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ABSTRACT Cellular sensory systems often respond not to the absolute levels of inputs but to the fold-changes in inputs. Such
a property is called fold-change detection (FCD) and is important for accurately sensing dynamic changes in environmental sig-
nals in the presence of fluctuations in their absolute levels. Previous studies defined FCD as input-scale invariance and pro-
posed several biochemical models that achieve such a condition. Here, we prove that the previous FCD models can be
approximated by a log-differentiator. Although the log-differentiator satisfies the input-scale invariance requirement, its response
amplitude and response duration strongly depend on the input timescale. This creates limitations in the specificity and repeat-
ability of detecting fold-changes in inputs. Nevertheless, FCD with specificity and repeatability by cells has been reported in the
context of Drosophila wing development. Motivated by this fact and by extending previous FCD models, we here propose two
possible mechanisms to achieve FCD with specificity and repeatability. One is the integrate-and-fire type: a system integrates
the rate of temporal change in input and makes a response when the integrated value reaches a constant threshold, and this is
followed by the reset of the integrated value. The other is the dynamic threshold type: a system response occurs when the input
level reaches a threshold, whose value is multiplied by a certain constant after each response. These two mechanisms can be
implemented biochemically by appropriately combining feed-forward and feedback loops. The main difference between the two
models is their memory of input history; we discuss possible ways to distinguish between the two models experimentally.
INTRODUCTION
Accurately sensing dynamic change in the extracellular
environment is essential for proper cellular responses. In
some contexts, such as Xenopus dorsal-anterior develop-
ment and Escherichia coli chemotaxis, it has been reported
that cells respond to the fold change in input levels rather
than to their absolute levels (1–4); when the input level
changes from a certain basal value to its p-fold value in a
steplike manner, output level depends not on the basal value
but on the value of p (Fig. 1 A). This property is called fold-
change detection (FCD), and it enables cells to accurately
sense dynamic changes in extracellular signals even though
their absolute levels fluctuate (5–7).

Theoretically, FCD is defined as the invariance of
response against input scale transformation (called input-
scale invariance) (8,9). Several models of chemical reaction
networks that have such a property have been proposed, and
their response dynamics have been examined—especially
their responses to stepwise or sigmoidal input change.

As discussed in detail below, we have proven that these
previous models act approximately as circuits for calcu-
lating the time derivative of the logarithm of the input
signal, which we call a log-differentiator. Thus, its response
amplitude strongly depends on the timescale of input
change.

This property creates two limitations in the detection of a
specific fold-change in input:
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One is the specificity of the fold-change to be detected:
the transformation of the timescale of input change with
its fold-change remaining constant alters the response
amplitude (Fig. 1 B). In other words, two inputs that are
different in both fold-change and timescale can produce
the same amplitude, making the two inputs indistinct
according to the response amplitude (Fig. 1 C, left panel).

The other limitation is the repeatability of detection of
specific fold changes: for smoothly changing inputs, multi-
ple peaks of output never appear, regardless of the ratio
between input levels at the beginning and end. Hence, it is
impossible to repeatedly respond every time the input is
amplified by a specific fold (Fig. 1 C, right panel).

Nevertheless, fold-change detection with specificity and
repeatability by cells with a continuously changing input
is reported in real biological situations; in the context of
growth control of the wing imaginal disk during Drosophila
development, Wartlick et al. (10) found that the concentra-
tion of Dpp (a typical morphogen) that each cell receives
changes linearly with time, and cells divide every time
they experience a 50% increase (i.e., 1.5-fold) in Dpp signal
over the last division (10–12).

In this study, we first prove

1. The relationship between the previous models and the
log-differentiator model, and

2. The limitations of the log-differentiator model in the
specificity and repeatability of its response.

After that, by extending the log-differentiator model, we
propose two possible mechanisms to achieve fold-change
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FIGURE 1 A previous model for fold-change detection (FCD) and the

limitation of its function. (A) A typical FCD model (left) and responses

to stepwise inputs (right); an incoherent feed-forward loop (I-FFL) works

as a module to achieve FCD under appropriate parameter conditions.

(B) Output intensity depends not only on the fold-change of inputs (left)

but also on the timescale of the input change (right). (C) (Left) Two step-

wise inputs that are different in fold-change and timescale and the responses

of the I-FFL model to them. The maximum output levels are the same

regardless of the differences in input fold-changes. (Right) Two inputs

that are different in smoothness and the responses of the I-FFL model to

them. The numbers of peaks in outputs are different, although the total

fold-changes in inputs are the same. (Dashed curves) Responses of the

log-differentiator model. To see this figure in color, go online.
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detection with specificity and repeatability (called srFCD)
for general input profiles, such as the almost linearly
increasing input observed in the wing disk growth process:

One is the integrate-and-fire (IF) model, whereby a
system integrates the rate of temporal change of input
and makes a response (e.g., cell division) when the inte-
grated value (an intracellular state) reaches a constant
threshold and then resets the integrated value to its original
value.

The other is the dynamic threshold (DT) model, whereby
a system response occurs when the input level reaches a
threshold, whose value is multiplied by a certain constant
after each response to determine the new threshold, i.e.,
the threshold value changes with time. We further show
examples of how to implement these two models using
Biophysical Journal 106(1) 279–288
biochemical reactions and discuss possible ways to distin-
guish between the two models experimentally.

Our models will also work as possible designs for sensory
systems in synthetic biological studies.
RESULTS

A logarithmic differentiator is a minimal model
of FCD

In previous studies (8), FCD was defined as response invari-
ance to input scale transformation. For input I(t) and output
O(t; I(t)), it is given by

Oðt; pIðtÞÞ ¼ Oðt; IðtÞÞ; (1)

where p is a positive constant. In this article, all system

variables are regarded as chemical concentrations and
thus they take nonnegative values. Shoval et al. (8) exam-
ined sufficient conditions for FCD in detail and proposed
three biochemical models satisfying those conditions (see
below).

In the following, we show that the previously proposed
models for FCD can be approximately regarded as log-dif-
ferentiators, as

OLDðt; IðtÞÞ ¼ d log IðsÞ=dsjs¼ t:

A log-differentiator has an FCD function because, for p-fold

multiplied input pI(t), the output is given by

OLDðt; pIðtÞÞ ¼ d

ds
ðlog pþ log IðsÞÞ

����
s¼ t

¼ d

ds
log IðsÞ

����
s¼ t

¼ OLDðt; IðtÞÞ:
(2)

A semilog plot of input function may make this clear; its

multiplication by any constant causes nothing but a parallel
shift of the graph along the vertical axis, keeping the
input time derivative unchanged regardless of the constant
(Fig. 1 A).

Three typical models for FCD proposed by Shoval et al.
(8) are

1. Incoherent feed-forward loop (I-FFL),
2. Nonlinear integral feedback, and
3. Logarithmic input with linear feedback.

Here we make clear the relationship between each model
and a log-differentiator.

Incoherent feed-forward loop (I-FFL)

εP

d

dt
PðtÞ ¼ IðtÞ � PðtÞ; (3a)

ε

d
OðtÞ ¼ IðtÞ � OðtÞ; (3b)
O

dt PðtÞ
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where I(t) is the variable for input state, O(t) is for output
state, and P(t) is the intermediate state (the individual state
is called the ‘‘Proportioner’’ (13)). The values εp and εO

represent the time constants for the dynamics of P(t) and
O(t), respectively. Integrating Eq. 3a, P(t) is written as

PðtÞ ¼ IðtÞ � εPI
0 ðtÞ þ ε

2
PI

00 ðtÞ � ε
3
PI

000 ðtÞ þ/þ ce�t=εP ;

(3a0)

where c is an arbitrary constant. Therefore, when the system

dynamics is much faster (i.e., when εp and εO are much
smaller) than the timescale of input change, the output is
approximately given by

OðtÞy IðtÞ
PðtÞy1þ εP

d

ds
log IðsÞ

����
s¼ t

: (3b0)

This indicates that O(t) can be regarded as a log-

differentiator.

Nonlinear integral feedback

εB

d

dt
BðtÞ ¼ BðtÞðOðtÞ � OstÞ; (4a)

εO

d
OðtÞ ¼ IðtÞ � OðtÞ; (4b)
dt BðtÞ

where B(t) is an intermediate variable (called the ‘‘Buffer’’

(13)), the dynamics of which are given the time constant
εB, and Ost represents the basal level of output O(t).
Assuming that the dynamics of O(t) is much faster than
the input dynamics (i.e., εO << 1), and introducing the
new variable P(t) ¼ OstB(t), we can rewrite the expressions
in Eq. 4 as follows:

εB

Ost

d

dt
PðtÞyIðtÞ � PðtÞ; (4a0)

OðtÞyOst

IðtÞ
: (4b0)
PðtÞ

This can be solved in the same way as in the I-FFL model. If

εB/Ost is small enough, the output is approximately given by

OðtÞyOst þ εB

d

ds
log IðsÞ

����
s¼ t

: (4b00)

In this manner, the output of this model can also be regarded

as a log-differentiator.

Logarithmic input with linear feedback

εB

d

dt
BðtÞ ¼ OðtÞ � Ost; (5a)

εO

d
OðtÞ ¼ log IðtÞ � BðtÞ � OðtÞ: (5b)
dt
Like the nonlinear integral feedback model, B(t) and Ost

represent an intermediate variable and the basal level of
output O(t). When O(t) ¼ 0 and εO << 1, by applying Lap-
lace transformation and its inverse transformation, we have

OðtÞy
Z t

0

e�
t�s
εB

�
Ost þ d

ds0
log I

�
s
0�����

s
0 ¼ s

�
ds; (5b0)

meaning that O(t) is equivalent to the series connection of a

log-differentiator and a low-pass filter (14).

In this manner, all models can be interpreted as log-differ-
entiators when the timescale of the output is assumed to be
smaller than that of the input. This assumption would be
reasonable in the case of Drosophila wing disk formation,
where the timescale of the cell cycle (~h) is smaller than
that of change inmorphogen concentration (~100 h),whereas
it is not appropriate when considering bacterial chemotaxis,
where the timescale of transcriptional response (~h) is larger
than that of change in ligand concentration (~min).
Limitations of the log-differentiator

Although the log-differentiator has input scale invariance, as
shown in Eq. 2, its output is susceptible to change in input
timescale. Actually, the scale transformations of time from
t to t/t in input I(t) result in different outputs as

OLD

�
t; I
� t
t

��
¼ ds

0

ds

d

ds0
log I

�
s
0�����

s
0 ¼ t=t

¼ 1

t
OLD

� t
t
; IðtÞ

�
;

(6)

where s0 ¼ s/t. Thus, response intensity (i.e., maximum

output) is inversely proportional to input timescale t, and
response duration (e.g., time between maximum and half-
maximum outputs) is proportional to t. It should be noted
that if O(t;I(t/t)) ¼ O(t/t;I(t)) were satisfied, it would
mean just transformation of output timescale while keeping
output intensity, whereas if O(t;I(t/t)) ¼ (1/t) O(t;I(t)) were
satisfied, it would mean transformation of output intensity
while keeping output timescale. As shown below, this prop-
erty causes two limitations in detecting input fold-change.

To explain the limitations, we consider the following
class of steplike input function (Fig. 2 A):

Iðt;g; n; t;DTÞ ¼ exp

"
log g

Xn
k¼ 1

1

2

�
1þ erf

t � kDT

t

�#
;

(7)

where the error function is defined by
erfðxÞ ¼ 2=
ffiffiffi
p

p Z x

0

e�t2dt:

Parameters g, n, t, and DT indicate the fold-change in one

step, the number of steps, the timescale of input change,
and the interval between steps, respectively.
Biophysical Journal 106(1) 279–288



FIGURE 2 Response repeatability of log-differentiator type models.

(A) Input functions given by Eq. 7. The input shape is determined by param-

eters for the fold-change in each step g, the number of steps n, the timescale

of input change t, and the interval between steps DT. (B) Responses of the

log-differentiator model and the previous FCD models to inputs with

different timescales of input change t; responses of the log-differentiator

O(t) y 1 þ ε d log I(t)/dt (dashed black curves), incoherent feed-forward

loop (red curves), nonlinear integral feedback (green curves), and logarith-

mic input with linear feedback (blue curves). In this example, when the

input timescale is small enough (i.e., much faster input change), all models

respond to the two-fold change in input regardless of the system timescale.

In contrast, when the input timescale is large (i.e., much smoother input

change), none of the models can respond repeatedly to the specific fold-

change in input. To see this figure in color, go online.
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This input changes smoothly from 1 to gn in a stepwise
manner.

The response of the log-differentiator to this input is
given as a linear sum of the normal distribution:

OLDðt; Iðt;g; n; t;DTÞÞ ¼ log g

t
ffiffiffi
p

p
Xn
k¼ 1

exp

 
�
�
t � kDT

t

�2
!
:

(8)

The first limitation is in specificity of fold-change to be
detected. According to Eq. 8, in the case of n ¼ 1, i.e., input

with a single step, the response always has a single peak at
t¼DT. Moreover, given two inputs, I(t;g2,t2) and I(t; g1,t1),
which are different in both fold-change and timescale, the
ratio of response intensity to these inputs is

OLDðDT; Iðt;g2; t2ÞÞ
OLDðDT; Iðt;g1; t1ÞÞ

¼ t1 log g2

t2 log g1

: (9)

Equation 9 means, for example, a twofold change in input
in half an hour and a 1:4-fold change in an hour (i.e.,
Biophysical Journal 106(1) 279–288
g1 ¼ 2;g2 ¼
ffiffiffi
2

p
; t1=t2 ¼ 2) return the same value for

response intensity, i.e., the two inputs cannot be discrimi-
nated by intensity alone (Fig. 1 C, left panel).

The second limitation is in the repeatability of detec-
tion with continuous input change. For n > 1 in Eq. 7,
whether the response of the log-differentiator has n peaks
depends on the input timescale t. As the simplest case,
consider the case where n ¼ 2. The top-right panel in
Fig. 1 C shows responses to two different inputs with
different values for t (other parameters are fixed). In this
case, the response is given as a superposition of two normal
distributions:

OLDðt; Iðt; n ¼ 2ÞÞ ¼ log g

t
ffiffiffi
p

p
"
exp

 
�
�
t � DT

t

�2
!

þ exp

 
�
�
t � 2DT

t

�2
!#

:

(10)

From the calculation of the first and second derivatives of

Eq.10, the response has two peaks when the timescale of
input change is small enough (t<DT=

ffiffiffi
2

p
), but has a single

peak otherwise as a result of the overlap between the two
responses (Fig. 1 C, right panel). This means that the log-
differentiator has a limitation in repetitive detection of a
fold-change in smoothly changing inputs.

In the analysis above, although we showed the limitations
of the log-differentiator model, similar limitations hold for
the previously-proposed three models for FCD, even when
the assumption of timescale is removed (Fig. 2 B).
Fold-change detection with specificity and
repeatability)

As stated above, when the input is smoothly changing,
the previous log-differentiator type models cannot achieve
fold-change detection with specificity and repeatability
(srFCD). Nevertheless, as stated before, such detection by
cells is reported in real biological situations (10). Motivated
by this observation, we here consider systems that can detect
only a specific fold-change and respond repetitively even
when the input is smoothly changing. An ideal system
response is given by

OðtÞ ¼ q

�
IðtÞ
IðTnÞ � g

�
for Tn%t; (11)

where Tn is the time when the last (nth) response occurred

(T0 ¼ 0, I(T0) ¼ K > 0), and g is a specific fold-change
to be detected. The value q(x) is a unit step function whose
output is 1 if the inequality x R 0 is true, and 0 when it is
not. At the moment when

IðtÞ
IðTnÞRg (12)
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is satisfied, this system makes a response, and the dynamics
is updated by replacing Tn with Tnþ1 in Eq. 11. For an
increasing input, responses and updates occur every time
the input is increased by g-fold after the last response. We
should note that the requirement for srFCD (Eq. 11) satisfies
the condition of the original FCD, i.e., input-scale invari-
ance (Eq. 1), because the output depends only on the ratio
of input levels at two different time points.

In the following, by appropriately transforming Eq. 12,
we propose two basic models to achieve srFCD. For the pur-
pose of focusing on the logic of the mechanisms, we explain
the two models mainly with abstract models, and briefly
discuss how to implement them using more concrete
biochemical reactions.

Integrate-and-fire model

Equation 12 can be transformed as follows:

IðtÞ
IðTnÞRg5log

IðtÞ
IðTnÞRlog g5

Z t

Tn

d log IðsÞ
ds

dsRlog g:

(13)

The inequality on the right-hand side of Eq. 13 means that

each response occurs whenZ t

Tn

d log IðsÞ
ds

ds;

the accumulation of log-differentiated input from the last

response, reaches a constant threshold logg. By introducing
an intermediate variable (L(t), Log-converter) that reflects
the accumulation level, the system output given by Eq. 11
is realized by the following dynamics:

d

dt
LðtÞ ¼ d

ds
log IðsÞ

����
s¼ t

; (14a)

OðtÞ ¼ qðLðtÞ � log gÞ; (14b)
L
�
tþ
� ¼ 0 if OðtÞ>0; (14c)
where tþ represents the reset timing immediately after

the response. This model is composed of three steps
(Fig. 3 A) described in the following:

1. Log-conversion of input signal (Eq.14a); because the
value of L is reset after every response, its current value
is log(I(t)/I(Tn)), i.e., a fold-change of input from the last
response. This process can be implemented using a pre-
vious FCD model, e.g., the I-FFL (Fig. 3 B).

2. When L reaches a certain threshold (log g), a binary
response occurs (Eq. 14b). This thresholding process
can be achieved by a bistable system through a positive
feedback loop or by a response with a Hill function
through multistep phosphorylation and/or a phosphoryla-
tion cascade (15–18).
3. L is reset to its basal value (Eq. 14c), which is achieved,
for instance, by the negative regulation of L by the output
O (i.e., O-mediated degradation of L). Fig. 3, B and C,
show an example of implementation of the integrate-
and-fire (IF) model using biochemical reactions and its
response to a linearly increasing input, respectively
(see Appendix A for details on this example). Note that
to achieve srFCD properly, the system parameters need
to satisfy some constraints (see also Appendix A).

By analogy to a model of spiking neurons, we call this
model (Eq. 14) the integrate-and-fire (IF) model (19). The
model is also a mathematical formulation of the concept
that Wartlick and González-Gaitan presented in a previous
article (11). As written in the literature, a variable L is not
necessarily a chemical concentration, but can be regarded
as a cell volume; if the volume growth rate is proportional
to the log-differentiated input and cells divide when their
volumes are doubled, and this is followed by the reset of
L to a basal volume, then the function of srFCD can be real-
ized by slightly modifying Eq. 14 as

d

dt
LðtÞ ¼ 2

log g

d

ds
log IðsÞ

����
s¼ t

; (14a0)

OðtÞ ¼ qðLðtÞ � 2Þ; (14b0)
L
�
tþ
� ¼ 1 if OðtÞ>0; (14c0)
where L is the cell volume and the basal volume is set at 1.

Although the IF model fulfills an srFCD function for

monotonically increasing inputs, it may not be able to
properly detect a specific fold-change in input from the
last response if the input includes decreasing phases
(Fig. 3 D). To achieve srFCD, L(t) should take the value
of log(I(t) / I(Tn)), meaning that L(t) should be negative
when I(t) < I(Tn) (i.e., decreasing input). However, this is
impossible because L(t) corresponds to chemical concentra-
tion or cell volume, which have nonnegative values. There-
fore, the IF model cannot deal with the decrement in input,
leading to improper responses for nonmonotonic inputs (see
Fig. 3, D and E). In contrast, as explained below, the other
model properly works as an srFCD module even when the
input includes decreasing phases.

Dynamic threshold model

Another possible transformation of the inequality in
Eq.12 is

IðtÞ
IðTnÞRg5IðtÞRgIðTnÞ ¼ g2IðTn�1Þ ¼ / ¼ gnþ1K;

(15)

where the requirement from Eq. 11 is satisfied if the (n þ 1)
nþ1
th response occurs when input I(t) reaches g K, a

dynamics threshold that increases by g-fold after every
Biophysical Journal 106(1) 279–288



FIGURE 3 Two possible mechanisms for fold-

change detection with specificity and repeatability

(srFCD): integrate-and-fire (IF) model and dy-

namic threshold (DT) model. (A) Logic diagram

and (B) biochemical implementation of the IF

model. This model consists of three parts: (i) log

conversion of input signal I, which is stocked as

an internal state L; (ii) binary response O, which

depends on the value of L; and (iii) the reset of L

after each response through feedback. L is inter-

preted as the fold-change of input since the last

response. After appropriately combining feed-

forward and feedback loop motifs, the processes

(i–iii) can be biochemically implemented (B).

(C and D) Typical responses of the IF model

to an exponential input (C) and to a periodic

input (D). (Dashed curves) Logic model (see the

expressions in Eq. 14); (solid curves) biochemical

model (Eq. A1). For a monotonically increasing

input, system responses properly occur for every

specific-fold change (twofold in this case) in input,

but inappropriate responses occur when input in-

cludes decreasing phases (D). (E) If L could take

negative values, the proper response to a specific-

fold change in input would be achieved. (F) Logic

diagram and (G) biochemical implementation of

the DT model. This model consists of three parts:

(i) comparison of the values between input I and

an internal state B, which works as a dynamic

threshold; (ii) binary response O, which depends

on I/B; and (iii) multiplication of the value of B by

a constant. The DTmodel can be biochemically im-

plemented by combining feedback loop motifs (G).

(H and I) Typical responses of the DT model to an

exponential input (H) and to a periodic input (I);

(dashed curves) logic model (see the expressions

in Eq. 16); (solid curves) biochemical model (see

the expressions in Eq. A2). TheDTmodel can prop-

erly detect a specific-fold change in input even with

input that includes decreasing phases. The input

functions are I(t) ¼ exp(4.0 � 10�2t) (C and H)

and I(t) ¼ exp(1.1(1 – cos(2p � 10�2t))) (D and I).

To see this figure in color, go online.
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response. Based on this consideration, and by introducing an
intermediate variable (B(t), buffer) that reflects the value of
the dynamic threshold, we propose the other basic model of
srFCD as follows:

d

dt
BðtÞ ¼ 0; (16a)

OðtÞ ¼ qðIðtÞ � BðtÞÞ; (16b)
B
�
tþ
� ¼ gBðtÞ if OðtÞ>0: (16c)
In this model, the value of B is constant when O ¼ 0

(Eq. 16a). When the current input level is beyond the value
of B, a system response occurs (Eq. 16b). After each
response, the value of B(t) is updated immediately to the
next value by multiplying it by a constant g (Eq. 16c)
(Fig. 3 F). Unlike the intermediate quantity L in the IF
Biophysical Journal 106(1) 279–288
model, B continues to increase exponentially instead of
being reset (note that, as is true for the Dpp source level,
a change in chemical concentration by two orders is plau-
sible in real systems).

How can such a multiplication of variable B by a constant
be implemented biochemically? A simple mechanism is an
autocatalytic feedback given as (Fig. 3 G)

d

dt
BðtÞ ¼ BðtÞf ðOÞ; (17)

where f(O) is a monotonically increasing function with the

constraint f(0) ¼ 0 (Eq.16a). Integrating Eq. 17, we have

BðtÞ ¼ B0 exp

Z
f ðOÞdt: (18)

Thus, the ratio of the value of B at the nth and(nþ1)th re-

sponses is
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BðTnþ1Þ
BðTnÞ ¼ exp

Z Tnþ1

Tn

f ðOÞdt: (19)

When the output shape for each response is identical, the

right-hand side of Eq. 19 becomes constant, i.e., B is multi-
plied by a constant after every response. Eq. 17 includes the
dynamics given by Eq. 4a in the nonlinear integral feedback
model, which is observed in the chemotaxis of E. coli (8,20).
By adding a thresholding module, the model can be
extended to a dynamic threshold (DT) type of model (see
Fig. 3 G for an example of biochemical implementation
and Appendix A for details on the model).

Unlike the IF model, the DT model can serve an srFCD
function even when the input includes decreasing phases
because the value of B is always positive (Fig. 3, H and I).
DISCUSSION

In this study, we proved that previously proposed FCD
models can be regarded as log-differentiators and that the
log-differentiator-type model has limitations in specificity
and repeatability of response in detecting a specific fold-
change in input signal. By extending them, we proposed
two different mechanisms to achieve such an FCD with
specificity and repeatability (srFCD), regardless of the time-
scales of input signals, i.e., the integrate-and-fire (IF) model
and the dynamic threshold (DT) model. We also show that
both models can be implemented biochemically by appro-
priately combining feed-forward and feedback loops.
Major differences between the two models and
possible ways of distinguishing between them
experimentally

A simple way to distinguish between the IF and DT models
is to examine the dynamics of variables for intermediate
states. In the IF model, the variable L reflects the log-ratio
of input change from the last response (log(I(t)/I(Tn))) and
always changes with the change in input. In particular, for
exponentially increasing input, L changes periodically
(Fig. 3 C). On the other hand, in the DT model, the variable
B reflects the threshold for response (gnþ1K) and changes
only after the response, otherwise remaining constant.
Thus, for increasing input, B increases monotonically in a
stepwise manner (Fig. 3 H).

Another way is to examine responses to inputs that
include decreasing phases. As explained before, the IF
model cannot capture the negative rate of input change
well, due to the existence of the lower bound of L(t) (i.e.,
L(t) R 0), leading to incorrect responses. In contrast, in
the DT model, the g-fold level of the input at the last
response is memorized as a value of B, and proper fold-
change detection can be achieved regardless of the monoto-
nicity of input profiles.
Using this difference, we may be able to determine which
model (IF or DT) is represented in real biological systems
by observing responses to nonmonotonically changing in-
puts instead of observing intermediate variables (L or B).
For example, as shown in Figs. 3, D and I, when a periodic
input is given to the systems represented by Eqs. 14 and 16,
the number of responses would be different between the IF
and DT models. This difference in the number of responses
may be seen more clearly as tissue size in the context of the
development of the Drosophila wing disk. Fig. 4 shows re-
sults of mechanical simulations of the growth process. The
tissue was modeled by the vertex dynamics model, in which
each cell is represented as a polygon formed by linking
several vertices (Fig. 4 A) (21,22).

We assumed that every cell cycle length is determined
by an srFCD model inside each cell, i.e., the IF or DT
model. Dpp morphogen, the input for the srFCD model,
is produced at the source cells adjacent to the anterior-
posterior (AP) boundary (midline of the tissue) and makes
a scaled gradient by diffusion and degradation (see Appen-
dix B). When the Dpp expression at the source was mono-
tonically increasing, as observed in wild-type wing disks,
both the IF and DT models gave almost the same results
(see Fig. 4 B). However, when Dpp expression was peri-
odic, the growth patterns differed dramatically between
the IF and DT models (Fig. 4 C). For the IF model,
biphasic tissue growth was observed; the first growth phase
corresponded to the first increasing period of input, and
the second phase corresponded to the second increasing
period of input. On the other hand, for the DT model,
only the first growth phase was observed. The resulting
difference in tissue size was very clear and may be more
useful in distinguishing between the two mechanisms
experimentally than by examining differences in intracel-
lular chemical dynamics.
Candidate molecules for implementing srFCD in
the growth control of the wing disk

A notable characteristic of the IF model is the dynamics of
the intracellular state L(t), whose level periodically changes
in synchrony with the cell cycle. Such dynamics, of course,
can be seen in cell cycle regulators. Because cell cycle pro-
longation occurs mainly in the G2 phase during develop-
ment, regulators of G2/M transition, such as Cyclin B and
String, are candidates for L(t) in the IF model (23,24). How-
ever, as of this writing, it is unknown whether Dpp regu-
lates these genes. Another interesting possibility for L(t)
is not a chemical, but cell volume, as discussed before;
Dpp is actually known to regulate the cell growth rate
through the Hippo pathway (25). On the other hand, a char-
acteristic of the DT model is its network topology, which
consists of a negative feedback loop between the output
O(t) and the intracellular state B(t) and a positive feedback
loop for B(t). Downstream of Dpp, the growth regulator Yki
Biophysical Journal 106(1) 279–288



FIGURE 4 Tissue growth simulation by coupling

the vertex dynamics model and srFCD model.

(A) Tissue growth simulation during Drosophila

wing disk development using the two-dimensional

vertex dynamics model in which each cell has a

simplified cell cycle regulator whose checkpoint

is controlled by the srFCD model, namely the IF

or DT model. The Dpp morphogen, the input for

the srFCD model, is produced at the source cells

adjacent to the anterior-posterior (AP) boundary.

(B and C) Simulation results when the Dpp

source intensity exponentially increases (B) and

periodically changes (C). (Top panels) Temporal

profiles of the cell numbers in the IF model (blue

curves), in the DT model (red curves), and Dpp

source intensity (dashed green curves). (Bottom

panels) Representative images at three different

time points (corresponding to the dashed lines in

the above panels). Color indicates cellular Dpp

intensity. Although the IF and DT models gave

almost the same results for exponential inputs (B),

only the IF model gave biphasic tissue growth for

periodic inputs (C). To see this figure in color, go

online.
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is part of a negative feedback loop with Myc, and Myc is
part of a positive autoregulatory feedback loop (26,27).
Therefore, the DT model could be implemented in this
network.

Our models are general models to detect relative level
changes in focal cues in dynamically changing environ-
ments. They provide not only mechanisms that may
operate in real biological phenomena, including the
growth control of the wing disk, but also can provide basic
designs for cellular sensory systems in synthetic biological
studies.
APPENDIX A: EXAMPLES OF BIOCHEMICAL
IMPLEMENTATION

Integrate-and-fire (IF) model

The following dynamics is an example of biochemical implementation of

the IF model (Fig. 3 B):

d

dt
LðtÞ ¼ aL

IðtÞ
PðtÞ � ðbL þ gLOðtÞÞ

LðtÞhL
LðtÞhL þ KhL

L

; (A1a)
Biophysical Journal 106(1) 279–288
d

dt
PðtÞ ¼ aPIðtÞ � bPPðtÞ; (A1b)

d
CðtÞ ¼ a

K0 þ ðLðtÞCðtÞÞhC � b CðtÞ; (A1c)

dt

CðLðtÞCðtÞÞhC þ KhC
C

C

d
OðtÞ ¼ aOLðtÞCðtÞ � bOOðtÞ: (A1d)
dt

In Eq. A1a, the first term indicates that L(t) is regulated by input I(t) through

an incoherent type feed-forward loop (IFF-L), and this type of regulation
achieves fold-change detection (FCD), i.e., input-scale invariance (5).

P(t) is the Proportioner, whose dynamics is given by Eq. A1b. The first

term of Eq. A1a can be replaced by other FCD models. When O(t) ¼ 0,

aL ¼ bL, and L(t) >> KL, from Eq. 3b0, Eq. A1a can be solved as

LðtÞf log
IðtÞ
IðTnÞ: (A1a0)

This means that L is proportional to the fold-change of input since the last

response. The last term in Eq. A1a represents O(t)-promoted degradation.
Eq. A1c is the dynamics of intermediate variable C(s), which is introduced

to approximate the step function in Eq. 14b. The first term represents a het-

erodimer-mediated positive feedback regulation called ASSURE, and the
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second term is the degradation. The ASSURE network motif is known to

behave as a robust all-or-none switch (28,29). The first term in Eq. A1c

can be replaced by other mechanisms generating all-or-none responses or

ultrasensitivity, such as multistep phosphorylation. Because the dissociation

constant KC in Eq. A1c approximately corresponds to the threshold of the

response (i.e., logg in Eq. 14b), its value strongly affects the fold-change

to be detected. In Fig. 3, C and D, the values of parameters were chosen

as aL ¼ bL ¼ 102, gL ¼ 1, hL ¼ 2, KL ¼ 10�3, aP ¼ bP ¼ 102, aC ¼
bC ¼ 102, K0 ¼ 10�6, KC ¼ 0.32, hC ¼ 1.1, aC ¼ 70, and bO ¼ 10.
Dynamic threshold (DT) model

The following dynamics is an example of biochemical implementation of

the DT model (Fig. 3 F):

d

dt
BðtÞ ¼ aBBðtÞOðtÞ � bB

BðtÞ
BðtÞ þ KB

; (A2a)

d
PðtÞ ¼ aPIðtÞ � bPBðtÞPðtÞ; (A2b)
dt

d
CðtÞ ¼ a

K0 þ ðPðtÞCðtÞÞhC � b CðtÞ; (A2c)

dt

CðPðtÞCðtÞÞhC þ KhC
C

C

d
OðtÞ ¼ aOPðtÞCðtÞ � bOOðtÞ; (A2d)
dt

The first term in Eq. A2a indicates that the activation of B(t) is mediated by

O(t) in an autocatalytic manner. Because the level of B(t) needs to continue
to increase, its degradation rate is modeled not by a linear function but by a

Michaelis-Menten type function with saturation. When B(t) becomes large

enough (B(t) >> bB, i.e., slow degradation), Eq. A2a can be approximated

by Eq. 17, i.e., f(O) ¼ aBO(t), and solved as

BðTnþ1Þ
BðTnÞ ¼ exp aB

Z Tnþ1

Tn

OðtÞdt :

3
5

2
4 (A2a0)

In other words, B(t) increases exponentially with the number of responses.

Eq. A2c approximates the step function in Eq. 16b in the same manner as
Eq. A1c. When the dynamics of P(t) (Eq. A2b) is much faster, its value is

approximately proportional to I(t)/B(t). Eq. A2c can then be rewritten as

d

dt
CðtÞ ¼ aC

K
0
0ðBÞ þ ðIðtÞCðtÞÞhC

ðIðtÞCðtÞÞhC þ �K0
CðBÞ

�hC � gCCðtÞ; (A2c0)

where K0
0(B) ¼ K0B(t)

hC and K0
C(B) ¼ KCB(t). K

0
C(B) works as a dynamic

threshold that depends on the value ofB(t), while the thresholdK is constant
C

(i.e., static threshold) in Eq. A1c. In contrast to the IF model, the parameter

KC hardly affects the fold-change to be detected. Instead, the parameter aB,

the intensity of feedback regulation of B(t) by the output O(t), does affect

the fold-change to be detected. In Fig. 3, G and H, the values of parameters

were chosen asaB¼ 1,bB¼ 10�4,KB¼ 1.0,aP¼ 10,bP¼ 5,aC¼ bC¼ 103,

K0 ¼ 10�6, KC ¼ 0.8, hC ¼ 1.1, and aO ¼ bO ¼ 10.
APPENDIX B: VERTEX DYNAMICS MODEL

We performed tissue growth simulations with a two-dimensional vertex dy-

namics model (21,22,30) (Fig. 4 A). In this model, each cell is represented

as a polygon formed by linking several vertices. The dynamics of the ith

vertex is given as
h
dri
dt

¼ � v

vri
U; (A3)

where ri is the positional vector of the ith vertex, h is a coefficient of

viscous resistance, and U is the total potential energy of the system, which
is given by

U ¼
X
a

K

2

�
Sa � S0a

�2 þX
a

G

2
L2
a þ

X
a;b

La;bla;b; (A4)

where the first and the second terms describe the sum of elastic energies for

the area Sa and the perimeter La of cell a, respectively. S0a is the equilib-
rium area of cell a. The third term describes the sum of interfacial energies

for the boundary la,b between cell a and b. The values K, G, andLa,b are the

parameters representing the weights of those terms. We adopted the param-

eter values that are given in Wartlick et al. (10).

We also adopted the rules of topological change and cell division given

in Wartlick et al. (10), except for the rule of cell cycle progression. In our

simulation, cell cycle progression depends on the output chemical level

O(t) in the IF or DT model. We assumed that the effect of dilution of intra-

cellular chemicals due to cellular growth is neglected and that their values

are copied from a parent cell to daughter cells at each cell division.

The dynamics of the input Ia(t), or the Dpp concentration, is

d

dt
IaðtÞ ¼ DIðtÞ

X
b

la;bðIbðtÞ � IaðtÞÞ � gIIaðtÞ; (A5)

where the first term represents the diffusion process of Dpp, and the second

term is the degradation process. The diffusion coefficient is determined so
as to achieve a gradient that scales with tissue size (31,32):

DIðtÞ ¼ D
X
a

SaðtÞ: (A6)

We also assumed that Dpp protein is produced at the source cells, which

are adjacent to the midline (AP compartment boundary).
In Fig. 4 B, the source intensity was given by

IaðtÞ ¼ exp
�
4:0 � 10�2t

�
a˛ðsource cellsÞ: (A7)

On the other hand, in Fig. 4 C, the source intensity was given by� � ��

IaðtÞ ¼ exp 1� cos 2p � 10�2t a˛ðsource cellsÞ:

(A8)

In all simulations, the parameter values were chosen as S0 ¼ 250,

K ¼ 0.08, G ¼ 0.8, D ¼ �38, L ¼ 38, L ¼ 380, D ¼ 10�7, and
midline rim

gI ¼ 0.7. Each cell cycle length (except for the effect of checkpoints)

was randomly determined by a g-distribution, whose shape parameter

was 25 and whose scale parameter was chosen so that the average lengths

of M-phase and I-phase are 3 and 20, respectively.
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