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Abstract
Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper
functioning of most adult organs. Its derivatives (retinoid) have potent biological activities such as
regulating cell growth and differentiation. Plasma retinol binding protein (RBP) is the specific
vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to
target organs. A large amount of evidence has accumulated over the past decades supporting the
existence of a cell surface receptor for RBP that mediates cellular vitamin A uptake. Using an
unbiased strategy, this specific cell-surface RBP receptor has been identified as STRA6, a
multitransmembrane domain protein with previously unknown function. STRA6 is not
homologous to any membrane receptors, channels and transporters of known function and
represents a new type of cell-surface receptor. Consistent with the diverse functions of vitamin A,
STRA6 is widely expressed in embryonic development and in adult organ systems. Mutations in
human STRA6 are associated with severe pathological phenotypes in many organs such as the
eye, brain, heart, and lung. STRA6 binds to RBP with high affinity and mediates vitamin A uptake
into cells. This review summarizes the history the RBP receptor research, its expression in the
context of known functions of vitamin A in distinct human organs, structure/function analysis of
this new type of membrane receptor, pertinent questions regarding its very existence, and its
potential implication in treating human diseases.
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1. Introduction
The molecular mechanism for vitamin A's physiological function was first elucidated for
vision (Wald, G., 1968). Vitamin A's multitasking ability kept on surprising researchers
starting almost a century ago. Today, biological functions of vitamin A have been
discovered in almost every vertebrate organ system. In addition to vision, known biological
functions of vitamin A include its roles in embryonic growth and development, immune
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competence, reproduction, maintenance of epithelial surfaces, and proper functioning of the
adult brain (Drager, U. C., 2006; Duester, G., 2008; Mangelsdorf, D. J. et al., 1993; Napoli,
J. L., 1999; Ross, A. C., and Gardner, E. M., 1994). Since vitamin A derivatives have
profound effects on cellular growth and differentiation, vitamin A also plays positive or
negative roles in a wide-range of pathological conditions, such as visual disorders(Travis, G.
H. et al., 2006), cancer (Love, J. M., and Gudas, L. J., 1994; Niles, R. M., 2004; Verma, A.
K., 2003), infectious diseases (Stephensen, C. B., 2001), diabetes (Basu, T. K., and
Basualdo, C., 1997; Yang, Q. et al., 2005), teratogenicity (Nau, H. et al., 1994), and skin
diseases (Chivot, M., 2005; Orfanos, C. E. et al., 1997; Zouboulis, C. C., 2001). Except for
vision, which depends on the aldehyde form of vitamin A, most of these physiological or
pathological functions can be ascribed to retinoic acid's effects on nuclear hormone
receptors (Chambon, P., 1996; Evans, R. M., 1994). New biological functions are still being
discovered for vitamin A derivatives. For example, it was recently discovered that retinal
inhibits adipogenesis (Ziouzenkova, O. et al., 2007).

Plasma retinol binding protein (RBP), a high-affinity vitamin A binding protein, is the
principal means of vitamin A transport in the blood and is responsible for a well-regulated
transport system that helps vertebrates adapt to fluctuations in vitamin A levels (Blomhoff,
R. et al., 1990). RBP specifically binds to vitamin A, effectively solubilizes it in aqueous
solution, and protects it from enzymatic and oxidative damage (Goodman, D. S., 1984). In
addition, RBP was recently discovered to play a role in insulin resistance (Yang, Q. et al.,
2005). Using an unbiased strategy combining specific photo-crosslinking, high-affinity
purification and mass spectrometry, the high-affinity cell-surface RBP receptor has been
identified as STRA6, a protein with a multi-transmembrane domain architecture typical of
channels and transporters, but not homologous to any protein of known function. STRA6
binds to RBP with high affinity and mediates cellular uptake of vitamin A from the vitamin
A/RBP complex (holo-RBP). Consistent with the diverse functions of vitamin A, human
STRA6 mutations cause severe pathological phenotypes including the absence of eyes
(anophthalmia), mental retardation, congenital heart defects, lung hyperplasia, and
intrauterine growth retardation (Golzio, C. et al., 2007; Pasutto, F. et al., 2007).

In this review, we provide a summary of current knowledge of vitamin A and RBP,
describing in detail our current knowledge of the RBP receptor including its identification,
the unique features of its function both as a membrane receptor and a membrane transporter,
and the relationships between its tissue distribution and the known organ specific functions
of vitamin A. In addition, we provide answers to some pertinent questions related to the
RBP receptor and its potential relationships with human diseases.

2. Diverse Physiological Functions of Vitamin A, a Molecule Essential for
Vertebrate Survival

Vitamin A has alcohol, aldehyde, acid and ester forms (Figure 1). Some forms have direct
biological activities and other forms serve as important reaction intermediates or as the
storage form of vitamin A. Known functions of vitamin A and its derivatives and
pathological effects of vitamin A deficiency are discussed below.

2.1. The alcohol form of vitamin A
A main function of the alcohol form of vitamin A is to serve as the substrate for RBP for
delivery in the blood. The fact that retinol evolved to be the major transport form of vitamin
A is likely due to fact it is less toxic than retinal and retinoic acid. Free retinal has been
shown to be highly toxic (Maeda, A. et al., 2009; Maeda, A. et al., 2008). Retinoic acid is
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the most biologically active form of vitamin A and is also most toxic form. In addition,
retinol can be converted to retinal and retinoic acid.

Retinol also serves as an intermediate in the visual cycle for chromophore regeneration
(Chen, C., and Koutalos, Y., 2010; Chen, C. et al., 2005). In addition, the alcohol derivatives
of vitamin A have biological activities distinct from retinoic acid. For example, they control
the growth of B lymphocytes (Buck, J. et al., 1991; Buck, J. et al., 1990) and function as a
survival factor in serum for fibroblasts (Chen, Y. et al., 1997). Anhydroretinol, another
physiological metabolite of vitamin A, can induce cell death (Chen, Y. et al., 1999). Another
known function of vitamin A is in the testis. Degeneration of germinal epithelium in testis
caused by vitamin A deficiency can be reversed by vitamin A but not by retinoic acid
(Griswold, M. D. et al., 1989; Howell, J. M. et al., 1963). One likely explanation for the
distinction between retinol and retinoic acid is that retinol can be efficiently transported via
RBP/retinol in vivo but retinoic acid cannot. In addition, retinol can also have biochemical
functions distinct from the precursor to retinoic acid (Chen, L., and Khillan, J. S., 2010;
Hoyos, B. et al., 2005). It was recently discovered that retinol, but not retinoic acid,
regulates BMP4 expression in male germ line cells (Baleato, R. M. et al., 2005). In addition,
retinol, but not retinoic acid, prevents the differentiation and promotes the feeder-
independent culture of embryonic stem cells (Chen, L., and Khillan, J. S., 2008, 2010; Chen,
L. et al., 2007).

2.2. The aldehyde forms of vitamin A
Photoreceptor cells in the retina use 11-cis retinal as the chromophore (Dowling, J. E.,
1966). In addition, the aldehyde form of vitamin A serves as an intermediate in the synthesis
of retinoic acid, the vitamin A derivative with the most diverse biological functions. It was
also recently discovered to inhibit adipogenesis (Ziouzenkova, O. et al., 2007).

2.3. The acid forms of vitamin A
Retinoic acid (vitamin A acid) was initially known as a morphogen in development
(Marshall, H. et al., 1996; Reijntjes, S. et al., 2005). Retinoic acid is essential in
organogenesis (Maden, M., 1994). The nuclear receptors for retinoic acid were discovered in
1987 (Giguere, V. et al., 1987; Petkovich, M. et al., 1987). Nuclear retinoic acid receptors
regulate the transcriptions of a large number of genes (Chambon, P., 1996; Evans, R. M.,
1994). Retinoic acid can both stimulate or suppress mitogenesis depending on the cellular
context (Chen, S., and Gardner, D. G., 1998). In addition to gene transcription, retinoic acid
may also mediate its effect by retinoylation of proteins (Takahashi, N., and Breitman, T. R.,
1994). Recently, retinoic acid was discovered to acutely regulate protein translation in
neurons independent of its roles in regulating gene transcription (Aoto, J. et al., 2008; Chen,
N. et al., 2008). In addition to its developmental roles, retinoic acid is also important in the
function of many adult organs such as the nervous system, the immune system, the
reproductive system, the respiratory system, and the skin. These functions will be discussed
in detail in the context of the RBP receptor.

2.4. The ester forms of vitamin A
Retinyl ester is the major storage form of vitamin A inside cells (Batten, M. L. et al., 2004;
Liu, L., and Gudas, L. J., 2005; O'Byrne, S. M. et al., 2005; Ruiz, A. et al., 2007) and is an
alternative form for vitamin A delivery. However, vitamin A delivery through retinyl ester is
associated with toxicity (Goodman, D. S., 1984; Smith, F. R., and Goodman, D. S., 1976).
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2.5. Pathological effects of vitamin A deficiency
Vitamin A deficiency affects a wide-range of organ systems in vertebrates (West, K. P., Jr.,
1994; Wolbach, S. R., and Howe, P. R., 1925). For humans, the most well known effects of
vitamin A deficiency are night blindness (Dowling, J. E., 1966) and childhood mortality and
morbidity (Sommer, A., 1997a). Even mild vitamin A deficiency (presymptomatic for ocular
phenotypes) has a large impact on childhood mortality (Sommer, A., 1997a). This is due to
vitamin A's role in boosting immunity (Semba, R. D., 1999; Stephensen, C. B., 2001). It was
estimated that 140 million children and more than 7 million pregnant women suffer from
vitamin A deficiency every year worldwide and 1.2–3 million children die each year due to
vitamin A deficiency alone (Sommer, A., and Davidson, F. R., 2002). Maternal vitamin A
deficiency is associated with maternal mortality and congenital defects in multiple organs
for newborn children. In adults, vitamin A deficiency can affect brain function. Experiments
in animal models show that vitamin A deficiency can lead to profound impairment of
hippocampal long-term potentiation and a virtual abolishment of long-term depression
(Misner, D. L. et al., 2001). Consistently, vitamin A deficiency leads to impairment in
special learning and memory (Cocco, S. et al., 2002). In addition, vitamin A deficiency can
lead to abnormal functions of the lung (Biesalski, H. K., 2003), the skin (Vahlquist, A.,
1994), the thyroid (Morley, J. E. et al., 1978) and the male and female reproductive systems
(Livera, G. et al., 2002; Wolbach, S. R., and Howe, P. R., 1925).

3. Retinol Binding Protein, the Specific Carrier of Vitamin A in the Blood
Since mammals cannot synthesize vitamin A, the only sources of vitamin A are from the
diet and maternal vitamin A (which is also ultimately from the diet). The majority of dietary
vitamin A is stored in the liver. Vitamin A is insoluble in aqueous media, is chemically
unstable, and is toxic to cells at low levels. Vitamin A transport to different cell types needs
to be precisely regulated because too little or too much vitamin A can be detrimental both to
cellular survival and function (Goodman, D. S., 1984). Plasma retinol binding protein (RBP)
is a member of lipocalin superfamily (Newcomer, M. E., and Ong, D. E., 2000). RBP is the
principal means of transporting vitamin A in the blood and is responsible for a well-
regulated transport system that helps vertebrates to adapt to fluctuations in vitamin A level
(e.g. during seasonal changes in natural environments) (Blomhoff, R. et al., 1990). RBP
specifically binds to vitamin A and effectively solubilizes vitamin A in aqueous solution and
allows for a plasma vitamin A concentration 1000-fold higher than would occur for free
vitamin A. RBP also protects vitamin A from enzymatic and oxidative damage (Goodman,
D. S., 1984). RBP helps to maintain a physiological range of vitamin A concentration so that
vitamin A concentration is stable despite variable intake from food (Redondo, C. et al.,
2006). Another function of the RBP system is to decrease the toxicity associated with
unregulated distribution of vitamin A (Dingle, J. T. et al., 1972; Goodman, D. S., 1984).
Experiments in rats (Mallia, A. K. et al., 1975) and a study of human patients with
hypervitaminosis A (Smith, F. R., and Goodman, D. S., 1976) both suggested that more
toxicity is associated with vitamin A delivery independent of RBP. An excessive dose of
vitamin A is toxic in vivo only when the level of vitamin A in the circulation is presented to
cells in a form other than bound to RBP, such as in retinyl esters (Goodman, D. S., 1984).

RBP in complex with vitamin A (holo-RBP) is mainly produced in the liver, but is also
produced in many other organs. For example, RBP is highly expressed in adipose tissue
(Makover, A. et al., 1989). However, extrahepatic RBP cannot mobilize the vitamin A stores
in liver (Quadro, L. et al., 2004). The exact roles of RBP secreted by tissues other than liver
are not clear. One exception is that RBP secreted by adipocytes has recently been found to
be an adipokine for insulin resistance (Tamori, Y. et al., 2006; Yang, Q. et al., 2005). This is
a function of RBP other than vitamin A delivery. Holo-RBP in the blood is in complex with
the thyroxine binding protein transthyretin (TTR), which is also called prealbumin. This
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complex increases the molecular weight of holo-RBP and reduces its loss through
glomerular filtration in the kidney. The crystal structure of holo-RBP in complex with TTR
has been determined (Figure 2) (Monaco, H. L. et al., 1995; Naylor, H. M., and Newcomer,
M. E., 1999; Zanotti, G., and Berni, R., 2004).

The main conclusion from studies of RBP knockout mice is that loss of RBP makes mice
extremely sensitive to vitamin A deficiency. RBP knockout mice cannot mobilize the
hepatic vitamin A store (Quadro, L. et al., 1999). Even with a nutritionally complete diet,
knockout mice have a dramatically lower serum vitamin A level, similar to the level in the
later stages of vitamin A deficiency in humans. Given the role of vitamin A in immune
regulation and the susceptibility of vitamin A deficient children to infection before visual
symptoms (Semba, R. D., 1998; Sommer, A., 1997a; Stephensen, C. B., 2001), it is likely
that the immune system is also sensitive to RBP defect under vitamin A sufficient
conditions. Indeed, the circulating immunoglobulin level in RBP knockout mice is half of
that in the wild-type mice even under vitamin A sufficiency (Quadro, L. et al., 2000). It will
be interesting to systematically study the effects of loss of RBP functions on mouse
susceptibility to infection, which is well correlated with vitamin A status in humans (Semba,
R. D., 1999; Sommer, A., 1997a; Stephensen, C. B., 2001). As demonstrated by a LacZ
reporter system for retinoic acid level, there is a dramatic decrease in retinoic acid level in
the developing brain of RBP knockout mice even under vitamin A-sufficient conditions
(Quadro, L. et al., 2005). Therefore, it will be interesting to test whether these mice have
any cognitive defects in adulthood. In addition, RBP knockout mice have abnormal heart
development (Wendler, C. C. et al., 2003) and impaired vision (Quadro, L. et al., 1999;
Quadro, L. et al., 2003). Systematic study of several organ functions in RBP knockout mice
demonstrated that RBP is essential for survival under vitamin A deficient conditions
(Ghyselinck, N. B. et al., 2006; Quadro, L. et al., 1999; Quadro, L. et al., 2005). Vitamin A
deficient conditions are common for most, if not all, animals living in natural environments.
Studies of the RBP knockout mice subjected to different lengths of time of vitamin A
deficiency revealed that RBP is the primary vitamin A source for fetal development
(Quadro, L. et al., 2005). Depending on the extent of dietary vitamin A deficiency,
malformations in RBP knockout mice range from mild symptoms to complete fetal
resorption. Under conditions of vitamin A deficiency, in which wild-type mice behave
normally, RBP knockout mice have rapid vision loss in adults after merely a week of
vitamin A deficiency (Quadro, L. et al., 1999). In addition, these mice rapidly develop
testicular defects (Ghyselinck, N. B. et al., 2006).

4. Diverse Evidence for the Existence of an RBP Receptor that Mediates
Vitamin A Uptake

Diverse experimental evidence accumulated since the 1970s from independent research
groups supports the existence of a specific cell surface RBP receptor that mediates vitamin
A uptake (Table 1). It was first shown in the 1970s that there exists a specific cell surface
receptor for retinol binding protein on the retinal pigment epithelium (RPE) cells and
mucosal epithelial cells (Bok, D., and Heller, J., 1976; Chen, C. C., and Heller, J., 1977;
Heller, J., 1975; Heller, M., and Bok, D., 1976; Maraini, G., and Gozzoli, F., 1975; Rask, L.,
and Peterson, P. A., 1976). During the past 30 years, there has been strong evidence for the
existence of RBP receptors not only on RPE cells but also on other tissues including
placenta (Sivaprasadarao, A. et al., 1994; Sivaprasadarao, A., and Findlay, J. B., 1988a;
Smeland, S. et al., 1995), choroid plexus (MacDonald, P. N. et al., 1990; Smeland, S. et al.,
1995), Sertoli cells of the testis (Bhat, M. K., and Cama, H. R., 1979; Bishop, P. D., and
Griswold, M. D., 1987; Shingleton, J. L. et al., 1989; Smeland, S. et al., 1995) and
macrophages (Hagen, E. et al., 1999). Evidence for a specific RBP receptor include
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saturable binding of 125I-RBP to cell membrane (Bhat, M. K., and Cama, H. R., 1979;
Heller, J., 1975; Pfeffer, B. A. et al., 1986). Binding can be inhibited by an excess of
unlabeled RBP (Bhat, M. K., and Cama, H. R., 1979; Heller, J., 1975; Heller, M., and Bok,
D., 1976; Sivaprasadarao, A., and Findlay, J. B., 1988a; Torma, H., and Vahlquist, A.,
1986), an antibody to RBP (Melhus, H. et al., 1995; Rask, L., and Peterson, P. A., 1976) or
by a cysteine modification compound (Sivaprasadarao, A., and Findlay, J. B., 1988a).
When 125I-RBP was injected into rat, specific labeling was observed on the basolateral
membrane of the RPE (Bok, D., and Heller, J., 1976) and in the choroid plexus (MacDonald,
P. N. et al., 1990). In a systematic comparison of RBP binding between different tissues and
cell types, the highest RBP binding activities were found in membranes from the RPE, the
placenta, the bone marrow, the choroid plexus and undifferentiated keratinocytes (Smeland,
S. et al., 1995). The observed tissue distribution of the putative RBP receptor agrees well
with what we know about vitamin A function and metabolism. For example, in order for
vitamin A to exert its effect on adult brain, it must cross the choroid plexus, the blood-brain
barrier, and therefore a high level of RBP receptor should be expressed in this tissue.

The receptor on RPE membrane can not only specifically bind to RBP, but also can mediate
vitamin A uptake from vitamin A-loaded RBP (holo-RBP) (Chen, C. C., and Heller, J.,
1977; Maraini, G., and Gozzoli, F., 1975; Ottonello, S. et al., 1987; Pfeffer, B. A. et al.,
1986). The uptake mechanism is highly specific because red blood cells don't take up
vitamin A from RBP. In addition, the efficiency of vitamin A uptake from vitamin A bound
to BSA is much less efficient than from vitamin A bound to RBP. Specific vitamin A uptake
has also been demonstrated for mucosal epithelial cells (Rask, L., and Peterson, P. A.,
1976), human placenta (Sivaprasadarao, A., and Findlay, J. B., 1988b; Sundaram, M. et al.,
1998; Torma, H., and Vahlquist, A., 1986), Sertoli cells of the testis (Bishop, P. D., and
Griswold, M. D., 1987; Shingleton, J. L. et al., 1989), human skin (Torma, H., and
Vahlquist, A., 1984) and macrophages (Hagen, E. et al., 1999). Previous studies also showed
that specific mutations in RBP or a monoclonal antibody against a specific region of RBP
can abolish its interaction with the RBP receptor (Liden, M., and Eriksson, U., 2005;
Melhus, H. et al., 1995; Sivaprasadarao, A., and Findlay, J. B., 1994). Another strong piece
of evidence that vitamin A uptake is mediated by a protein is that the uptake in human
placenta membrane can be inhibited by a cysteine modification reagent (Sivaprasadarao, A.,
and Findlay, J. B., 1988b). Not listed in Table 1 are indirect pieces of evidence for the
existence of an RBP receptor. For example, in an unbiased search for a serum factor that
stimulates the growth of B cells, it was found that holo-RBP is this factor (Buck, J. et al.,
1990). For lymphoblastoid cell lines Mou and BH, holo-RBP is much more potent than
retinol itself in growth stimulation. These experiments also suggest the existence of a cell
surface receptor for holo-RBP on these cell types.

5. Identification of the RBP Receptor
5.1. Identification of the high-affinity RBP receptor as STRA6

Despite the large amount of evidence, the RBP receptor turned out to be very difficult to
identify. Potential obstacles to purifying the RBP receptor include the fragility of the
receptor protein and the transient nature of the binding of RBP to its receptor. These
challenges likely prevented the purification of the receptor using traditional biochemical
approaches. To overcome these two challenges, a strategy was designed that can stabilize
the RBP/receptor interaction and permit high-affinity purification of the RBP/receptor
complex without requiring the receptor to remain active during the purification (Kawaguchi,
R. et al., 2007). Another advantage of this strategy is that it permits stringent washing with
high salt and urea, which can dissociate non-specifically bound protein without causing
membrane protein aggregation. Using this strategy, the RBP receptor was identified as
STRA6, a multi-transmembrane protein of previously unknown function (Kawaguchi, R. et
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al., 2007). STRA6 binds to RBP with high affinity and specificity and facilitates the release
of vitamin A from holo-RBP and the transport of vitamin A into the cell (Kawaguchi, R. et
al., 2007).

STRA6 was first characterized as a retinoic acid induced gene in P19 embryonic carcinoma
cells (Bouillet, P. et al., 1995). STRA6 stands for “stimulated by retinoic acid 6”. It was also
identified as a gene induced by Wnt-1 and retinoic acid in mouse mammary epithelial cells
(Szeto, W. et al., 2001). The induction by Wnt-1 and retinoic acid is synergistic. Strikingly,
STRA6 was found to be overexpressed up to 172 fold in 14 out of 14 human colorectal
tumors relative to the normal tissue (Szeto, W. et al., 2001). STRA6 is widely expressed
during embryonic development and in adult organ systems. In development, STRA6 is
widely expressed, consistent with the diverse roles of vitamin A in development. For
example, its expression during mouse limb development suggested that STRA6 may
participate in early dorsovental limb patterning and in controlling endochondral ossification
(Chazaud, C. et al., 1996). In developing eye, it is expressed in the inner nuclear layer of the
developing retina, and in developing RPE (Bouillet, P. et al., 1997). Information on the
distribution of STRA6 mRNA in adult tissues is available from the NCBI's comprehensive
tissue EST profiler (Table 2) and from two tissue distribution studies of STRA6 (Bouillet, P.
et al., 1997; Chazaud, C. et al., 1996). It was suggested that a high level of RBP receptors
should be expressed in cells comprising blood-tissue barriers (MacDonald, P. N. et al.,
1990). Indeed, in adult tissues, STRA6 expression is enriched in blood-organ barriers such
as the RPE (blood-retina barrier), the placenta (maternal-fetal barrier), the choroid plexus
(blood-brain barrier) and the Sertoli cells of testis (blood-testis barrier), although STRA6's
expression is not limited to blood-organ barriers. Correlations between STRA6 expression
and known functions of vitamin A in adult organs are discussed below.

5.2. STRA6 in the eye
In the eye, STRA6 is abundantly expressed in the RPE. In contrast to its absence in the
endothelial cells of the choriocapillaris, STRA6 is expressed in retinal blood vessels,
although the signal is much weaker than that in the RPE (Kawaguchi, R. et al., 2007). The
retinal blood vessels are another location that constitutes a blood-retina barrier. As holo-
RBP in choriocapillaris blood is the source of vitamin A for the RPE, holo-RBP from retinal
blood vessels is a potential source of vitamin A for Müller cells in the retina (Mata, N. L. et
al., 2002). In the RPE, STRA6 is largely localized to the basolateral membrane of the RPE
cells. This localization is exactly what is expected for an RBP receptor, which should be
localized to the basolateral membrane of the RPE facing the choroidal circulation (Heller,
M., and Bok, D., 1976; Pfeffer, B. A. et al., 1986). STRA6, localized to the lateral
membrane of the RPE, is in close proximity to the retinosome, a recently discovered RPE
structure that stores retinyl esters (Imanishi, Y. et al., 2004). This suggests that vitamin A
absorbed by STRA6 from holo-RBP is in close proximity to the cellular structures that store
vitamin A. Interestingly, there are also STRA6 signals on distinct intracellular vesicles in the
RPE. These vesicles may play a role in targeting STRA6 to the basolateral membrane or in
recycling. Another major location in the eye that expresses STRA6 is the cornea
(unpublished results). Consistently, it was known that RBP supplies vitamin A to the cornea
(Rask, L. et al., 1980).

5.3. STRA6 in the reproductive systems
Consistent with the essential role of vitamin A in both male and female reproductive
functions, EST analysis show that both male and female reproductive systems express
STRA6 at high levels (Table 2). Vitamin A plays an essential role in spermatogenesis
(Chung, S. S., and Wolgemuth, D. J., 2004; Livera, G. et al., 2002). In testis, STRA6 is
expressed in the Sertoli cells (Bouillet, P. et al., 1997). STRA6 protein has been localized to
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the plasma membrane of Sertoli cells (Bouillet, P. et al., 1997), a localization consistent with
Sertoli cells' RBP binding activity (Smeland, S. et al., 1995) and their ability to take up
vitamin A from holo-RBP (Bishop, P. D., and Griswold, M. D., 1987; Shingleton, J. L. et
al., 1989).

Consistent with the diverse roles of vitamin A in female reproductive functions (Clagett-
Dame, M., and DeLuca, H. F., 2002), STRA6 is highly expressed in several female
reproductive organs such as placenta, uterus, ovary and mammary gland (Table 2). Placenta
has the highest level of STRA6 expression of all organs according to EST analysis (Table
2). This is consistent with the facts that RBP is the most important source of vitamin A for
embryos (Quadro, L. et al., 2005) and placental membrane has one of the highest RBP
binding activities of any cell or tissue tested (Smeland, S. et al., 1995). Human placental
membrane has been used in the past as a model system to study RBP binding to the RBP
receptor and vitamin A uptake (Sivaprasadarao, A., and Findlay, J. B., 1988a, b; Sundaram,
M. et al., 1998).

5.4. STRA6 in the nervous system
Retinoic acid is a modulator of the nervous system (Drager, U. C., 2006; Lane, M. A., and
Bailey, S. J., 2005; Weiler, R. et al., 2001). For example, retinoic acid plays an important
role in maintaining synaptic plasticity in hippocampus (Misner, D. L. et al., 2001) and
cortical synchrony during sleep (Maret, S. et al., 2005). Independent of its roles in regulating
gene transcription, it also regulates protein translation in neurons (Aoto, J. et al., 2008;
Chen, N. et al., 2008). It also plays an important role in regenerative processes in the adult
central nervous system (Maden, M., 2007; Vergara, M. N. et al., 2005). Although retinoic
acid is not preferentially transported from the blood to the brain, the brain has a high
concentration of retinoic acid (Werner, E. A., and Deluca, H. F., 2002). Highly abundant
expression of STRA6 in the brain is consistent with the local absorption and conversion of
vitamin A to retinoic acid. Consistent with a previous study (Bouillet, P. et al., 1997), we
observed strong STRA6 signals in the choroid plexus and meninges of the brain and weaker
signals in a large subset of brain endothelial cells (unpublished results). Interestingly, these
three sites constitute the blood-brain barriers (Abbott, N. J. et al., 2006). Consistent with the
strong expression of STRA6 in meninges, retinoic acid from the meninges has been shown
to regulate cortical neuron generation (Siegenthaler, J. A. et al., 2009). We also found that
blood vessels negative for STRA6 were surrounded by astrocyte perivascular endfeet
(Abbott, N. J. et al., 2006) that are positive for STRA6 (Kawaguchi, R. et al., 2007).

5.5. STRA6 in the lymphoid organs
Vitamin A plays important roles in hematopoiesis and in maintaining immunocompetence
(Blomhoff, H. K., and Smeland, E. B., 1994; Oren, T. et al., 2003; Stephensen, C. B., 2001).
For example, retinoic acid attenuates B cell proliferation to promote maturation and
antibody production (Chen, Q., and Ross, A. C., 2005). In an unbiased search for a serum
factor that stimulates the growth of B cells, holo-RBP was identified as this factor (Buck, J.
et al., 1990). Circulating immunoglobulin level in RBP knockout mice is half that in wild-
type mice, even under vitamin A sufficiency (Quadro, L. et al., 2000). Consistently, STRA6
is highly expressed in lymphoid organs thymus, spleen, and lymph nodes (Table 2). There
are two possible mechanisms by which vitamin A is absorbed for immune regulation. One
possibility is that specialized cell types in lymphoid organs other than leukocytes and their
precursors absorb vitamin A from holo-RBP and generate retinoic acid locally for immune
cells, similar to the role of the RPE cells in absorbing vitamin A and generating 11-cis
retinal for photoreceptor cells. It was discovered as early as 1925 that vitamin A deficiency
leads to thymus and spleen atrophy in rat (Wolbach, S. R., and Howe, P. R., 1925). Another
possible mechanism is that leukocytes and their precursors directly absorb vitamin A from
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holo-RBP and produce retinoic acid themselves. A combination of both mechanisms is also
possible.

5.6. STRA6 in the skin
Vitamin A plays essential roles in maintaining normal skin (Vahlquist, A., 1994). Vitamin A
treatment reduces matrix metalloproteinase expression and stimulates collagen synthesis in
both naturally aged, sun-protected skin and photoaged skin (Varani, J. et al., 2000). Because
of vitamin A's role in epithelial and bone formation, cellular differentiation, and immune
regulation, vitamin A deficiency can impede wound healing (Anstead, G. M., 1998;
MacKay, D., and Miller, A. L., 2003). Human skin can specifically and efficiently take up
vitamin A from holo-RBP (Torma, H., and Vahlquist, A., 1984). Epidermis has much higher
activity than dermis. Undifferentiated human skin keratinocytes were found to have the
highest RBP binding activity of any cell or tissue type tested, even higher than placenta and
RPE cells (Smeland, S. et al., 1995). Consistent with the functions of vitamin A in skin and
the ability of cells in the skin to take up vitamin A from holo-RBP, STRA6 is expressed
relatively abundantly in the skin (Table 2).

5.7. STRA6 in the lung
Vitamin A plays important roles in maintaining the normal function of the lung (Biesalski,
H. K., 2003). Vitamin A deficiency produces morphologic changes in the lung, impairs
pneumocyte function (Baybutt, R. C. et al., 2000), and potentiates hyperoxic lung injury
(Veness-Meehan, K. A., 1997). Vitamin A also has a protective effect on respiratory status
in patients with cystic fibrosis (Aird, F. K. et al., 2006). STRA6 was originally identified as
a retinoic acid stimulated gene (Bouillet, P. et al., 1995). Consistent with the ability of
retinoic acid to stimulate STRA6 expression, Vitamin A combined with retinoic acid
increases retinol uptake in the lung in a synergistic manner (Ross, A. C. et al., 2006).

5.8. STRA6 in the kidney
Both EST analysis and Northern blot analysis have shown that kidney expresses STRA6 at a
fairly high level (Table 3). The detailed localization of STRA6 in kidney is unknown.
STRA6 may function in vitamin A absorption for the kidney itself or in the recycling of
vitamin A. Vitamin A is known to have antifibrotic effect and a cytoprotective effect on
various renal cell types (Xu, Q. et al., 2004).

5.9. STRA6 in the heart
STRA6 expression in the heart is seen in both EST analysis and Northern blot analysis
(Bouillet, P. et al., 1997). Retinoids have anti-growth activity in fully differentiated cardiac
cells. Retinoids may be useful in the management of hypertrophic/hyperproliferative
disorders of the heart and vascular wall (Gardner, D. G., and Chen, S., 1999). In addition,
vitamin A deficiency causes a significant decrease in contractile responsiveness of aortic
smooth muscle as a result of a down-regulation in the expression of contractile-related
proteins (Wright, G. L. et al., 2002). Retinoids have also been shown to regulate cardiac
mitochondrial membrane potential (Korichneva, I. et al., 2003).

6. Structure and Function Analysis of the RBP Receptor's Interaction with
RBP
6.1. Transmembrane topology of STRA6

At the amino acid sequence level, STRA6 has no homology to any proteins or protein
domains to indicate its function. The transmembrane topology of STRA6 has been
determined experimentally (Kawaguchi, R. et al., 2008c). The topology model suggests that

Sun and Kawaguchi Page 9

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2014 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



STRA6 has 19 distinct domains including 5 extracellular domains, 9 transmembrane
domains, and 5 intracellular domains (Figure 3). Many membrane transporters have 8–12
transmembrane domains (Hediger, M. A. et al., 2004). Although STRA6 represents a new
membrane transport protein, its number of transmembrane domains lies within this range.
Most proteins with more than 7 transmembrane domains function as membrane transporters
or channels. The large number of transmembrane domains potentially makes it more feasible
to form a specific transmembrane pore, through which the ligand can pass through.

6.2. The RBP binding domain in STRA6
Because STRA6 represents a new type of cell-surface receptor that is not homologous to any
membrane receptor, transporter or channel and has no obvious functional domains, we
decided to use an unbiased strategy to study its structure and function. By creating and
analyzing more than 900 random mutants of STRA6, an essential RBP binding domain has
been identified (Kawaguchi, R. et al., 2008a). The locations of three essential residues
involved in RBP binding are indicated in the transmembrane topology model of STRA6
(Figure 3). Mutations in any of three essential residues in this domain can abolish the
binding of STRA6 to RBP and its vitamin A uptake activity without affecting its cell surface
expression. The advantage of an unbiased screening approach is evident because one of the
transmembrane domains predicted by computer softwares turned out to be the RBP binding
domain, which is an extracellular domain. Although this extracellular domain is most
essential for RBP binding, other extracellular domains also contribute to RBP binding
(Kawaguchi, R. et al., 2008c).

6.3. STRA6 mutants associated with human disease
Human genetic studies found that mutations in STRA6 are associated with severe
pathological phenotypes such as mental retardation, anophthalmia, congenital heart defects,
lung hyperplasia, duodenal stenosis, pancreatic malformations, and intrauterine growth
retardation(Golzio, C. et al., 2007; Pasutto, F. et al., 2007). More human genetic studies
have further confirmed the role of STRA6 mutations in malformations in humans
(Chassaing, N. et al., 2009; Segel, R. et al., 2009; West, B. et al., 2009; White, T. et al.,
2008). One of the most prominent features of loss of STRA6 function in human is the
absence of the eye. Consistently, STRA6 knockdown also causes developmental defects in
zebrafish (Isken, A. et al., 2008). The loss of retinoid uptake in the eye due to loss of
STRA6 has also been demonstrated in the zebrafish model (Isken, A. et al., 2008).

Functional assays showed that the pathogenic missense mutations identified in the human
genetic study abolish the vitamin A uptake activity of STRA6 (Kawaguchi, R. et al., 2008b),
consistent with the severe clinical phenotypes. The locations of these mutations are depicted
in Figure 3. As mentioned in a previous review (Niederreither, K., and Dolle, P., 2008), this
is the first example of a retinoid signaling pathway mutation causing developmental
abnormalities in humans.

6.4. RBP's interaction with its receptor
Three regions of RBP are potentially involved in binding to the RBP receptor (Figure 6A
and 6B). The first region (C-tail) was implicated in a study of urine RBP. It was found that
there are two main forms of RBP in human urine (Rask, L. et al., 1971). One form has
vitamin A bound and can bind to the RBP receptor. The second form has no vitamin A
bound and cannot bind the RBP receptor (Rask, L., and Peterson, P. A., 1976). The second
form is missing a lysine residue at the C-terminus compared with the first form. Since the
extreme C-terminal residue in full-length human RBP protein is not lysine, both products
may represent RBP losing C-terminal residues with the second form having lost more.
Given the fact that full-length apo-RBP can bind the RBP receptor, these studies suggest a
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role of the RBP C-terminus in interacting with the RBP receptor. In addition, alkaline
phosphatase (AP) tagged at the N-terminus, but not the C-terminus, of RBP binds to the
RBP receptor (Kawaguchi, R. et al., 2007). The second region, a loop near the vitamin A
exit site of RBP, was implicated by two independent studies. The first showed the effect of
mutating this region (Sivaprasadarao, A., and Findlay, J. B., 1994) and the second study
found that a monoclonal antibody recognizing this region can block the binding of RBP with
its receptor (Melhus, H. et al., 1995). The third region, another loop near the vitamin A exit
site of RBP, was implicated by a deletion experiment (Sivaprasadarao, A., and Findlay, J.
B., 1994). Consistent with the role of the RBP receptor in vitamin A release from holo-RBP,
all three regions in RBP implicated in RBP receptor binding are located around the vitamin
A exit end of the β-barrel (Figure 4A and 4B). A hypothetical model based on the crystal
structure of RBP is proposed that illustrates its interaction with its receptor (Figure 4C).

7. Pertinent Questions Related to the RBP Receptor
7.1. Retinol has the ability to diffuse through membranes. Why is it necessary to have a
multitransmembrane domain protein (the RBP receptor) to assist its transport?

First, although free retinol has the ability to diffuse through membranes, retinol seldom
exists in its free form under physiological conditions. During its transport in the blood,
virtually all retinol in the blood is bound to the RBP/TTR complex, which makes retinol
membrane impermeable. The RBP receptor serves both as a “homing” device of holo-RBP
and mediates cellular uptake of retinol from holo-RBP.

Second, even for molecules that can diffuse through membrane, membrane transporters are
known to facilitate their transport. For example, although urea and water can diffuse through
membrane, urea transporters (Sachs, G. et al., 2006; You, G. et al., 1993) and water
channels (Agre, P., 2004) greatly facilitate their transport. Even for free retinoids, there exist
membrane transport systems that facilitate their transport across membrane. For example,
biochemical evidence suggests that retinol uptake from the small intestine is mediated by a
membrane transporter (Dew, S. E., and Ong, D. E., 1994). There is also strong evidence for
the existence of a specific mechanism to transport 11-cis retinal in the retinal pigment
epithelium (RPE), and this mechanism depends on interphotoreceptor retinoid-binding
protein (IRBP). Apo-IRBP is much more effective in promoting the release of 11-cis retinal
from the RPE than the apo-forms of other retinoid binding proteins (Carlson, A., and Bok,
D., 1992). In addition, apo-IRBP is only effective when it is present on the apical, but not
basal, side of the RPE (Carlson, A., and Bok, D., 1999). Another finding that challenges the
assumptions about random diffusion is the identification of an ATP-dependent transporter
(ABCR or ABCA4) that transports all-trans retinal released from bleached rhodopsin across
membranes (Ahn, J. et al., 2000; Sun, H. et al., 1999; Weng, J. et al., 1999). Prior to the
surprising discovery of ABCR's role in retinoid transport, there was no biochemical or
physiological evidence for the existence of such a transporter.

Third, free retinol diffusion is not efficient enough for tissues that demand a large quantity
of vitamin A. Both our study and an earlier study (Maraini, G., and Gozzoli, F., 1975)
demonstrated that the RBP receptor-mediated vitamin A uptake is much more efficient than
vitamin A uptake depending on the association of vitamin A with cellular membranes due to
its hydrophobicity. In addition, a non-specific diffusion mechanism would depend on free
retinol's interaction with cell membrane, but free retinol is toxic to cell membranes. Specific
delivery mediated by RBP would prevent cellular damage by free retinol (Goodman, D. S.,
1984). The fact that retinol but not retinoic acid can prevent testicular degeneration (Howell
et al. 1963) may be due to the efficient delivery of retinol by RBP and its receptor. Random
retinoic acid diffusion may be insufficient to supply the amount of retinoid needed by the
testis.
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7.2. Why does RBP need a high-affinity receptor for vitamin A uptake?
Under normal physiological conditions of vitamin A sufficiency, the blood concentration of
RBP is in the micromolar range (Mills, J. P. et al., 2008). In contrast, STRA6 with high
affinity (Kd=59 nM) (Kawaguchi, R. et al., 2007). Why does RBP need a high-affinity
receptor? The first likely reason is to compete with TTR to bind to RBP in the blood. Holo-
RBP is complexed with TTR in the blood. However, both TTR and the RBP receptor bind to
the vitamin A exit end of RBP, as discussed above. Therefore, the RBP receptor needs to
bind to RBP with higher affinity than TTR in order to absorb vitamin A from the blood
despite the high concentration of RBP in the blood. Indeed, RBP's affinity for STRA6
(Kawaguchi, R. et al., 2007) is higher than its affinity for TTR (Malpeli, G. et al., 1996).
Consistently, cells and tissues naturally absorb vitamin A from the holo-RBP/TTR complex
in the blood, and STRA6 not only mediates vitamin A uptake from purified holo-RBP but
also from human serum (Kawaguchi, R. et al., 2007). Although TTR blocks the vitamin A
exit end of RBP (Monaco, H. L. et al., 1995), a study using Sertoli cells showed that it only
partially inhibits RBP receptor-mediated vitamin A uptake (Shingleton, J. L. et al., 1989). A
second likely function of the high-affinity interaction between RBP and its receptor is to
help vertebrates survive vitamin A deficient conditions, which can lower serum RBP level.
Vitamin A deficient conditions are common for most, if not all, vertebrates living in natural
environments.

7.3. Why is the interaction between RBP and its receptor transient?
Transient interaction between RBP and its receptor is crucial for a vitamin A uptake
mechanism that does not depend on endocytosis because each RBP protein only carries one
retinol molecule and stable interaction will prevent further retinol delivery by other holo-
RBP complexes to the same RBP receptor. In a sense, the removal of apo-RBP from the
RBP receptor is as important as the binding of holo-RBP to the receptor for vitamin A
delivery to a cell. As discussed above, the transient nature of the interaction between RBP
and its receptor was one of the major technical hurdles in the identification of the RBP
receptor.

7.4. Why are the phenotypes of patients with RBP mutations different from patients with
RBP receptor mutations?

Phenotypes associated with known human RBP mutations are different from phenotypes
associated with known human STRA6 mutations. Two natural RBP mutations have been
identified in humans, and they cause vision defects such as dystrophy of the RPE (Seeliger,
M. W. et al., 1999). This phenotype is consistent with the high expression levels of STRA6
in RPE cells, which need to absorb a large amount of vitamin A for proper visual functions.
In contrast, known human STRA6 mutations cause severe and systemic phenotypes (Golzio,
C. et al., 2007; Pasutto, F. et al., 2007). There are several likely reasons that can explain
these differences. First, biochemical analysis showed that the only two natural mutations
found in human RBP cause only a partial loss of RBP function (Folli, C. et al., 2005). This
is in sharp contrast to the complete or near-complete loss of STRA6 function caused by
STRA6 mutations (Kawaguchi, R. et al., 2008b). The human RBP mutants can still bind
retinol (Folli, C. et al., 2005). In addition, holo-RBP formed by the mutant RBP can still
bind TTR like the wild-type RBP. The major defect identified is the relatively faster release
of retinol in the presence of lipid membranes. The vision defect associated with human RBP
mutations suggests that vision is most sensitive to the partial loss of RBP function. RBP is
highly conserved in evolution. The fact that human RBP mutations are so rarely identified
(only two so far) is consistent with its essential function. Moreover, the detection limit of
serum retinol/RBP in patients with RBP mutations in the previous study is 200 nM
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(Seeliger, M. W. et al., 1999), which is still much higher than the Kd of the RBP/STRA6
interaction (Kawaguchi, R. et al., 2007).

Further, even for complete nulls, the loss of RBP and RBP receptor function doesn't
necessarily generate the same phenotypes in the same species. For example, placental
delivery of vitamin A from maternal RBP to the human embryo is very different between
RBP null embryos and RBP receptor null embryos. A human embryo without the RBP
receptor can be directly impacted by its loss of function in the placental absorption of
vitamin A from maternal RBP. In contrast, a human embryo without RBP still has its
functional RBP receptor and functional maternal RBP to ensure sufficient vitamin A
delivery to the embryo through the placenta. Interestingly, RBP knockout mice have retinoic
acid deficiency in the brain even under vitamin A sufficient condition (Quadro, L. et al.,
2005) and may have cognitive defects. Consistently, STRA6 mutations in human are
associated with mental retardation (Pasutto, F. et al., 2007). Even human pathological
phenotypes caused by STRA6 mutations are variable (Chassaing, N. et al., 2009). The
variability is likely caused by the variable degrees in the loss of STRA6 function and the
variability in vitamin A intake of the affected individuals. If the RBP/STRA6 system of
vitamin A delivery is lost, random diffusion of retinoid would become the primary route of
vitamin A transport. When comparing human and mouse phenotypes, another source of
variability is species differences in retinoid metabolism and transport. For example, the
doses of retinoic acid needed to produce teratogenic effects have drastic species variation
(Nau, H., 2001). Mouse and rat are about 100 times less sensitive to isotretinoin's
teratogenic effect than human (Nau, H., 2001).

7.5. Retinoid has the ability to diffuse systemically. Why did such a complicated
mechanism (RBP/STRA6) to deliver vitamin A to cells evolve?

As demonstrated by retinoid related drugs, retinoids can diffuse to most human organs
without a special delivery system. What are the reasons for the existence of the special
vitamin A delivery system mediated by RBP and STRA6? Compared with random diffusion,
there are many advantages of specific vitamin A delivery.

First, random retinoid distribution is associated with mild to severe toxic side effects. This is
not surprising given the fact that vitamin A derivatives (retinoids) have profound effects on
the growth and differentiation of diverse cell types by controlling the activities of their
nuclear hormone receptors (Chambon, P., 1996; Evans, R. M., 1994). Retinoids can both
enhance and suppress gene expression. The potent biological effects of vitamin A are best
illustrated during embryonic development. Both insufficient and excessive vitamin A can
cause severe birth defects (Collins, M. D., and Mao, G. E., 1999). The aldehyde form of
vitamin A (retinal) has also been demonstrated to be highly toxic in adults (Maeda, A. et al.,
2009; Maeda, A. et al., 2008).

Retinoids, especially retinoic acid, have been used in the past to treat human diseases,
especially in dermatology and oncology. However, retinoid therapy is often associated with
undesirable side effects similar to the systemic toxicity found in hypervitaminosis A. The
most well known side effect of treatment by retinoic acid (e.g., Accutane) is
terotogenicity(Adams, J., 1993; Nau, H., 2001; Nau, H. et al., 1994). Excessive retinoic acid
is more toxic than retinol (Adams, J., 1993). In addition, retinoid therapies in adults are
generally associated with diverse side effects on mucocutaneous tissues, such as cheilitis,
xerosis, desquamation, dryness of mucous membranes, ocular effects, hair loss,
hypergranulation of tissue, bone toxicity, and serum lipid alterations(Shalita, A. R., 1987).
Animal model studies found that chronic exposure to clinical doses of 13-cis retinoic acid
suppresses hippocampal neurogenesis and disrupts hippocampal-dependent
memory(Crandall, J. et al., 2004). In addition, 13-cis retinoic acid causes night blindness
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(Sieving, P. A. et al., 2001). The birth defects and widespread side effects on adult organs
caused by retinoid drugs also demonstrate the danger of relying on random diffusion to
distribute retinoid.

The RBP/STRA6 system is clearly designed to prevent random retinol diffusion. The
specificity of this system in vitamin A delivery is achieved through three mechanisms. The
first mechanism is the high affinity and low off rate in RBP's binding to retinol. The absence
of vitamin A from abundant erythrocytes and serum albumin, which can bind vitamin A,
argue against random release of retinol from the holo-RBP/TTR complex in the blood. The
second mechanism is the specific binding of RBP to its high-affinity receptor STRA6, which
acts as a “homing device” to target holo-RBP to specific cells.

Second, random retinoid distribution requires constant retinoid intake to supply target
tissues. Although constant intake is routine for laboratory animals, it is impossible for most,
if not all, animals living in natural environments and most people living in developing
countries. Delivery of vitamin A to cells or tissues is analogous to delivery of water to a
house. Although random mechanisms (e.g., rain or flooding) may achieve delivery, they
cannot guarantee the appropriate quantity and are associated with undesired side effects (as
described above). Random mechanisms also cannot provide a stable supply during times of
insufficiency. RBP serves as a buffer to maintain stable vitamin A concentration in the
blood. The buffering function is important given the adverse effect of both low and high
retinoid on the growth and function of diverse organs. Without this buffering function, blood
retinoid level would fluctuate dramatically depending on dietary intake.

Third, random retinoid distribution may not satisfy tissues that need a large amount of
retinoid for proper function such as the eye and developing embryos. RBP solubilizes
vitamin A, protects it against oxidative damage, and makes it possible to mobilize retinoid
stored in the liver when there is low retinoid intake. As a special carrier for vitamin A, RBP
efficiently and specifically delivers vitamin A to organs distant from the liver such as the
eye, the brain, the lung, the testis, and the placenta. The efficient vitamin A uptake activity
of the RBP receptor may be especially important for tissues or cell types demanding a large
amount of vitamin A. As mentioned earlier, the efficient delivery of retinol by RBP is likely
responsible for the ability of retinol, but not retinoic acid (which is not a natural ligand of
RBP), to prevent testicular degeneration (Howell et al. 1963).

7.6. If the RBP/STRA6 system functions to specifically deliver vitamin A to target organs,
why does excessive vitamin A uptake cause toxicity?

Like many essential things in life (e.g., water), too much vitamin A is as detrimental as too
little (Penniston, K. L., and Tanumihardjo, S. A., 2006). In normal physiological conditions,
RBP mobilizes vitamin A stored in the liver and delivers vitamin A to target organs by
specifically binding to STRA6 on target cells. Using water delivery as an analogy, excessive
vitamin A intake would overwhelm this system, analogous to excessive water overflowing
riverbanks. Experiments in rats (Mallia, A. K. et al., 1975) and a study of human patients
with hypervitaminosis A (Smith, F. R., and Goodman, D. S., 1976) both suggested that more
toxicity is associated with vitamin A delivery independent of RBP. An excessive dose of
vitamin A is toxic in vivo only when the level of vitamin A in the circulation is presented to
cells in a form other than bound to RBP, such as in retinyl esters (Goodman, D. S., 1984).
An increase of 10% in retinyl ester is regarded as a sign of vitamin A overload.

7.7. What is the role of megalin in vitamin A uptake?
Megalin, a 600-kD scavenger receptor in the renal proximal tubes, is a low-affinity
nonspecific receptor for RBP that mediates the endocytosis and transcytosis of the RBP
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protein in the kidney for its recycling (Christensen, E. I. et al., 1999; Marino, M. et al.,
2001). Megalin binds to a wide-range of extracellular proteins including the highly abundant
serum proteins albumin and hemoglobin (Christensen, E. I., and Birn, H., 2002). For this
reason, it is unlikely for a cell exposed to the blood to use megalin as a receptor to take up
vitamin A from holo-RBP because megalin nonspecifically binds to most, if not all, serum
proteins. Extremely abundant serum proteins like albumin will saturate its binding sites.
Consistently, no study has shown that megalin can mediate vitamin A uptake from holo-
RBP in the serum. Megalin's extremely large extracellular domain may be responsible for
the promiscuity in its ligand binding. This promiscuity is clearly important in the recycling
of proteins in the kidney to prevent their loss in the urine. In contrast, STRA6 is a highly
specific membrane receptor for RBP and can even distinguish RBP from other retinol
binding proteins (Kawaguchi, R. et al., 2007). This selectivity is essential for recognizing
RBP in the complex mixture of proteins in the serum during vitamin A uptake. Consistently,
STRA6 can mediate vitamin A uptake not only from purified holo-RBP but also from holo-
RBP in the serum (Kawaguchi, R. et al., 2007). A large number of studies have shown that
the RBP receptor-mediated vitamin A uptake does not depend on endocytosis (Bok, D., and
Heller, J., 1976; Chen, C. C., and Heller, J., 1977; Heller, J., 1975; Ottonello, S. et al., 1987;
Quadro, L. et al., 2002; Rask, L., and Peterson, P. A., 1976; Shingleton, J. L. et al., 1989;
Sivaprasadarao, A., and Findlay, J. B., 1988b; Sundaram, M. et al., 1998). These studies
distinguished megalin from the specific RBP receptor even before its identification.

8. The RBP Receptor as a Potential Target in Treating Human Diseases
Knowledge of RBP receptor may be used to design specific methods to increase or decrease
tissue retinoid levels to treat human diseases and alleviate disease symptoms. Currently, the
most common therapeutic uses of retinoids are in dermatology and oncology. Retinoids have
been used to treat various types of cancer (Simoni, D., and Tolomeo, M., 2001; Verma, A.
K., 2003) and various skin diseases such as psoriasis and other hyperkeratotic and
parakeratotic skin disorders, keratotic genodermatoses, severe acne and acne-related
dermatoses (Orfanos, C. E. et al., 1997). Given the potent biological effects of retinoids,
current retinoid treatment is associated with diverse toxic effects such as teratogenicity, bone
toxicity and increases in serum lipids.

The RBP receptor-mediated vitamin A uptake is a natural physiological mechanism for
cellular absorption of vitamin A from the blood. Increasing retinoid level by stimulating
RBP receptor activity using pharmacology or molecular biology methods can potentially
avoid the toxic effects of systemic administration of retinoids. Upregulating RBP receptor
activity will only increase uptake through a physiological system. An analogy of systemic
administration of retinoid is to flood a city in drought with water in an uncontrolled manner.
Upregulating RBP receptor activity in this analogy is to deliver more water to a city in
drought through its natural water delivery system. When decreasing the retinoid level is
desired in treating certain diseases, cell-specific or tissue-specific suppression of the RBP
receptor activity is better than systemic lowering of vitamin A/RBP level in the blood.

Membrane transporters have been one of the most successful drug targets. For example,
serotonin reuptake inhibitors including Prozac inhibit monoamine transporters and are
widely used as anti-depressant. Given STRA6's function as a membrane transport protein for
vitamin A uptake, it is possible to modulate tissue vitamin A level by specifically targeting
this natural vitamin A uptake mechanism. This technique can avoid the use of retinoids,
which are associated with a wide variety of toxic effects. Since STRA6 is not homologous to
any membrane receptor, channels and transporters, its uniqueness can also be an advantage
in pharmacological targeting of this receptor to create specific drugs. Modulating tissue
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retinoid level by targeting this natural vitamin A uptake mechanism has the potential to treat
or alleviate the symptoms of the following diseases:

8.1. Visual disorders
Vitamin A is essential for vision because it is the precursor to photoreceptor chromophore
(Crouch, R. K. et al., 1996; Wald, G., 1968). A variety of visual disorders has been
associated with abnormal vitamin A metabolism in the eye (Thompson, D. A., and Gal, A.,
2003; Travis, G. H. et al., 2006). Modulating vitamin A uptake is a known method to
alleviate symptoms for some diseases such as Stargardt macular dystrophy (Radu, R. A. et
al., 2005; Radu, R. A. et al., 2004). Therefore, STRA6 is a novel molecular target for
treating visual disorders.

8.2. Cancer
STRA6 was originally identified as a cancer cell surface marker (Bouillet, P. et al., 1997;
Szeto, W. et al., 2001). STRA6 was overexpressed up to 172 fold in 14 out of 14 human
colorectal tumors relative to normal colon tissue (Szeto, W. et al., 2001). Since vitamin A is
known to be required for cell proliferation in many contexts, these cancer cells likely use the
enhanced retinoid level for proliferation. Thus, the identification of STRA6 as the RBP
receptor makes it possible to inhibit cancer growth by inhibiting the RBP receptor. Retinoids
have been used to treat many types of cancer (Verma, A. K., 2003), and targeting STRA6 is
an alternative to systemic retinoid treatment.

8.3. Skin diseases
Vitamin A plays essential roles in maintaining normal skin (Vahlquist, A., 1994). Retinoid
can reverse aging of the skin (Varani, J. et al., 1998). At the molecular level, retinoid
treatment reduces matrix metalloproteinase expression and stimulates collagen synthesis in
both naturally aged skin and photoaged skin (Varani, J. et al., 2000). Retinoids have been
used for treatment of various skin diseases such as psoriasis and other hyperkeratotic and
parakeratotic skin disorders, keratotic genodermatoses, severe acne and acne-related
dermatoses (Orfanos, C. E. et al., 1997). Given the role of STRA6 as the natural mechanism
of vitamin A uptake, modulating STRA6 activity in the skin is an alternative and potentially
less toxic method to regulating skin retinoid level.

8.4. Lung diseases
Vitamin A plays important roles in maintaining normal development and function of the
lung (Biesalski, H. K., 2003). Consistently, STRA6 mutations cause lung hypoplasia
(Golzio, C. et al., 2007; Pasutto, F. et al., 2007). Vitamin A deficiency produces
morphologic changes in the lung, impairs pneumocyte function (Baybutt, R. C. et al., 2000),
and potentiates hyperoxic lung injury (Veness-Meehan, K. A., 1997). Vitamin A also has a
protective effect on respiratory status in patients with cystic fibrosis (Aird, F. K. et al.,
2006). Therefore, modulating STRA6 activity can potentially improve lung function under
pathological conditions.

8.5. Immune disorders
Vitamin A plays important roles in hematopoiesis and in maintaining immunocompetence
(Blomhoff, H. K., and Smeland, E. B., 1994; Oren, T. et al., 2003; Sommer, A., 1997a, b;
Stephensen, C. B., 2001). Since STRA6 is highly expressed in lymphoid organs such as
thymus, spleen, and lymph nodes, modulating STRA6 activity has the potential to improve
immune function.
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8.6. Neurological disorders
Vitamin A is required for cognition, learning, and memory of adult brain because retinoic
acid is a modulator of the nervous system (Drager, U. C., 2006; Lane, M. A., and Bailey, S.
J., 2005; Maden, M., 2007; Weiler, R. et al., 2001). For example, retinoic acid plays an
important role in maintaining synaptic plasticity in hippocampus (Misner, D. L. et al., 2001)
and cortical synchrony during sleep (Maret, S. et al., 2005). It also plays an important role in
regenerative processes in the adult central nervous system (Vergara, M. N. et al., 2005).
Highly abundant expression of STRA6 in the brain is consistent with vitamin A's function in
the brain. Given the potential roles of retinoid signaling in depression, Parkinson disease,
Huntington disease, neuronal regeneration, and Alzheimer disease (Goodman, A. B., 2006;
Mey, J., and McCaffery, P., 2004; Vergara, M. N. et al., 2005), STRA6 is a potential target
for treating or alleviating symptoms of neurological disorders.

8.7. Diabetes
RBP was recently discovered as a signal secreted by adipoctyes for insulin resistance (Yang,
Q. et al., 2005). STRA6 is the only known high-affinity receptor for RBP and is potentially
involved in pathological events in insulin resistance.

9. Concluding Remarks
It is a surprise that evolution came up with a completely new type of cell surface receptor to
mediate cellular vitamin A uptake. This receptor is unlike any known membrane receptors,
transporters or channels, although functionally it is both as a receptor for RBP and a
membrane transport protein that mediates vitamin A entry into the cell. How this
multitransmembrane domain protein performs these functions are just beginning to be
understood. Future studies of this receptor will shed light on the molecular mechanism of
how cells take up vitamin A under physiological conditions and how this uptake process is
regulated to maintain tissue retinoid homeostasis. This knowledge will help to develop new
treatment for human diseases caused by insufficient or excessive retinoid levels.
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Figure 1.
Vitamin A and its major derivatives that have biological activities or serve as important
intermediates.
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Figure 2.
Crystal structure of the holo-RBP and TTR complex.
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Figure 3.
Transmembrane topology of STRA6. Bovine sequence is shown. Resides conserved
between human, mouse and bovine STRA6 are labeled in red. Resides essential for RBP
binding are marked with asterisks.
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Figure 4.
A. Structure of holo-RBP. The three regions implicated in RPB receptor binding are
indicated as 1, 2, and 3, respectively. These three regions (labeled in yellow) are all located
on the vitamin A exit end of RBP. B. Structure of holo-RBP showing the vitamin A exit end
facing up. C. A hypothetical model for RBP interacting with STRA6 via the vitamin A exit
end.
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