [16].

By contrast, remotely sensed data on gap disturbance based

on satellite imagery often fails to detect the small gaps that

characterize the BCI plot. In a recent study, Chambers et al. [19]

used Landsat imagery to characterize the gap-size distribution

of the central Amazon. Their imagery could only resolve gaps

resulting from clusters of more than eight treefalls (approx.

900 m2). When these data were combined with existing plot

data, they inferred that infrequent large gaps account for

9–17% of tree mortality on the landscape. They further argued

that these are the most important gaps influencing forest commu-

nity composition and carbon storage, and that consideration of

relatively large, rare disturbances is critical to evaluating hypoth-

eses for how disturbance influences community assembly [19].

The mismatch in size between gaps that can be detected

from satellite imagery, and those that mostly occur in plots,

precludes a more detailed examination of how gap size influ-

ences species composition, and therefore exerts indirect

effects on AGB. The conclusion that gaps more than 900 m2

play a disproportionate role in determining community com-

position [19] was based on the assumption that smaller gaps

do not initiate secondary succession (i.e. the replacement of

slow-growing shade-tolerant tree species with short-lived

fast-growing pioneers). In turn, this assumption was based

on the Hubbell et al. [16] analysis of species composition in

gaps in the BCI plot. Hubbell et al. [16] found that gap size

had no influence on species richness when expressed on a

per-stem basis, and therefore did not support the predictions

of the intermediate disturbance hypothesis [20].

Here, we use Light Detection and Ranging (from here on

LiDAR) to obtain canopy height estimates across a 1500 ha tropi-

cal forest landscape at BCI. Metre-scale spatial resolution in these

measurements allows quantification of the gap frequency distri-

bution from the smallest scale detectable from ground surveys to

the largest gaps observed on satellite imagery. Furthermore, high

(centimetre-scale) accuracy in the measurement of canopy height
achievable using LiDAR allows us to examine in detail how the

use of canopy height thresholds to define gaps influences gap dis-

turbance metrics. This is an important area for initial exploration

as different disturbance processes (landslides, fallen trees and

snapped trees) may differ in the initial canopy height profile

that they generate, and may differ in probability that the gaps

they form undergo secondary succession.

Our specific objectives using LiDAR data were therefore:

(i) to determine how estimates of the gap area fraction and

size distribution are influence by the spatial extent of the

study area, and the criteria used to define gaps; (ii) to assess

whether previous estimates of gap area fraction and the gap-

size distribution measured at the plot scale adequately capture

the characteristics of gap disturbance observable at the

landscape scale on BCI; and (iii) to explore how well ground-

based sampling of canopy heights implemented in previous

studies [16] can estimate the size and location of forest gaps.

If ground-based surveys are poor predictors of the size and

location of gaps, then previous analysis of how gap size influ-

ences species composition may need to be re-evaluated, with

implications for theories of how species diversity is maintained,

and for how even relatively small gaps impact AGB.
2. Material and methods
(a) Study site
This study was conducted at BCI, Panama (9890 N, 798510 W)

(figure 1). BCI is a 1500 ha island supporting semi-deciduous

lowland moist forest. Average annual rainfall is 2600 mm, with

a pronounced dry season between December and April [21].

The western half of the island supports old growth forest 300–

400 years old. The eastern half of the island is a mosaic of second-

ary forests 80–150 years old, resulting from clearing during the

late 1800s for small farm settlements [22]. All human disturb-

ances other than those related to scientific research stopped in

1923, when BCI was declared a reserve [23]. A 50 ha forest-

monitoring plot located in the centre of BCI is composed of

mostly of old growth forest with 2 ha of secondary forest about

100 years old [24]. The majority of the plot is on a plateau at

an elevation of 120–160 m above sea level, with gentle slopes

to the south and east. Mean canopy height is 24.6+8.2 m s.d.

and AGB is estimated 281+20 Mg ha21 [24].

(b) Canopy height data
LiDAR data were acquired during August and September 2009 with

a multi-pulse scanning laser altimeter (Optech ALTM Gemini

system; BLOM Sistemas Geoespaciales SLU, Madrid, Spain). The

number of returns at the landscape ranged between 4 and 27

points per square metre; point density at the 50 ha plot ranged

between 9 and 27 points per square metre. Point clouds were

used to generate a digital terrain model and digital surface model

with 1 m2 pixels; additional models with 0.25 m2 pixels were gener-

ated for the 50 ha plot. Heights were calculated by subtracting

elevations from these models. Estimated vertical errors were smaller

than 15 cm (BLOM 2009, unpublished data). The geo-positioning of

the 50 ha plot was based on the known location of coordinates of the

corners (with less than 1 m positional error) [25].

(c) Effects of gap height and plot size on the gap-size
distribution

Gaps were defined as contiguous areas with a canopy height

lower than a threshold maximum canopy height detected with

LiDAR. The minimum gap size included in this study was
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Figure 1. Location of BCI in the Panama Canal Area, Panama. The 50 ha
forest-monitoring plot is shown as a rectangle located in the centre of the
island. (Online version in colour.)

(a)

(b)

Figure 2. A 10 ha sample of the BCI 50 ha plot selected to show canopy
height (greyscale) and gaps less than 5 m canopy height (red). (a) Fine
spatial resolution typical of LiDAR (1 m2 pixels) and (b) coarse spatial
resolution typical of field data (25 m2 pixels).
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5 m2, as we assume that smaller gaps are unlikely to influence

tree recruitment or carbon storage. Gap area was resolved to

the nearest square metre. Three different threshold top-of-

canopy heights commonly used in other studies, 2, 5 and 10 m,

were used to assess the implications of differences in gap defi-

nition for the gap-size distribution and gap area fraction. Gap

maps were derived for the entire landscape based on these defi-

nitions. To evaluate whether plot size has an effect on the fraction

of gap area and the gap-size distribution, we used plot sizes of

10, 50 and 100 ha. For every combination of plot size and gap

height, 1000 plots were randomly generated throughout a

992 ha polygon, which corresponded to the portion of the land-

scape that was able to fit plots of all sizes. For every plot, the

fraction of gap area and the observed distribution of gaps were

recorded; these were also recorded for the 992 ha polygon

and the entire landscape, which has an area of 1484 ha, excluding

the shores and the laboratory clearing. The gap-size distribution

for every plot was then fit to a power-law probability distri-

bution. In a discrete power-law with parameter l, the

probability for gap size k is given by

f ðkÞ ¼ cðlÞk�l; where c(l)
Xn

i¼1

1

kl1
¼ 1: ð2:1Þ

Lambda (l) is related to the ratio of small gaps to large gaps;

larger values of l indicate a smaller relative frequency of large

gaps. Maximum-likelihood estimates (MLEs) for l were calcu-

lated by minimizing the negative log-likelihood function.

We calculated standard errors for l, based on the marginal

likelihood (I, equation (2.2)), so that

s.e. ¼ 1ffiffi
I
p ; where I ¼ �d2LðlÞ

dl2

�����
l̂

: ð2:2Þ
The 95% CIs were calculated for each estimate of l, based on

the standard error (equation (2.2)) and a t-distribution [26].

Mann–Whitney tests were used for the contrasts of means and

Levene tests were used for the contrasts of variances for the

distributions of l across plot sizes.

To better understand the effects of the threshold canopy

height used to assign gaps on the gap-size distribution, gap

maps were generated for the entire landscape for all maximum

gap heights between 1 and 15 m. Gap-size-frequency distributions

were fit to a power-law and fraction of gap area was calculated for

the landscape.
(d) Height contrast: field versus light detection
and ranging

To assess the importance of gap aggregation errors that might

result from field surveys of canopy height, we developed a

new canopy height model for the 50 ha plot (figure 2). Our

approach simulated the field data collected by Hubbell et al.
[16], where a single canopy height measurement was taken on

a 5 m grid and used to represent the canopy height of a 25 m2

quadrat of forest and a maximum height of 5 m was used to

define gaps. Accordingly, we subsampled the LiDAR data at

the same scale and assigned canopy heights from 1 m2 plots

to the surrounding 25 m2. Aggregation errors are defined here

as the errors in canopy height estimates resulting from a reduced

sampling frequency. Two types of aggregation error can occur in

the estimation of gap spatial distribution and extent: (i) commis-

sion error, where high canopy forest is wrongly classified as a

gap using low-resolution canopy height data, and (ii) omission

error, where gap is wrongly classified as high canopy forest.

For both high-resolution (the full LiDAR) and low-resolution

(simulated field data) canopy height models, we then generated



Table 1. Effect of plot size (ha), and the maximum canopy height cut-off used to define gaps (gap height) on the gap-size distribution (l) and gap area (%
of plot area in gaps). (Means are based on 1000 samples. The polygon comprises the 992 ha of the landscape where all plot sizes could fit. The landscape
comprises the entire island, excluding the shores and the laboratory clearing, with an area of 1484 ha.)

maximum canopy height cut-off for gap identification

2 m 5 m 10 m

plot size l gap area l gap area l gap area

10 ha 2.45 (0.42) 0.40 (0.20) 2.05 (0.25) 1.43 (0.70) 1.82 (0.11) 5.49 (2.18)

50 ha 2.36 (0.19) 0.42 (0.13) 2.00 (0.11) 1.52 (0.48) 1.77 (0.06) 6.08 (1.52)

100 ha 2.36 (0.13) 0.43 (0.09) 1.99 (0.05) 1.60 (0.34) 1.76 (0.04) 6.17 (1.12)

polygon 2.41 (0.03) 0.43 (n.a.) 2.03 (0.02) 1.59 (n.a.) 1.78 (0.01) 6.10 (n.a.)

landscape 2.37 (0.03) 0.41 (n.a.) 2.04 (0.01) 1.42 (n.a.) 1.78 (0.01) 6.04 (n.a.)

Table 2. Effect of plot size (ha), and the maximum canopy height cut-off used to define gaps (gap height) on the probability of detecting an extreme value
of l. (The l landscape is the mean value of l at the landscape scale, and l interval is the upper and lower 99% CIs of l. Extreme values are defined as
those outside the 99% CI (l interval) calculated from the 100 ha plot sizes. The proportion of replicate plots of 10, 50, 100 ha with extreme values of l are
shown in the last three columns.)

plot size (ha)

gap height (m) l landscape l interval 10 50 100

2 2.37 (2.10, 2.69) 0.44 0.12 0.01

5 2.04 (1.89, 2.16) 0.58 0.20 0.01

10 1.78 (1.68, 1.84) 0.46 0.13 0.01
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gap-size-frequency distributions and fit power-law functions. Par-

ameter estimates were calculated using MLE for the gap-size

distribution generated using 1 m2 quadrats. For the gap-size distri-

bution generated with 25 m2 quadrats, MLE could not be used

owing to the small number of resulting gap-size classes; a logarith-

mic transformation followed by ordinary least squares (OLSs) was

used instead. To make both gap-size distributions comparable, we

also applied a logarithmic transformation followed by an OLS fit

to the gap-size distribution generated using 1 m2 quadrats.
3. Results
(a) Gap fraction and gap-size distribution in the

Barro Colorado Island forest
(i) Gap-size distribution
The mean power-law exponent (l) of the gap-size distri-

bution calculated from 1000 plots randomly generated

throughout the landscape differed significantly among plot

sizes ( p , 0.005), but the differences were rather small

(table 1). Standard error values for the 10 ha plots were two

times greater than those for the 50 ha plots and three to

four times greater than those for the 100 ha plots. The impor-

tance of large among-plot variation in l at the small plot scale

can be illustrated by comparing how frequently the l of an

individual plot falls outside the 99% CIs of l calculated

from repeatedly sampling throughout the landscape at the

100 ha scale (table 2). For example, the l values of 44% of
10 ha plots classified using a 2 m maximum canopy height

threshold would fall outside the 99% CIs for 100 ha plots.

The mean and standard error of the distribution of l

values decreased significantly ( p , 0.005) with maximum

canopy height threshold at the plot scale (table 1), and l

declined linearly with maximum canopy height at the land-

scape scale (figure 3a). When the maximum canopy height

criterion used to identify gaps was relaxed from 2 to 10 m,

l decreased by 25%. This indicates that using criteria to

include gap openings do not extend as close to the ground

surface results in a higher relative abundance of large gaps.
(ii) Gap area fraction
The mean gap area fraction (per cent of the plot area in gaps)

calculated from 1000 plots randomly generated throughout

the landscape was relatively insensitive to the size of the

sample plot (table 1). However, standard errors were signifi-

cantly larger for the smallest plots ( p , 0.005). As expected,

gap area fraction was strongly influenced by the canopy

height threshold used to delimit gaps. For a given plot size,

both the mean and standard error of the distribution of gap

area fraction values increased significantly ( p , 0.005) with

maximum canopy height. At the landscape scale, the gap

area fraction increased as a second-order polynomial with

maximum canopy height (figure 3b). Relaxing the canopy

height threshold from 2 to 10 m resulted in more than a

20-fold increase in the gap area fraction.



12

10

8

6

4

2

0

2.5

2.0

1.5

1.0

0.5

0
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

ga
p 

ar
ea

 f
ra

ct
io

n 
(%

)

l

gap height (m)

y = –0.0994x + 2.3691

y = 0.058x2

gap height (m)

(b)(a)

Figure 3. (a) Landscape pattern of l and (b) fraction of gap area versus maximum gap height. All coefficients had p , 0.005; r2 values for the regressions of l
and fraction of gap area versus maximum gap height were 0.981 and 0.996, respectively. (Online version in colour.)

10

0

–10

–20

–30

0–5 5–10 10–20 20–30 >30
height interval (m)

bi
as

 (
m

)

Figure 4. Box plot showing bias in canopy height estimates when using
coarse spatial resolution for canopy height estimates across different
canopy height intervals ( from 0 to more than 30 m); bias is defined as
the height of simulated field data with coarse spatial resolution minus the
height from LiDAR data with fine resolution. Box plot shows the median,
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(b) Comparison of light detection and ranging and
field-based gap surveys

The effects of the spatial resolution of canopy height estimates

on gap identification were assessed through comparison of

LiDAR and simulated field data at the location of the 50 ha

monitoring plot. The coarse spatial resolution of simulated

field data, where a single 1 m2 height measurement represents

a 25 m2 quadrat, led to substantial errors in canopy height

estimation. Bias in the assessment of canopy height was

particularly strong when the lowest canopy height class

(0–5 m) was assigned to quadrats (figure 4), as, on average,

simulated field data predicted canopy heights 8.2 m lower

than those obtained using the full LiDAR data. The absolute

value of bias progressively decreased as canopy height

increased, with a mean value of 0.87 m for the more than

30 m height class.

Simulated field data also led to errors in determining the

frequency, location and extent of gaps (defined as areas with
a canopy height less than or equal to 5 m [16]). An omission

error of 50% (1 m2 quadrats that are less than or equal to 5 m

but are not classified as gaps) and a commission error of 79%

(1 m2 quadrats that are more than 5 m but are classified as

gaps) were obtained (figures 5 and 6). Omission and commis-

sion errors both increased with gap size, but the accumulated

error by gap size was similar across sizes because small gaps

are much more abundant than large gaps.

Gap-size-frequency distributions were generated for the

simulated field data and the original LiDAR data and fitted

to power-law functions. The gap-size distributions fitted using

OLS were significantly different between the full LiDAR

data and the simulated field data (figure 7). The gap-size dis-

tribution derived using the simulated field data had a

significantly steeper decline in the number of gaps with

increasing gap size (l ¼ 2.68) than that obtained using 1 m2

quadrats (l ¼ 1.53; p , 0.005 for the estimates and the con-

trast test). However, it should also be noted that the value

of l is sensitive to the method used for fitting the gap-size

distribution. For the 1 m2 spatial resolution, where data

were sufficient to use MLE, an estimate of l of 2.05 (s.e. ¼

0.08) was obtained.
4. Discussion
(a) Effects of gap definition criteria and plot size on

disturbance metrics
Canopy height-based definitions of gaps strongly influenced

both the gap area fraction and the scaling parameter, l, of the

gap-size distribution. Increasing the minimum canopy height

used to identify gaps from 2 to 10 m increased the gap area

fraction from 0.4 to 6% and reduced l from 2.4 to 1.8, indicat-

ing an increased relative abundance of large gaps. Clearly,

gap definition criteria have important implications for the

calculation of the gap area fraction and gap-size distribution.

The dependency of l on the canopy height threshold is par-

ticularly notable as this directly impacts inferences on

whether forest dynamics plots fully capture landscape-level

forest disturbance regimes [11]. However, it is unclear

whether changes in disturbance metrics when the criterion

for maximum canopy height is relaxed is entirely the conse-

quence of capturing older gaps that are recovering canopy

height, or if a higher canopy height threshold allows us to

capture qualitatively different disturbances that may result

in different community composition. Discerning these
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Figure 6. A 1.4 ha sample of the plot showing canopy height (greyscale).
Red areas represent gaps defined using fine spatial resolution LiDAR, pale
yellow areas indicate gaps defined using coarse spatial sampling that simu-
lates field measurements, and orange areas show the areas classified as gaps
under both schemes.
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differences will require repeated use of high-resolution

LiDAR, coupled with field studies to examine how canopy

height impacts successional processes in gaps.

Our analyses showed that for the BCI forest, smaller plots do

not produce systematically biased estimates of l or the gap area

fraction. However, variance for these parameters was much

greater for smaller plots and dramatically so for plots of 10 ha

size. Our results therefore provide an illustration of the ‘modifi-

able areal unit problem’ common in landscape ecology, where

increased areal coverage results in a decline in variance of

the measured parameter as landscape-level heterogeneity is

smoothed [27,28]. On a practical level, we caution against inter-

preting rates of gap disturbance based on a few small plots.

While large forest dynamics plots (50 ha) are likely to provide

quite robust estimates of these parameters, a single estimate of

l may diverge greatly from the true landscape value.
(b) Efficacy of ground-based assessments of forest gaps
In addition to under-sampling landscape-level variation in

gap disturbance, field-based identification of canopy gaps

in forest plots may also be influenced by the spatial resolution

of canopy height measurements (effectively the grain size). In

our study, field data were simulated by applying the LiDAR-

derived height measurement of a single 1 m2 to every 25 m2

grid cell across the BCI 50 ha forest dynamics plot following

the methods of Hubbell et al. [16]. We found that using this

method had a significant effect on the frequency distribution

and spatial configuration of canopy heights. Overall, the

canopy height distribution was only minimally affected by

low-resolution sampling, because errors arising from the

over- and under-estimation of canopy height mostly balanced

out. However, the greatest errors in the estimation of height

were observed for the lowest canopy height classes and led

to substantial errors in the identification of gaps (figure 6).

The mismatch between the true spatial location of gaps,

and those inferred by field sampling methods may have
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important implications for our assessment of how gaps affect

biological processes, and in particular, the importance of

light niches. Hubbell et al.’s [16] study of compositional and

richness responses of the tree community to the inferred

location of forest gaps on BCI led to an emphasis on dispersal

limitation and ecological equivalency as dominant structuring

processes in tropical forests. This conclusion may be pre-

mature. Seedling recruitment patterns and sapling growth

rates vary in response to light availability at fine (less than

1 m) spatial scales, and consequently the link between demo-

graphic processes and gap disturbance will be obscured

when large errors in their spatial location occur. Thus, the con-

clusion from Hubbell et al. [16] that, with the exception of

pioneer species, the composition of the sapling community is

largely decoupled from gap disturbance might well be influ-

enced by a misidentification of the spatial location of gap areas.

(c) Implications for the estimation of above-ground
biomass

The spatial scale dependency, canopy height threshold

dependency and spatial resolution dependency of canopy

height measurements all influence estimates of gap area frac-

tion and l, with implications for our understanding of how

canopy disturbance events affect landscape-level AGB.

Although our study cannot include the largest and rarest of dis-

turbances that impact hundreds of hectares [15], such

disturbances appear to be very rare [29,30]. Nonetheless, exist-

ing evidence that tropical forest biomass has been increasing in

recent decades [20] is based on the assumption that networks

of small forest plots adequately sample infrequent, large-scale

forest disturbances that influence carbon storage on landscape

scales [31].

Our results indicate that l values of the smallest gap size for

which we can generate a gap-size distribution (10 ha) falls out-

side the 99% CIs of the landscape-level l approximately half

the time, while those for 50 ha plots will fall outside 99% CIs
less than 20% of times. Remote-sensed measures of gap disturb-

ance may therefore need to be made at scales of 500–1000 ha, or

greater, depending on landscape heterogeneity. By contrast,

ground-based assessments of gap sizes may overestimate the

magnitude of l at any scale. We found that coarse sampling

associated with field data produced a much steeper decline in

the frequency of gaps with increasing gap size, than observed

using the full LiDAR data, although the magnitude of l was

also influenced by the curve-fitting procedure (see also [29]).

Indirect impacts of l on AGB via successional processes

are more difficult to assess. Chambers et al. [19] argued that

most gaps found in forest plots are too small, and do not pro-

vide sufficient light to result in compositional change in

forests. While the study of Hubbell et al. [16] did not observe

changes in species richness per stem across the range of gap

sizes they measured in the BCI plot, they did observe a large

increase in the frequency of pioneer species (from 7% in gaps

less than 50 m2 to 26% in gaps more than 400 m2). Likewise,

Brokaw [2,29] measured how gap size influences regener-

ation patterns and found that pioneers readily colonized

gaps less than 200 m2, and that even the fastest growing

species (Trema micrantha) could recruit in gaps less than

400 m2. As these smaller gaps contribute to a much larger

fraction of the landscape, assessment of how disturbance

influences AGB requires inclusion of a wide range of gap

sizes, including small gaps that cannot be easily detected

from satellite imagery.
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