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Delays Induce Novel Stochastic Effects in Negative Feedback Gene
Circuits
Eder Zavala and Tatiana T. Marquez-Lago*
Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
ABSTRACT Stochastic models of reaction networks are widely used to depict gene expression dynamics. However, stochastic
does not necessarily imply accurate, as subtle assumptions can yield erroneous results, masking key discrete effects. For
instance, transcription and translation are not instantaneous processes—explicit delays separate their initiation from the appear-
ance of their functional products. However, delays are often ignored in stochastic, single-gene expression models. By conse-
quence, effects such as delay-induced stochastic oscillations at the single-cell level have remained relatively unexplored.
Here, we present a systematic study of periodicity and multimodality in a simple gene circuit with negative feedback, analyzing
the influence of negative feedback strength and transcriptional/translational delays on expression dynamics. We demonstrate
that an oscillatory regime emerges through a Hopf bifurcation in both deterministic and stochastic frameworks. Of importance,
a shift in the stochastic Hopf bifurcation evidences inaccuracies of the deterministic bifurcation analysis. Furthermore, noise fluc-
tuations within stochastic oscillations decrease alongside increasing values of transcriptional delays and within a specific range
of negative feedback strengths, whereas a strong feedback is associated with oscillations triggered by bursts. Finally, we
demonstrate that explicitly accounting for delays increases the number of accessible states in the multimodal regime, and
also introduces features typical of excitable systems.
INTRODUCTION
Negative feedback loops are ubiquitous features of biological
regulatory networks. They are essential ingredients of gene
expression and cell signaling, and are largely responsible
for generating oscillations (1,2) and modulating noise (3–7),
among other functions. Feedback loops are composed of in-
terconnected biochemical reactions, which are discrete and
random by nature. Thus, out of all theoretical frameworks,
models taking reaction discreteness and randomness into ac-
count will always yield more accurate results. Moreover, sto-
chastic discrete models often predict behaviors impossible to
obtain with deterministic models. Such stochastic discrete ef-
fects include, but are not limited to, noise amplification/atten-
uation (5–9), bursty expression (7,8,10–12), stochastic
resonance (13,14), stochastic focusing (15), stochastic-
induced oscillations (14,16,17), andmultimodality (7,10,18).

For many years, negative feedback regulation was thought
to imply noise reduction (9,19,20). However, recent works
(6,7) revealed contrary observations, leaving a question
mark over the relationship betweengene expressionheteroge-
neity and negative regulation. In (7), a set of simple gene cir-
cuits was studied to assess the relationship between noise
characteristics and negative feedback strength. There, it was
shown that subtle mathematical properties in the modeling
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framework result in widely distinct expression profiles. In
particular, both lumping of transcription-translation reactions
and quasi-steady-state assumptions proved to be detrimental
for a proper description of noise modulation. Additionally,
it was found that bursts and multimodality can be observed
in networks with identical architecture that only differ in
terms of feedback strength and specific kinetic parameters.

However, a systematic exploration of the roles of transcrip-
tional and translational delays alongside stochastic feedback
regulation remained to be seen. Such analysis becomes
necessary because explicit delays can reveal dynamics that
nondelayedmodels fail to predict (e.g., oscillations and excit-
ability), independently of whether the modeling approach is
deterministic or stochastic (1,21–25). Delays are commonly
used to account for the duration of reactions whose kinetic
details are often ignored. This strategy significantly reduces
the number of equations in themodel, although still capturing
the essence of the phenomenon by following the dynamics of
molecular species of interest (26). Moreover, exact model
reduction techniques using distributed delays were recently
studied, showing how an exact match between a delayed re-
action (with a constant delay) and a nondelayed reaction
(with a constant reaction rate) can never be obtained (26).
Thus, proposed models exchanging explicit delays with
slow rates of reaction may easily yield inaccurate representa-
tions of chemical systems of interest.

Thereby, it is natural to ask: how many of the observed
properties in gene expression models, such as noise buff-
ering and multimodality would hold if one explicitly ac-
counts for transcriptional and translational delays? And,
would introduction of explicit transcriptional and transla-
tional delays yield new nonclassic stochastic effects, not
http://dx.doi.org/10.1016/j.bpj.2013.12.010
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yet observed? To answer these questions, we consider a pro-
totypical gene circuit that accounts for transcription, trans-
lation, and protein dimerization (Fig. 1). In our system,
the dimer acts as a transcription repressor upon binding
DNA, resulting in a negative feedback loop at the gene level.
Furthermore, we consider explicit delays due to transcrip-
tion and translation, and identify ranges where sustained os-
cillations are to be expected.

It is worth noting that reaction delays are commonly asso-
ciated with oscillations in negative self-regulation systems
(1,2,27), but the particular way in which oscillations emerge
depends on the network architecture as well as the parameter
values. In our case, a Hopf bifurcation is the simplest mech-
anism bywhich our minimalistic gene circuit could oscillate,
but asserting its existence is not straightforward. Separately,
stochastic descriptions of gene regulatory networks (GRNs)
often exhibit behaviors absent in their deterministic counter-
parts, such as oscillations, bistability, and bursts (17,21,28–
30). Furthermore, noise-induced oscillations without delays
have been demonstrated before (14,16,17). Whether this
and other behaviors with no deterministic counterpart may
be occurring in systems such as Fig. 1 needs to be determined.

After briefly pointing out the differences between deter-
ministic and stochastic descriptions of the circuit, we carry
out a systematic study on the role of negative feedback, de-
lays, and kinetic parameters on stochastic gene expression
profiles. In agreement with other models (1,21,22,25), oscil-
lations were observed when considering significantly long
FIGURE 1 Simple gene regulatory circuit portraying transcription,

translation, and dimerization. Transcription and translation are treated as

delayed reactions. The dimer binds reversibly to DNA and repress tran-

scription, resulting in a negative feedback loop.
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delays. However, we show the onset of oscillations is quite
distinct at low and high feedback strengths, involving a
Hopf bifurcation in the former and bursty expression in the
latter. Even though the deterministic Hopf bifurcation is
mathematically well defined (see the Supporting Material)
(31), its stochastic definition is still in development. Here,
we used the most recent definition based on the changing
shape of the system’s stationary distribution under parameter
variations. This definition states that, for a stochastic planar
autonomous system, a stochastic Hopf bifurcation appears
when the shape of its stationary distribution changes from
peak-like to crater-like (32). The latter implies the oscilla-
tory regime has associated marginal stationary distributions
that are bimodal functions; a fact that we will show is in full
agreement with the shape of distributions in our work.

Finally, when compared to the deterministic analysis, we
find the stochastic Hopf bifurcation to be shifted in param-
eter space (33,34). Furthermore, we demonstrate that this
very simple gene circuit can also exhibit multimodality,
just as its nondelayed stochastic counterpart (7). However,
transcriptional delays play a very interesting role in shaping
such multimodal behavior. On the one hand, it increases the
number of modes that the system can visit (i.e., states other-
wise inaccessible without the use of delays). On the other, it
modifies expression dynamics significantly, exhibiting char-
acteristics typical of excitable systems (35).
MATERIALS AND METHODS

System reactions and model parameters

For this study, we chose a generalized gene expression circuit consisting of

transcription, translation, degradation, and dimerization reactions. The cir-

cuit architecture in Fig. 1 corresponds to the following set of model

reactions

DNA!k1; t1 DNAþ mRNA

mRNA!k2; t2 mRNAþ P

Pþ P#
kþ
d

k�
d

D

DNAþ D#
kþc

k�c
DNA ,D

mRNA
���!g1 B

P
���!g2

B

(1)

where k1 and k2 represent the transcription and translation rates, respec-

tively. Dimer association/dissociation rates are denoted by kd
þ and kd

�; a
dimer binds and unbinds DNA at rates kc

þ and kc
�; whereas mRNA and

protein turnover are represented by rates g1 and g2, respectively. For de-

layed reactions, constant delays t1 and t2 were chosen to represent tran-

scription and translation processes. A full derivation of the corresponding

deterministic and stochastic models can be found in the Supporting

Material.

We considered uniform initial conditions of 1, 1, 100, 0, and 0 molecules

of DNA, mRNA, protein, dimer, and the repression complex (dimer-bound

DNA), respectively. As we focused on the expression of a single gene in one



Periodic and Multimodal Gene Expression 469
single cell, we used a volume of 1 fL, equivalent to a typical Escherichia

coli cell volume (36). To check if our observations hold for volumes as large

as those found in unicellular eukaryotes, we also carried out simulations

considering a volume of 37 fL, equivalent to a typical Saccharomyces cer-

evisiae cell volume (37) (see the Supporting Material). Proper conversion to

molarity units for the deterministic model was implemented whenever

necessary.

Following (7), we used parameter a¼ kc
þ/kc

� to account for the negative

feedback strength. The latter was varied over eight orders of magnitude and,

together with the transcriptional delay, constituted the main parameters un-

der study. Of importance, these parameters were used for both the determin-

istic and stochastic analyses and tuned within the same ranges, making both

cases comparable. Two basic parameter sets were used for all simulations.

One set for oscillatory regime simulations and one for multimodal expres-

sion profiles (respectively, Table S1 and Table S2). All parameter values

were fixed within biologically feasible ranges (7) (Table S3).

The transcriptional delay t1 was defined as the elapsed time since tran-

scription initiation up to the appearance of the corresponding mature

mRNA. This accounts for intermediate reactions like transcript elongation,

editing, and other processes not considered explicitly in our model. In a

similar way, the translational delay t2 was defined as the time since trans-

lation initiation up to the appearance of the corresponding mature protein

(but before dimerization). We used the ranges t1 ˛ [0, 1200] s and t2 ˛
[0, 150] s. To fully assess the effects of introducing delays, we decided to

tune them from zero to the upper limits estimated in (22). This choice eases

extrapolation of our results to higher delay values, typical of eukaryotic

cells where mRNA and protein require further processing and transport be-

tween cell compartments.
Bifurcation analysis and numerical solutions

A set of delay differential equations (DDEs) was used to model determin-

istic dynamics. The bifurcation analysis was performed using DDE-BIF-

TOOL (38) for continuation and identification of the Hopf bifurcation

(Fig. S1). To compute bifurcation diagrams, the numerical step-size and

number of branch points were optimized to achieve maximum resolution

while completing the calculation in a reasonable amount of time. Given

the subtle dependency of DDEs on its history and delay values, we verified

our results using XPPAUT (39) and MATLAB dde23 (The MathWorks,

Natick, MA) (Fig. S1 F and Fig. S2, A, C, E, and G).
Stochastic simulations and analysis

Biochemical reactions are discrete and random by nature. Thus, systems of

delayed chemical reactions are accurately described by the delay chemical

master equation (DCME). The validity of the DCME demands a well-

stirred system in thermal equilibrium. It ignores spatial information, solely

accounting for molecule numbers uniformly distributed throughout a con-

stant volume (40,41). Nevertheless, it is worth noting one may also use de-

lays to account for spatial, nonhomogeneous processes (42), a topic that lies

outside the scope of this work. Currently, our system in consideration con-

tains extremely low numbers of molecules. Thus, solving an associated sto-

chastic DDE (e.g., the Langevin approximation) is not an option, as this

approach is only valid at high concentrations where no discrete effects

are expected. Therefore, we must retort to using the DCME.

Even though the DCME cannot be solved analytically, it is possible to

calculate independent exact trajectories belonging to it through an exact

delay stochastic simulation algorithm (DSSA). Here, we carry out single

cell simulations using an implementation of the DSSA based in the reaction

rejection method (21) (Fig. S3). It has been demonstrated in (43), that this

method yields exact trajectories according to the DCME, therefore we do

not introduce any approximations. In this way, we avoid using perturbed

DDEs and unnecessary assumptions about noise that may shadow dynam-

ical subtleties in our system. In our simulations, reactants and products are
updated simultaneously only after a delay marks the reaction completion.

Nondelayed simulations were verified by means of the stochastic simulation

algorithm (SSA) direct method (44).

Within each parameter set describing a dynamical regime (Table S1 and

Table S2), parameter sweeps were performed for one parameter at a time,

leaving all others fixed. We carried out 100 simulations for each combina-

tion of feedback strength and delay values. For each simulation, 106 equally

spaced time points were collected. These simulations were used to estimate

stationary probability density functions (PDFs) as well as period, ampli-

tude, and time autocorrelation half-life distributions. PDFs were calculated

by computing normalized histogram distributions and verified byMATLAB

kernel smoothing function estimators. Contoured PDFs were obtained from

individual PDFs using MATLAB’s interpolating algorithms.

To calculate amplitude, period, and autocorrelation half-life distribu-

tions, the stochastic time course trajectories were smoothed using a moving

averages algorithm. The size of the smoothing window was fixed at 9 neigh-

bors for mRNA and 21 for protein and dimer, and these values were kept

identical for all trajectories analyzed.
RESULTS AND DISCUSSION

Oscillatory gene expression is induced by delays

Several studies of delay-induced oscillations in GRNs exist
for both deterministic and stochastic models (17,21,22,28).
However, none so far systematically explored the relation-
ship between negative feedback and delays as a means to
induce oscillations through a Hopf bifurcation. To fill this
gap, we first computed a dynamical portrait of the system
by means of a continuous deterministic model. It is worth
emphasizing qualitative predictions of the deterministic
model were only used as a starting point to a more system-
atic study using discrete stochastic simulations.

We then performed a bifurcation analysis on the deter-
ministic model of our gene circuit (Eq. S2). To explore
the onset of oscillations, we used the parameter values
shown in Table S1. Furthermore, we chose three bifurcation
parameters: the feedback strength a, and transcriptional and
translational delays denoted by t1 and t2, respectively.
Although the feedback strength was varied over a very
wide range, a periodic solution was found only within a ˛
[107, 1015] M�1. The delays were varied within the ranges
reported in Table S3.

The result of our analysis is shown in Fig. 2, where a
two-parameter (t1, a) bifurcation diagram illustrates the
boundary between regions where the system exhibits a
stable steady-state solution (monostability) versus self-sus-
tained oscillations. Of importance, we found these bound-
aries correspond to points in parameter space where a
single, stable steady-state solution loses its stability and a
limit-cycle emerges (Fig. S1), thus defining Hopf bifurca-
tion branches. Therefore, the onset of oscillations in a
deterministic model of our gene circuit occurs through a
Hopf bifurcation.

From Fig. 2, it can be readily observed that oscillations
are precluded from regions of very weak and very high feed-
back strength, whenever both delays are small. Conversely,
intermediate feedback strengths (a ˛ [1010, 1013] M�1)
Biophysical Journal 106(2) 467–478
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allow for periodic solutions whenever the transcriptional
delay t1 lies above the Hopf branch delineated by the trans-
lation delay t2. As a general rule, feedback strength intervals
allowing for the occurrence of oscillations become wider
alongside increasing values of the transcriptional delay t1.
The same applies for translational delays t2, where
increasing values of this parameter result in downward dis-
placements of the U-shaped Hopf branch.

Taken together, these results show that high transcription
and translation delays and intermediate feedback strengths
account for periodic solutions in a deterministic model of
the gene circuit.
A stochastic Hopf bifurcation is revealed

We carried out thorough sets of stochastic simulations of the
gene circuit by means of the DSSA (21), using the bifurca-
tion diagram in Fig. 2 as a guide for exploring parameter
values. A fixed value of t2 ¼ 100 s for the translation delay
was used for all stochastic simulations. This value is well
centered within the biological range (Table S3) and its cor-
responding Hopf branch does not intersect the t1 ¼ 0 s axis,
allowing examination of the oscillatory regime at intermedi-
ate feedback strengths (Fig. 2). We then selected pairs of
values a and t1 uniformly distributed over the parameter
space. For each pair, we carried out 100 simulations to
estimate the corresponding PDF (see Methods and Figs.
S4–S10). Single representative samples for each pair (a,
t1) are shown in Figs. S4–S10. The trajectories portray the
time evolution of DNA, mRNA, protein, dimer, and the
DNA/dimer repression complex, from where the following
qualitative observations can be made:
Biophysical Journal 106(2) 467–478
1. Low a and low t1: mRNA, protein and dimer trajectories
are too noisy to clearly distinguish an oscillatory pattern.
However, a clear periodic pattern emerges and stabilizes
as t1 increases.

2. Intermediate a and low t1: mRNA, protein and dimer tra-
jectories are spiky and irregular. Once again, a periodic
pattern emerges and stabilizes as t1 increases.

3. High a and low t1: mRNA, protein and dimer trajectories
are not only spiky but also very sparsely distributed. We
refer to these high-level, brief, sudden increments in
molecule numbers as expression bursts. In high feedback
scenarios, expression bursts increase their lifetime and
resemble an oscillation peak with increasing values of t1.

4. The higher the feedback strength a, the more the mRNA,
protein, and dimer oscillation troughs shift closer to zero
expression, and the more the oscillation crests become
sparsely and irregularly distributed in time. Moreover,
the amplitude and period of oscillations seem to increase
with a and t1.

5. From the DNA and repression complex dynamics, one can
see that the frequency atwhich the gene is available to tran-
scribe diminishes alongside increasing values ofa. Indeed,
this follows from the definition of a, and governs how the
oscillation crests are distributed in time. Interestingly, as t1
increases, the time the gene remains free for transcription
also increases. This effect becomes more critical for the
overall dynamics at high feedback strengths.

6. For all feedback strengths and all transcription delay
values, the time-course evolution of mRNA, protein,
and dimer are correlated. This is one significant differ-
ence to models that do not consider transcriptional and
translational delays explicitly (45,46).
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In contrast to the deterministic scenario, where a clear-cut
transition from the monostable to the oscillatory regime can
be identified, sharp transitions are not obvious in the sto-
chastic setting. Moreover, whereas the Hopf bifurcation in
the deterministic framework is well defined (in terms of
the loss of stability of a steady-state and simultaneous emer-
gence of a limit-cycle (31,33,47)), the stochastic Hopf bifur-
cation is not.

However, we can intuitively think of a system that fluctu-
ates close to a stable steady-state and, upon certain param-
eter variations, decreases its residence time close to that
state to instead visit other nearby states. Such a gradual tran-
sition seems to contradict the classic deterministic concept
of bifurcation, but a stochastic system may well exhibit a su-
perposition of steady-state and limit-cycle solutions close to
the putative bifurcation point. Moreover, in discrete stochas-
tic dynamics, states are described by probabilities with no
hard definition of an unstable steady-state.

To assess whether transitions from low-amplitude to
high-amplitude fluctuations are actually portraying the
emergence of an oscillatory pattern, one needs to carefully
look at the PDFs. We expect a stochastic transition from
monostability to oscillations to be reflected in the PDFs.
Namely, through a tendency to change from unimodal to
bimodal (32,33,48). Even though a strict mathematical
formalism for stochastic Hopf bifurcations is still in devel-
opment (32,49), some systems have already been described
using this approach (e.g., pupil light reflex (33), predator-
prey models (32), and neural circuit excitable systems
(50)). Thus, we recognize these transitions as stochastic
Hopf bifurcations when the PDFs in Figs. S4–S10 change
from being unimodal to bimodal. Due to the difficulty of
discerning the latter from large sets of data, we summarized
our findings as contour plots of the PDFs in two ways. First,
as a function of t1 with different values of a. Second, as a
function of a with different values of t1. Results are shown
as stacked contoured PDFs in Fig. 3. For the sake of
simplicity, we only show mRNA and protein PDFs. The
dimer PDFs can be found in Figs. S4–S10.

In Fig. 3, the successive stacking of contours from bottom
to top (either by increasing a or t1 values) reveals some
interesting changes in the system’s dynamics. For instance,
in Fig. 3, A and B, contour PDFs at the bottom (low a-slices)
are clearly unimodal and centered at low values of mRNA
and protein. This unimodal distribution slightly widens for
higher transcriptional delay values. However, for higher
values of the feedback strength (upper a-slices), the contour
PDFs dramatically widen, although at the same time the
former local peak narrows and is displaced to lower mole-
cule numbers. The tendency of each slice’s distribution to
become wider at high values of t1 is maintained for all a
levels. Moreover, a second local peak appears for medium
to high values of the transcriptional delay t1. This second
peak displaces to higher molecule numbers as a and t1 in-
creases, hinting at the oscillation amplitude increments
already observed in Figs. S4–S10.

On the other hand, from Fig. 3, C and D, and Figs. S4–
S10, we observe the PDFs exhibit a tendency to flatten,
widen, and become bimodal for higher values of the tran-
scription delay (upper t1-slices). In agreement with the
FIGURE 3 Stacked contoured PDFs reveal a

stochastic Hopf bifurcation. Contour slices were

calculated for different feedback strengths (A, B),

and different transcription delay values (C, D).

Stacks for mRNA (A, C) and protein (B, D) are

shown. Lighter colors correspond to local maxima

in the PDFs. From bottom to top, within each

panel, contoured PDFs approach a bimodal shape.

The uppermost contours in the top panels (A, B)

look less smooth as the burst regime appears

beyond a ¼ 1012 M�1.

Biophysical Journal 106(2) 467–478
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top panels (Fig. 3, A and B), they also show how the once
unique local peak shrinks and displaces to lower molecule
numbers alongside increasing values of a. In contrast to
Fig. 3, A and B, the contoured PDFs in Fig. 3, C and D,
are bounded. That is, intermediate levels of the feedback
strength a concentrate the widest (and bimodal) distribu-
tions, whereas the bimodality becomes suddenly extinct at
feedback strengths higher than a ¼ 1012 M�1. This is a
very interesting observation when we compare the panels
in Fig. 3, C and D, with the two-parameter bifurcation dia-
gram in Fig. 2. It points to a better agreement between deter-
ministic and stochastic predictions at intermediate feedback
strengths and high transcription delay (shaded area in
Fig. 2).

Overall, the data point to the existence of a stochastic
Hopf bifurcation underlying the emergence of oscillations
in the gene circuit.
Hopf bifurcation shifting

In the past, bifurcation theory has been extensively used to
study gene expression dynamics in connection to network
architectures (1,51,52). Nevertheless, with some exceptions
(17), it has been largely ignored when stochastic models are
employed. One notable exception is the work in (28), where
a two-parameter bifurcation diagram exhibiting a Hopf
bifurcation was shown for a gene system with negative feed-
back. The authors subsequently used this bifurcation dia-
gram to compare against stochastic predictions made via a
DSSA and, interestingly, found a shift in the bifurcation
point when stochastic fluctuations come into play. However,
the parameter exploration in (28) is too scarce to assess the
influence of feedback and delays within the stochastic bifur-
cation. Moreover, the generalized SSA they used for simu-
lating stochastic delayed reactions is not exact (43,53).

In this work, we use a different DSSA implementation
(21) guaranteeing exact realizations of the DCME, and
confirm a shift (postponement) in the stochastic Hopf bifur-
cation. This is judged by the emergence of bimodal PDFs in
Fig. 3 for high t1 values and for bounded a intervals. When
compared with the clear-cut Hopf branch boundary (t2 ¼
100 s) in the deterministic scenario, one can readily notice
that the contoured PDFs from Fig. 3 reveal more than just
a fuzzy transition. They also show that the (t2, a) parametric
domain that sustains stochastic oscillations is smaller than
that of its deterministic counterpart. Taking the (t2, a)
values where bimodal PDFs are clearly noticeable
(Fig. 3), we estimate that the leftmost boundary of the oscil-
latory regime shifts to higher a by approximately one order
of magnitude (shaded area in Fig. 2). This implies that the
overlapping domain where both the deterministic and
stochastic approaches effectively predict oscillations is sig-
nificantly reduced. Because the stochastic modeling frame-
work is based on assumptions that better account for
biological reality, we interpret from the Hopf bifurcation
Biophysical Journal 106(2) 467–478
shift that the deterministic approach is systematically mises-
timating the parametric conditions where periodic gene
expression is observable.
The stochastic oscillatory pattern is stabilized
from low to intermediate feedback a and high
transcriptional delay t1

To further understand the behavior of the oscillatory regime,
we calculated amplitude distributions for each batch of 100
trajectories at different a and t1 values (Fig. S11). For low
feedback strength, these distributions show that amplitude
increases with the transcription delay already starting from
very low molecule numbers. However, for intermediate to
high feedback strength, the rise in amplitude as t1 increases
is not as large as for low a. Interestingly, the amplitude dis-
tributions become narrower, showing reduced fluctuations
in response to increments in the transcription delay. These
observations are summarized in Fig. 4, A–C, where the
mean amplitudes for mRNA, protein, and dimer, are shown
as functions of t1 and a. There, we can see a steady growth
in amplitude as the feedback strength and transcription de-
lays increase. For the case of mRNA, this growth dramati-
cally slows down from medium to high values of a, and
for all values of t1. On the other hand, dimer amplitude dis-
tributions always exhibit a maximum at very low molecule
numbers and gradually vanish at higher molecule numbers
(Fig. S11). This effectively means that, in contrast to
mRNA and protein, dimer oscillations do not have any pref-
erential amplitude. Nonetheless, all amplitude distributions
for the three aforementioned molecular species are dis-
placed to higher molecule numbers when t1 and a values in-
crease (Fig. 4, A–C).

To estimate oscillation periods, frequency spectra were
calculated for each trajectory by means of a fast Fourier
transform algorithm and its inverse (period curve) averaged
for each batch of 100 trajectories (see Supporting Text and
Fig. S12). In Fig. 4, D–F, the period distributions for
mRNA, protein, and dimer are shown as functions of t1
and a. There, we can see a steep and steady increment in
period as the feedback strength and transcription delay in-
creases. Notably, the very irregular and sparse distribution
of peaks in time course trajectories beyond a ¼ 1012 M�1

precluded a correct period estimation, suggesting that this
feedback strength value actually marks the frontier between
stochastic oscillations and bursty dynamics.

Finally, we wanted to assess the impact of the negative
feedback and transcriptional delay in stabilizing stochastic
oscillations. We used a time autocorrelation function C(u)
that measures the correlation of a discrete time series with
itself as a function of time shift u. Although deterministic
oscillations have periodic autocorrelations, stochastic time
series do not, due to phase memory loss. Typically, stochas-
tic oscillations have autocorrelations that also oscillate, but
the envelope of which decreases exponentially. The half-life



FIGURE 4 Characterization of stochastic oscillations. From top to bottom: amplitude (A, B, C), period (D, E, F), and autocorrelation half-lives (G, H, I).

From left to right: mRNA (A, D, G), protein (B, E, D), and dimer (C, F, I). Period values beyond a ¼ 1012 M�1 diverge in the burst regime.
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time of the envelope measures the damping rate of C(u),
and accounts for the impact of noise in the time series.

We calculated time autocorrelation functions for each of
the stochastic trajectories and averaged them over each
batch of 100 simulations. The damping rate of the averaged
functions for each (t1, a) pair of values illustrate the phase
memory loss (Figs. S13–S19). Half-lives were then obtained
from a fitted exponential envelope to the averaged autocor-
relation functions. We then used them as indicators of how
oscillations are resilient to noise fluctuations when varying
the feedback strength and transcriptional delay. The result
is shown in Fig. 4, G–I, where autocorrelation function
half-lives for mRNA, protein, and dimer, are plotted as func-
tions of t1 and a. There, we can see that at low feedback
strength, phase memory is better preserved at higher
transcriptional delay values. More specifically, there is an
optimal interval defined by a ˛[109, 1010] M�1. This sug-
gests that neither high nor very low feedback strength
make gene periodic expression more reliable for the control
of downstream processes, but instead there exists an optimal
tuning range for a.

In other words, stochastic oscillations are stabilized
against random fluctuations for a narrow range of feedback
strength. In the context of noise modulation in gene circuits,
this result adds to previous counterintuitive stochastic
behaviors observed when tuning the negative feedback
strength (7). In contrast, phase memory decay rate increases
from intermediate to high levels of a, and for all values of t1.
As was the case with the period distributions (Fig. 4, D–F),
this is due to the sparseness and irregularity of expression
Biophysical Journal 106(2) 467–478
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peaks in time-course trajectories. We argue that this rapid
phase memory loss is another indicator that the stochastic
oscillatory regime effectively disappears at high feedback
strengths, giving rise to a bursty expression domain.
Bursts as precursors to oscillations at high
feedback strength

The stacked contour PDFs in Fig. 3, C and D, provide
another interesting observation. The PDFs gradually widen
as the feedback strength increases (indicating the onset of
oscillations), yet they shrink abruptly beyond a ¼ 1012

M�1. In other words, according to the stochastic model,
the probability of observing nonbasal gene expression sud-
denly becomes negligible for a> 1012 M�1. This effectively
marks the boundary for the oscillatory regime at high a.
Nonetheless, stochastic simulations show sudden short-last-
ing bursts beyond a ¼ 1012 M�1 (Figs. S9 and S10 and
shaded area in Fig. 2).

The precise mechanism by which the system shifts be-
tween bursts and oscillations is unknown and requires
further investigation. However, a plausible explanation can
be formulated by observing the sample trajectories in
Figs. S4–S10 and comparing how transcriptional delays
affect DNA-repressor complex dynamics at high versus
low feedback levels. Even though such trajectories only
show 1 out of 100 simulations for each (t1, a) pair, they ev-
idence how the state of the mRNA, protein, and dimer are
affected by how often the unbinding events occur (opening
the gene for transcription each time) and by the elapsed time
the gene remains free of the repressor.

As it turns out, the frequency with which the gene is open
for transcription is inversely proportional to the feedback
strength a. In contrast, the time it remains open correlates
with the duration of the transcriptional delay t1. Of impor-
tance, the latter effect is more noticeable for large a (Figs.
S8–S10). Thus, it follows naturally that a bursty pattern
emerges whenever the gene sporadically frees from the
repressor and remains open long enough for transcription
events to trigger the burst. This condition is readily met at
high a, where the moment a burst occurs is unpredictable
but its size correlates with the elapsed time the gene re-
mained free from the repressor. Conversely, at low a, the
elapsed time the gene remains unrepressed varies greatly
and with no apparent correlation to t1. In this scenario, a
high frequency of DNA-repressor binding/unbinding is the
chief mechanism governing the occurrence of transcription
events. They occur at such a high frequency that a regular
oscillatory pattern emerges and is driven by reaction delays.
However, at intermediate values of a, the frequency at
which the gene is found open for transcription is neither
too low nor too high. In this scenario, the gene remains
open long enough to beget a few transcription events but, af-
ter it’s repressed, it will not be long before it opens again and
resumes transcription. This intermediate feedback strength
Biophysical Journal 106(2) 467–478
adds enough regularity in the DNA-repressor binding/un-
binding dynamics for a clear oscillatory pattern to emerge.
We argue that this is the mechanism behind bursts triggering
self-sustained stochastic oscillations in our gene system.

Overall, transcriptional and translational delays control
the regularity at which the oscillation crests and troughs
are observed, whereas the feedback strength a is the driving
force behind transitions from bursty to oscillatory gene
expression profiles.
Multimodality in the nondelayed and delayed
scenario

Multimodal gene expression has been reported in nonde-
layed negative feedback regulation scenarios (7,10,18).
There, multimodality could be easily achieved by tuning
the feedback strength and mRNA degradation rate simulta-
neously. Following this idea, we tuned these parameters
together with kd

þ and kd
� rates, and concluded that param-

eters in (7) required only minor variations. The resulting
parameter set is shown in Table S2.

We first explored the nondelayed scenario by fixing t1 ¼
t2 ¼ 0 s in the gene circuit in Fig. 1. To remain consistent
with our previous analysis, we explored the effects of delays
by increasing t1. We fixed the translation delay at t2¼ 100 s
to simplify the analysis of multimodality, because this value
is well centered within the biological plausible range (Table
S3). As before, we carried out 100 realizations of the DSSA
for each parameter combination, and used them to estimate
stationary PDFs. Of importance, we calculated PDFs after
different simulation times and verified that their shape and
statistic measures (such as mode locations, number, and fre-
quencies) remained invariant after 80% of the simulation
time reported in here. In other words, the PDFs remain
invariant and thus reliably describe the stochastic scenario.
In Fig. 5, sample time-course trajectories of mRNA and pro-
tein dynamics are shown together with their corresponding
protein PDFs. There, it can be observed that each transcrip-
tion event occurs at a random time and yields an initial
amount of mRNA, which is also random. The transcript is
then translated to a number of proteins proportional to avail-
able mRNA at the time, following a multimodal distribution
(see the PDFs in Fig. 5). Interestingly, protein numbers
exclusively show small fluctuations around some central
values, which we will refer to as modes. We identify these
modes in the PDFs, appearing as local maxima, resembling
multiple overlapping Gaussian distributions. Moreover, at
low t1, the system transitions between modes occur rapidly
and discretely. On the other hand, at high t1, each transcrip-
tion-translation event drives the system to a very high mode,
which gradually decays to lower modes in a discrete
fashion. In any case, discrete jumps do not necessarily occur
between consecutive modes.

The PDFs in Fig. 5 account for the time the system spends
in a certain state, reflecting the probability of observing each
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FIGURE 5 Reaction delays enhance multimodal behavior. Protein and mRNA stochastic trajectories and the corresponding protein stationary PDF are

shown for (A) t1 ¼ 0 s, t2 ¼ 0 s; (B) t1 ¼ 100 s, t2 ¼ 100 s; (C) t1 ¼ 300 s, t2 ¼ 100 s, and (D) t1 ¼ 500 s, t2 ¼ 100 s. The frequency probability of

each mode and its position is indicated. Null expression was excluded from PDF calculations.
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gene expression mode. There, it can be observed that the
lowest mode (located at 16 proteins) has the highest proba-
bility, and that higher modes are located near integer multi-
ples of such lowest mode, which in turn are observed with
decreasing probabilities (see for instance the modes at 33,
49, and 64 proteins). Thus, for all delay values, the modes
in the multimodal regime are quantized. Moreover, the num-
ber of accessible modes increases with the transcription
delay t1, albeit always following the quantization rule.

Multimodal regimes reveal an additional interesting ef-
fect after introducing delays. Not only does the number
of distinguishable modes grow with higher t1 values, but
also larger excursions of the system are observed after
each transcription-translation event. They are characterized
by a sudden increase in mRNA and protein numbers, which
then gradually decay, visiting lower modes in the process
until settling down at zero molecules. During these large
excursions, higher modes have shorter residence times, sug-
gesting that lower modes are more stable. Furthermore, the
amplitude of these large excursions increases with t1. This
in turn affects the elapsed time of each excursion as, with
higher amplitudes, the system has to visit a greater number
of modes before settling in the lowest. Our observations
from 100 trajectories point at large excursions exhibiting
a refractory phase, in which the system almost never jumps
again to a higher mode until it has completely exited from
the excursion. In the protein PDFs, excursions of the system
are reflected by the appearance of tail distributions: the
higher the transcription delay, the wider the tail of the
PDF. This follows from the amplitude of the excursion
Biophysical Journal 106(2) 467–478
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and hence the number of modes visited by the system dur-
ing the recovery phase. In particular, for the nondelayed
system, large excursions were never observed and the width
of the PDF tail distribution was negligible (Fig. 5 A). This
supports the observation that large excursions are induced
by delays.

Taken together, the data suggest that the introduction of
delays in the multimodal regime drives the system to an
excitable-like behavior. Whether a noisy excitable gene
system (35) can originate from coupled delayed reactions
remains an open question. Some theoretical studies on excit-
able neural systems (24,54), stem cell fate decision control
(55), and even nonphysiological systems (56) have made
some progress in that direction. As was the case when
comparing deterministic and stochastic predictions, we
observe that multimodality predictions change significantly
once explicit delays are accounted for. In particular, the
number of modes accessible by the system increases and
distinct, transient dynamics emerge.
CONCLUSIONS

In this study, we have shown how the modeling of a simple
gene circuit with negative feedback at the single-cell level
demands a proper handling of reaction delays. In particular,
it was demonstrated that the interplay between feedback
strength and transcriptional-translational delays shape the
dynamical landscape of the system. This landscape was
chiefly dominated by the coexistence of two dynamical re-
gimes, monostability and oscillations, which constitute
nonoverlapping expression profiles of the gene. Even
though both deterministic and stochastic modeling predicts
the emergence of oscillations through a Hopf bifurcation,
deterministic models mask important dynamical effects. Ex-
amples of the latter are discrete stochastic effects, such as
bursty expression and multimodality, which we also
analyzed in terms of negative feedback strength and delays.

Additional differences between the deterministic and the
stochastic models were pointed out. Among them, we found
that the buffering of fluctuations varies within the para-
metric region where stochastic oscillations are predicted.
Specifically, there is a small range of negative feedback
strength and transcription delays where the impact of fluctu-
ations is diminished and the oscillatory pattern becomes
more regular. The parametric boundaries that delimit the
oscillatory regime were also different for deterministic
and stochastic models. Notably, a shift in the stochastic
Hopf bifurcation with respect to its deterministic counter-
part was observed. The occurrence of bimodality in the
PDFs as a means to report a shift in the Hopf bifurcation
is a very stringent criteria. Nonetheless, it safely prevents
from false-positive identification of oscillations from mere
fluctuations.

Our work also highlights the need for a better understand-
ing of bifurcations in the context of stochastic systems; in
Biophysical Journal 106(2) 467–478
particular, when transitions between different dynamical
ranges are sensitive to stochastic discrete effects. As the bur-
geoning field of synthetic biology demands robust control of
expression dynamics, we emphasize that choosing a precise
and reliable modeling framework is crucial for engineering
gene circuits. Important information can be learned from
studying bifurcation shifts as well as inspecting the ampli-
tude, period, and phase memory decay inherent to stochastic
oscillations.

Of importance, it was shown that the onset of stochastic
oscillations from a bursty expression regime depends on a
fine balance between the frequency of DNA-repressor
binding events and their duration. These properties are
in turn modulated by feedback strength and delays, further
stressing their importance within the stochastic modeling
approach. We are aware that we have not considered a
delay between repressor unbinding and transcription initi-
ation. It would be interesting to explore how a delay ac-
counting for processes such as RNA polymerase
binding, transcription factor recruitment and chromatin
remodeling, affect the dynamics of the gene circuit in
Fig. 1.

We also showed how transcription, translation, and
dimerization can generate multimodality. The latter was
achieved by considering different parameter values while
keeping the negative feedback circuit architecture in
Fig. 1 identical. We demonstrated that introducing reaction
delays not only preserves multimodal behavior, but also,
that the number of modes accessible for the system in-
creases alongside the transcriptional delay. Moreover, de-
lays induce a significant change in the transient dynamical
behavior of the gene, reminiscent of noisy excitable sys-
tems. Accounting for delays on multimodality is of major
importance for understanding how genes exert control of
downstream effectors. For instance, phenotype heterogene-
ity is often explained as multiple expression profiles result-
ing from identical genotypes. Multimodality in turn, is a
dynamical emergent property that could readily account
for this heterogeneity. In the context of synthetic biology,
a deeper understanding into effective construction of
tunable gene circuits capable of switching between different
expression regimes is highly valuable.

In summary, we have provided deeper insight into the
mathematical subtleties that should be considered for proper
design of single genes in single cells with oscillatory, multi-
modal, and bursty expression profiles. Accounting for de-
lays, for instance, allowed us to identify a stochastic Hopf
bifurcation and find a gene circuit behaving as a noisy excit-
able system. This is, to our knowledge, the first time a delay-
induced stochastic Hopf bifurcation (and a shift with respect
to its deterministic counterpart) is reported for a GRN.
Although a thorough analysis of a noisy excitable gene sys-
tem with delays is beyond the scope of this work, we believe
this is the first time such behavior is reported for a GRN with
delays.
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SUPPORTING MATERIAL

Twenty-three figures, three tables, twomodels, and supporting text are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)

05799-8.
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bifurcation thresholds in stochastic equations with delayed feedback.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80:061920.

50. Tanabe, S., and K. Pakdaman. 2001. Dynamics of moments of Fitz-
Hugh-Nagumo neuronal models and stochastic bifurcations. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 63:031911.

51. Angeli, D., J. E. Ferrell, Jr., and E. D. Sontag. 2004. Detection of multi-
stability, bifurcations, and hysteresis in a large class of biological pos-
itive-feedback systems. Proc. Natl. Acad. Sci. USA. 101:1822–1827.
Biophysical Journal 106(2) 467–478
52. Tyson, J. J., and B. Novák. 2010. Functional motifs in biochemical re-
action networks. Annu. Rev. Phys. Chem. 61:219–240.
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