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Abstract

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between
increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in
such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly
correlated variants in biologically relevant chromatin annotations— we identified 727 such potentially functional SNPs. We
also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory
response element disruption of all correlated SNPs at r2

§0:5. 88% of the 727 SNPs fall within putative enhancers, and many
alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define
as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer
correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a
mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk
enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in

linkage disequilibrium (r2~0:91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the
index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus
androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen
sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in
basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and
their potential target genes represents a preliminary step in connecting risk to disease process.
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Introduction

The basic goal of research into human genetics is to connect

variation at the genetic level with variation in organismal and

cellular phenotype. Until recently, inferences about such connec-

tions have been limited to the kind associated with heritable

disorders and developmental syndromes. Such variations often

turn out to be the result of disruptions to protein coding sequences

of critical enzymes for an affected pathway. Recent advances in

genomics and medicine have begun to illuminate a sea of variation

of a more subtle variety, not always the result of mutation of

protein coding sequences. In particular, genome-wide association

studies (GWAS) have identified thousands of variants associated

with hundreds of disease traits [1]. These variants, typically

encoded by single nucleotide polymorphisms (SNPs), are given

landmark status and called ‘index-SNPs’ (they are also frequently

referred to in the literature as ‘tag-SNPs’) as the reference for

disease or phenotype association in that region. The vast majority
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of these variants reside within intergenic or intronic regions [2],

prompting at least two new avenues of inquiry: 1) What is the

nature and scope of risk encoded at these ‘non-coding’ loci?, and 2)

What are the target genes, and how do these alterations account

for increased risk in a disease?

At present, little is known regarding the functional mechanisms

of the common variant susceptibility loci in non-coding regions.

For one, there are many genetically correlated variants that—to

varying degrees—may account for the risk associated with each

index-SNP. It is unclear whether more than one variant carries

functional consequences relevant to the risk that was reported.

In addition, we are only beginning to understand the nature

of non-coding regions as revealed by histone modifications and

other chemical signatures on chromatin. Efforts to fill this void are

underway, notably by the ENCODE consortium [3], whose goal

it is to catalog all the major chromatin biofeatures, including

histone modifications, accessible chromatin and transcription

factor bound regions in the form of digital footprinting and

ChIP-seq for transcription factors, among others. Currently, a

mosaic of annotations for all the known histone modifications and

119 different transcription factors has been released for 147 cell

types, including an androgen-sensitive prostate adenocarcinoma

cell line isolated from lymph-node metastasis, called Lymph Node

Cancer of the Prostate (LNCaP) [4–6]. Insights into cancer biology

of the prostate have already begun to emerge from this work.

For example, risk polymorphisms for the 8q24 locus have been

extensively characterized in our lab and others [7,8].

We propose that by identifying all the variants that are in

linkage disequilibrium with GWAS SNPs and subsequently

filtering down to those present within genome-wide functional

annotations we will identify the most likely causal susceptibility

variants within regulatory elements that can be tested for their

functional significance. We previously developed the R-Biocon-

ductor package Funci–SNP} [2] which performs these operations,

including the linkage disequilibrium calculations, based on data

from the 1,000 genomes project (www.1000genomes.org [9])

automatically. With the advent of Funci–SNP} and similar tools

such as RegulomeDB [10], performing annotations of this type

becomes possible, and indeed essential to understanding the

candidate variations that may underlie risk for disease.

Post-GWAS analyses of breast cancer [11] for example

identified putative functional variants using Funci{SNP} and

genome-wide chromatin biofeature data for breast epithelia-

derived cell lines as described above, but this level of detail is

lacking for prostate cancer. In that study, we catalogued and

assessed the correlated functional variants at 72 breast cancer risk

loci and performed preliminary enrichment analysis of motifs. We

identified over 1,000 putative functional SNPs, most of which were

in putative enhancers. We provide here a similar analysis for

prostate cancer, extending the previous work and introducing

some improvements to the downstream analyses. We also present

some new ChIP-seq datasets to add to ENCODE.

Results

Classification of variants associated with prostate cancer
In order to identify variants that are in linkage disequilibrium

with 77 prostate cancer risk loci (defined as all significant GWAS,

replication study and post-GWAS identified variants, see Table 1

for references), that are also relevant to the biology of prostate

epithelia, we employed our bioinformatics tool, Funci{SNP} [2] to

integrate biofeatures with 1000 genomes data [9] (see Methods for

a detailed list of biofeatures). For the LNCaP cell line, genome-

wide data are generally available both with and without androgen

treatment. Since the androgen receptor is a driver of prostate

cancer [12], we included both conditions where possible. We also

considered protein coding exons, 5
0

and 3
0

untranslated regions

with miRcode target sequences. Importantly, we also included the

index-SNPs in our analysis.

We note that some critical datasets were not available when

we initiated our studies. For example, ChIP-seq data for the

histone modification H3K27Ac was not available for LNCaP cells.

This is a mark of active enhancers, which are extremely cell-type

specific. Although other marks, such as DNase I hypersensitivity

or H3K4me1, can reveal regions of open chromatin, they do

not identify active enhancers. Therefore, we performed ChIP-seq

for H3K27Ac in LNCaP cells, after a period of incubation in

charcoal-stripped serum (i.e. androgen depleted) followed by

exposure to vehicle control or physiological levels of the androgen

dihydrotestosterone (10 nM DHT). For LNCaP treated with vehicle

(minus DHT) we observed 57,623 peaks, with an average peak

height of 32 tags and median height of 22 tags, and a range of 9 to

212 tags. The average peak width was 2,233 bp. For LNCaP post-

androgen stimulation, we observed 60,752 peaks, with an average

peak width of 2,267 bp. Overall the relative tag density and peak

width distribution was extremely similar between the two conditions

(see Figure 1, top and middle panels). A plot of peak height vs. peak

width reveals a linear relationship in log space (Figure 1, bottom

panel). Because we wanted to limit our studies to robust enhancers,

we chose the top 25,000 peaks, which have a tag density of w29 for

use in Funci{SNP}. This cutoff marks an inflection point where the

number of tags increases geometrically over background (Figure

S1). A comparison of the top 25,000 H3K27Ac peaks detected

before and after induction with DHT revealed an 84% overlap (see

Figure S2), suggesting that only a small percentage of all H3K27Ac

peaks are responsive to hormone treatment.

We also wished to include transcription factor binding data in

our analyses. Although there were data available for ChIP-seq

of androgen receptor (AR), FOXA1 and NKX3-1, data for

TCF7L2— another transcription factor with a proposed role in

prostate- and other cancers [13]— was not available. Therefore

we performed ChIP-seq for TCF7L2 in LNCaP. We chose the top

15,000 peaks, with an average peak height of 57 tags and a range

of 23 to 229 tags and an average peak width of 432 bp. These

properties are also displayed graphically in Figure 1. TCF7L2

binding sites were also highly enriched in the center of TCF7L2

ChIP-seq peaks (Figure S3).

Using Funci{SNP}, we identified 49,305 SNPs that were cor-

related in the population in which the original index SNP was

reported within prostate epithelial chromatin biofeatures, of which

only 727 had an r2 value greater than or equal to 0.5 (Figure 2A).

The most common SNP annotations are associated with H3K27-

acetylation (385 SNPs) and the other enhancer marks H3K4-

monomethylation (231 SNPs) and LNCaP DNaseI hypersensitivity

Author Summary

In the following work we provide a complete summary
annotation of functional hypotheses relating to risk
identified by genome wide association studies of prostate
cancer. In addition, we present new genome-wide profiles
for H3K27-acetylation and TCF7L2 binding in LNCaP cells.
We also introduce the concept of a risk enhancer, and
characterize two novel androgen-sensitive enhancers
whose activity is specifically affected by prostate-cancer
risk SNPs. Our findings represent a preliminary approach to
systematic identification of causal variation underlying
cancer risk in the prostate.

Functional Annotation of Prostate Cancer Risk Loci
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Table 1. Independent risk loci.

Locus genomic position SNP Gene Ethn

1 1q32.1 rs4245739 [19] MDM4 AFR

2 2p24.1 rs13385191 [30,32] C2orf43 EUR

3 2p21 rs1465618 [28] THADA EUR

4 2p15 rs6545977 [19,28] EHBP1 AFR, EUR

5 2p15 rs721048 [77] EHBP1, OTX1 EUR

6 2p11.2 rs10187424 [33] GGCX EUR

7 2q31.1 rs12621278 [19,28] ITGA6 AFR+EUR

8 2q37.3
(cont’d)

rs2292884 [33],
rs7584330 [19]

MPLH
…

EUR
AFR+EUR

9 3p22.2 rs9311171 [78] CTDSPL EUR

10 3p12.1-2 rs17181170 [28] CHMP2B EUR

11 3p12.1-2 rs2660753 [27], rs9284813 [30,32] CHMP2B EUR

12 3p12.1-2 rs7629490 [33] CHMP2B EUR

13 3q21.3 rs10934853 [29] GATA2 EUR

14 3q23 rs6763931 [33] ZBTB38 EUR

15 3q24 rs345013 [78] PLOD2 EUR

16 3q26.2 rs10936632 [33] CLDN11, SKIL EUR

17 4q22.3 rs17021918 [19,28] PDLIM5 AFR+EUR

18 4q22.3 rs12500426 [28] PDLIM5 EUR

19 4q24 rs7679673 [19,28] TET2 AFR+EUR

20 5p15.33 rs2242652 [28] TERT EUR

21 5p15.33 rs12653946 [19,30,32] LPCAT1 AFR+EUR

22 5p12 rs2121875 [33] FGF10 EUR

23 5q14.3 rs4466137 [78] HAPLN1 EUR

24 5q23.1 rs37181 [33] COMMD10 EUR

25 6p21.1 rs1983891 [19,30,32] FOXP4 AFR+EUR

26 6p12.2 rs10498792 [78] PKHD1 EUR

27 6q22.2 rs339331 [19,30,32] RFX6 AFR+EUR

28 6q25.3 rs651164 [28,33] IGF2R EUR

29 6q25.3 rs9364554 [19,27] SLC22A3 AFR+EUR

30 7p15.3 rs12155172 [28] RPL23P8 EUR

31 7p15.2 rs10486567 [19,26] JAZF1 AFR+EUR

32 7q21.3 rs6465657 [27,28] LMTK2 AFR+EUR

33 8p21.2 rs1512268 [19,28,30,32] NKX3-1 AFR+EUR

34 8q24.21 rs12543663 [19] LOC727677, MYC AFR

35 8q24.21 rs10086908 [27] POU5F1B, MYC EUR

36 8q24.21 rs1016343 [27,33] POU5F1B, MYC EUR

37 8q24.21 rs13252298 [19,33] PCAT1, MYC AFR+EUR

38 8q24.21
(cont’d)

rs1456315 [30,32],
rs13254738 [19]

PCAT1, MYC
…

EUR
AFR

39 8q24.21
(cont’d)

rs6983561 [19], PCAT1, MYC
…

AFR
EUR

40 8q24.21 rs188140481 [34] PCAT1, MYC EUR

41 8q24.21 rs16902094 [29] PCAT1, MYC EUR

42 8q24.21 rs445114 [29,33] PCAT1, MYC EUR

43 8q24.21 rs6983267 [19,24,26,27,33] PCAT1, MYC AFR+EUR

44 8q24.21 rs7000448 [19,31] LOC727677, MYC AFR+EUR

45 8q24.21
(cont’d)
…
…

rs1447295 [24,25,29],
rs4242382 [26],
rs4242384 [27,28,33],
rs7837688 [30,32]

POU5F1B, MYC
…
…
…

EUR
…
EUR
…

46 9q31.2 rs817826 [19,79] KLF4 ASN+AFR

Functional Annotation of Prostate Cancer Risk Loci
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(268 SNPs, see Figure 2B). A complete visualisation of correlated

SNPs with r2 and all associated biofeatures are available on the

UCSC genome browser; furthermore all custom tracks may be

downloaded in bed format via the table browser therein: http://

genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser = submit&

hgS_otherUserName = hazelett&hgS_otherUserSessionName =

pca.

After identifying SNPs in primary biofeatures, we grouped

them according to putative functional classes for further analysis.

We identified 30 SNPs in putative promoter regions 21000 bp to

+100 bp relative to transcription start sites, 663 SNPs in putative

enhancer regions, 4 SNPs in microRNA target sequences within

3
0

or 5
0

UTRs, and 27 SNPs in coding exons (Figure 2C).

To directly observe the relationships of the annotations to each

SNP across the entire set, we performed unsupervised clustering on

the matrix of biofeatures and SNPs (Figure 2D). The resulting cluster

diagram neatly captures the functional categories, but also reveals

a cluster of SNPs in regions bound by multiple transcri-

ption factors. Perhaps most importantly, Figures 2C and 2D clearly

show that the majority of variation associated with risk for prostate

cancer resides within what we have defined as putative risk enhancers.

Functional annotation of exon variants
We identified 27 exon SNPs in linkage disequilibrium with

index SNPs for prostate cancer (Figure 2B & 2C). Of these SNPs,

13 encoded missense substitutions in coding exons, 14 encoded

Table 1. Cont.

Locus genomic position SNP Gene Ethn

47 9q33.2 rs1571801 [80,81] DAB2IP ASN+EUR

48 10q11.23
(cont’d)

rs10993994, [19,26,27,30,32,33]
rs3123078 [28]

NCOA4
…

AFR+EUR
EUR

49 10q26.12 rs11199874 [82] FGFR2 EUR

50 10q26.13 rs4962416 [26] CTBP2 EUR

51 11p15.5 rs7127900 [19,28] IGF2 AFR+EUR

52 11q13.2
(cont’d)

rs10896449 [19,26],
rs7931342 [27]

CCND1
…

AFR+EUR
EUR

53 11q13.2 rs12418451 [83] CCND1 EUR

54 11q13.2
(cont’d)

rs11228565 [19,29],
rs7130881 [28,33]

CCND1
…

AFR+EUR
EUR

55 12q13.12 rs731236 [84] VDR EUR

56 12q13.13 rs10875943 [33] TUBA1C EUR

57 12q13.2 rs902774 [33] KRT8 EUR

58 12q21.31 rs12827748 [84] PAWR EUR

59 13q22.1 rs9600079 [30,32] KLF5 EUR

60 13q33.2 rs1529276 [78] MIR548AS EUR

61 15q21.1 rs4775302 [82] SQRDL EUR

62 17p13.3 rs684232 [19] VPS53 AFR

63 17q21.2
(cont’d)

rs7501939 [27,28,30,32,33],
rs4430796 [26,29,85,86]

HNF1B
…

EUR
…

64 17q21.2 rs11649743 [86] HNF1B EUR

65 17q21.33 rs138213197 [34,45] HOXB13 EUR

66 17q21.33 rs11650494 [19] ZNF652 AFR

67 17q21.33 rs7210100 [87] ZNF652 EUR

68 17q25.1 rs1859962 [27,28,33,85] BC039327 EUR

69 19q13.4 rs103294 [79] LILRA3 ASN

70 19q13.11 rs8102476 [19,29] SPINT2 AFR+EUR

71 19q13.12 rs887391 [88] LOC100505495 EUR

72 19q13.32 rs2735839 [27] KLK3 EUR

73 22q13.1 rs9623117 [89] TNRC6B EUR

74 22q13.2 rs742134 [33] PACSIN2 EUR

75 22q13.2 rs5759167 [19,28] BIK AFR+EUR

76 Xp11.22
(cont’d)

rs5945572 [19,77],
rs5945619 [27], rs1327301 [28]

NUDT11
…

AFR+EUR
EUR

77 Xq12 rs5919432 [19,33] AR AFR+EUR

Independent GWAS Loci. Table of independent associations with prostate cancer. Index SNPs with r2
§0:5 are grouped together, and shown with source citations. A

locus with a significant number of correlated SNPs at r2
§0:5 for two index SNPs that don’t meet the cutoff are also considered the same locus. Also shown are the

nearby genes (Gene) and population in which the associations were reported (Ethn).
doi:10.1371/journal.pgen.1004102.t001

Functional Annotation of Prostate Cancer Risk Loci

PLOS Genetics | www.plosgenetics.org 4 January 2014 | Volume 10 | Issue 1 | e1004102



synonymous substitutions, and 0 corresponded to nonsense condons

or other types of lesions (Table 2). We conducted a preliminary

exploration of the potential effects of the 11 missense variants using

publically available software packages PROVEAN [14], SIFT [15],

Polyphen2 [16], and SNAP [17]. The results of this analysis are

summarized in Table 2. All four algorithms predicted that a single

index-SNP, the rare variant rs138213197, encoding a Glycine to

Glutamine substitution at position 84 of the homeobox transcription

factor HOXB13, has a deleterious effect. Two other missense

variants, rs2452600 (r2~0:70) and rs7690296 (r2~0:66), correlated

to index SNP rs17021918, encoded potentially damaging changes in

the PDLIM5 gene. Three of four algorithms predicted rs2452600 to

be damaging or non-neutral, and rs17021918 was only predicted to

be non-neutral by SNAP. Three missense variants in the MLPH gene

were not predicted to be deleterious, but were highly correlated to

each other (r2
w0:9) and only weakly correlated to index SNP

rs2292884 (r2&0:6), raising the possibility that together they form a

haplotype that weakens or damages protein function.

Figure 1. Tag-density profiles of ChIP-seq datasets ‘css’: H3K27Ac ChIP-seq of LNCaP grown in charcoal-stripped serum. ‘dht’: H3K27Ac ChIP-
seq of LNCaP exposed to androgen. ‘tcf7l2’: ChIP-seq with anti-TCF7L2 in LNCaP, unstimulated. Top: peak height, x{axis is log10 scaled. Middle: peak
width, x-axis is log10 scaled. Bottom: Peak height vs. width reveals strong correlation.
doi:10.1371/journal.pgen.1004102.g001

Functional Annotation of Prostate Cancer Risk Loci
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We next identified 29 5
0

and 3
0

UTR SNPs, of which 4 occur

within microRNA target element regions. We cross referenced

against highly conserved, high-scoring elements defined by miRcode

[18]. Index SNP rs4245739 was located within a miR target

sequence in the 3
0

UTR of the MDM4 gene. This SNP was pre-

viously reported in functional annotation of iCOGS [19] for prostate

cancer, esophogeal squamous cell carcinoma [20] and is a functional

variant in breast cancer [21]. The other three variants affect putative

target sequences in the HAPLN1, SLC22A3, and FOXP4 genes, and

are also of potential interest (see Table 3 for details).

Annotation of enhancers and putative functional SNPs
In order to identify putative functional variants within proposed

enhancer and promoter regions, 663 SNPs from enhancers and 30

Figure 2. Results of Funci{SNP} analysis of GWAS correlated SNPs. Index SNPs with biofeatures and correlated SNPs at r2
§0:5 are combined

and summarized in A–D. A. SNP counts by r2 value. B. SNP counts by biofeature. Some SNPs map to more than one biofeature, hence the total does
not sum to 727. C. Classification of 727 SNPs by putative functional category. D. Supervised clustering of SNPs by biofeature.
doi:10.1371/journal.pgen.1004102.g002

Functional Annotation of Prostate Cancer Risk Loci
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SNPs from promoters were queried against 87 positional weight

matrices (PWM) compiled from Factorbook [22] (see Methods).

Factorbook includes response element definition for the FOXA

family of transcription factors, TCF7L2, MYC, and GATA1 and -

3 among others. In addition we used PWMs from Homer [23] for

FOXA1, the androgen receptor (AR) and NKX3-1. We identified

a subset of 509 variants in putative enhancers and 20 variants in

promoter regions that disrupt response elements (see UCSC

genome-browser http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_

doOtherUser = submit&hgS_otherUserName = hazelett&hgS_

otherUserSessionName = pca). For both promoters and enhanc-

ers we also identified a subset of disruptive variants that target

response elements for factors of special interest to prostate

cancer, namely AR, FOXA1, NKX3-1, TCF7L2, MYC,

GATA1 and GATA3. There were 6 SNPs in promoters

and 177 in enhancers for this short list of PCa-specific factors.

These findings for PCa response elements are summarized in

Figure 3.

There are many densely situated independent risk loci in the

8q24.21 region centromeric of the MYC oncogene [19,24–34],

which therefore warranted additional consideration. Figure 4

displays the region zoomed in to *1:3 Mb. Because 5C chro-

matin conformation capture data are available for the 8q24 region

in LNCaP through ENCODE [3], we examined the relationship

of these data to our risk enhancers. A circos plot showing

interacting regions with the highest tag densities (see histogram

inset with dotted cutoff in Figure 4) reveals extensive overlap

between putative risk enhancers and sites of intrachromasomal

interaction. Several SNPs effecting FOXA1 and ETS1 transcrip-

tion factor binding sites in the vicinity of the POU5F1B locus

are located within putative enhancer regions that interact in a

complex manner with each other, with the POU5F1B coding

region, and with both the MYC and FAM84B genes. Another

locus, the PCAT1 non-coding gene, has several SNPs affecting

MYC, ETS1 and TCF7L2 candidate binding sites that potentially

interact with the MYC gene locus (Figure 4). Another putative

enhancer situated between PCAT1 and CCAT1 non-coding

RNA genes interacts with the enhancer telomeric of POU5F1B

pseudogene and also with MYC. It is striking from this view that

7 of the 16 index SNPs (rs7837688, rs1447295, rs445114,

rs16902094, rs188140481, rs10086908, rs12543663) do not

overlap any biofeatures or chromatin 5C capture data, whereas

the correlated enhancer SNPs with response element disruptions

do. These variants cluster within 5C-interacting regions despite

having been filtered with LNCaP biofeatures, which are distrib-

uted evenly throughout the region (see for example DNase I and

FOXA1 tracks in Figure 4). These data are consistent with the

hypothesis that some GWAS hits have no direct effect, but instead

are correlated to nearby functional variants.

Definition of risk loci
After the Funci{SNP} analysis, many index SNPs had redundant

associations with correlated SNPs. We examined each locus

carefully to determine the number of unique and independent risk

loci. Starting from a list of 91 SNPs as input to Funci{SNP}, we

determined that there were 77 loci that were independent. We

tabulated the independent risk loci in sequential order (Table 1) in

the genome.

In 25 of the 77 risk loci, we also were able to examine the LD

structure for index SNPs that have been reported in two ethnic

groups. For these SNPs, we asked whether some SNPs had higher

correlation with the index SNP in both GWAS-tested populations

(see Table 1 for population). For example rs1512268 near the

NKX3-1 gene, which reached genome-wide significance for both

Table 2. Missense variants in correlated SNPs.

snp gene AA PROVEAN SIFT Polyphen2 SNAP

rs11765552 LMTK2 L780M Possibly damaging Non-neutral

rs2274911 GPCR6A P91S Deleterious Non-neutral

rs6998061 POU5F1B G176E Deleterious

rs5995794 FAM83F R436G Damaging Non-neutral

rs383369 LILRB2 H20R Deleterious

rs386056 LILRB2 V235M

rs3751107 MLPH G172D

rs3751109 MLPH L153P

rs11883500 MLPH T289I

rs2292884 MLPH H347R

rs2452600 PDLIM5 S136F Damaging Possibly damaging Non-neutral

rs7690206 PDLIM5 T410A Non-neutral

rs138213197 HOXB13 G84E Deleterious Damaging Probably damaging Non-neutral

Non-synonymous substitutions. Table of Funci{SNP}-identified single nucleotide missense variants in protein coding exons, showing the results of variant effect
prediction software.
doi:10.1371/journal.pgen.1004102.t002

Table 3. miR-target variants.

SNP r2 miR recognition seq location gene

rs3734092 0.95 miR-210 59UTR HAPLN1

rs1810126 0.59 miR-124/506 39UTR SLC22A3

rs4245739 index miR-191 39UTR MDM4

rs6935737 0.91 miR-183 59UTR FOXP4

SNPs in miR target sequences. Table of SNPs affecting putative miR target
sequences in untranslated coding regions, and the potentially affected target
genes.
doi:10.1371/journal.pgen.1004102.t003

Functional Annotation of Prostate Cancer Risk Loci

PLOS Genetics | www.plosgenetics.org 7 January 2014 | Volume 10 | Issue 1 | e1004102



African and European populations (see Table 1 for references),

was correlated to 15 other SNPs at r2
§0:5, but a single SNP,

rs1606303 was highly correlated at r2
§0:9 in populations

with both African and European ancestry (Figure 5). Thus, we

have also identified subsets of SNPs in the supplementary materials

for rs12621278 (Figure S4), rs7584330 (Figure S5), rs17021918

(Figure S6), rs7679673 (Figure S7), rs12653946 (Figure S8),

rs1983891 (Figure S9), rs339331 (Figure S10), rs9364554

(Figure S11), rs10486567 (Figure S12), rs6983267 (Figure S13),

rs7127900 (Figure S14), rs10896449 (Figure S15), rs11228565

(Figure S16) and rs8102476 (Figure S17) present in different ethnic

groups.

Nine other loci, at rs2710647, rs6465657, rs13252298,

rs7000448, rs817826, rs1571801, rs10993994, rs5759167 and

rs5919432 did not have any SNPs at r2
§0:5 in both populations.

It is possible that the likeliest functional SNP in these cases is

the index SNP. One remaining SNP, rs5945572 in the NUDT11

region, was identified in African and European populations

Figure 3. Genome-wide summary of functional annotations. Detailed map of the locations and annotations associated with risk for prostate
cancer throughout the human genome. Each ring shows, successive from center, the names and locations of proximal genes, the tag- or index-SNPs,
and the correlated (r2

§0:5) SNPs. The links in the center highlight known biochemical interactors (e.g. receptor-ligand pairs). Index and correlated
SNPs are color-coded by putative functional category (see Legend, center). Potentially disrupted response elements are also indicated for the
correlated SNPs. The outermost ring shows the numbered chromosomes to scale with cytological banding patterns. The genome is displayed
clockwise from top, with p displayed as the left arm of each chromosome and q as the right arm.
doi:10.1371/journal.pgen.1004102.g003
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(see Table 1 for refs.), and also correlated to the same three SNPs

as two other index SNPs, rs1327301 and rs5945619. However,

rs1327301 and rs5945619, which were identified in Europeans (see

Table 1 for refs.) surprisingly were not correlated to rs5945572 in

Africans. Two of the three correlated SNPs encode disruptions of

MYC (rs28641581) and AR (rs4907792, marked for functional

followup, see below) binding sites in putative enhancers. There-

fore, we hypothesize that all three index SNPs in this region are

correlated to these other functional SNPs as the primary source of

risk, and that together they constitute a single independent risk

locus (#76 in Table 1).

Motif enrichment
We next asked whether the 663 enhancer SNPs were enriched

for disruption in any of the 87 PWMs chosen from Factorbook and

Homer. In other words, we wanted to know whether disruption of

any specific transcription factor response elements was associated

with GWAS SNPs at greater than expected frequency. We

Figure 4. Annotation of the 8q24.21 region. The intergenic region between FAM84B and MYC is shown with biofeatures indicated as colored
hashes in the inside tracks. Index SNPs are black, correlated enhancer snps are in green according to the convention in Figure 3. Chromatin capture
5C data are indicated as links (light blue) in the center, showing interactions between regions. Histogram (inset) indicates the distribution of the
dataset, showing the tag density on the x-axis vs. number of regions. The dotted line indicates min. tag-density cutoff for the display.
doi:10.1371/journal.pgen.1004102.g004

Functional Annotation of Prostate Cancer Risk Loci

PLOS Genetics | www.plosgenetics.org 9 January 2014 | Volume 10 | Issue 1 | e1004102



approached this question in two ways. First, we asked whether

response element disruptions were enriched against a background

of randomly selected SNPs. In order to ensure that we were

drawing inference from the background distribution we drew

samples (K~200) of random SNPs (N~663), counted the number

of motif disruptions for each of the 87 factors, and bootstrapped a

95% confidence interval on each PWM. After applying the

Bonferroni correction for multiple hypotheses, no factors remained

significant (Figure 6, x{axis).

Second, we hypothesized that LNCaP cell-specific enhancer

regions might differ from random SNPs in the relative abundance

of some motifs, and therefore might be a more appropriate

background. To test this, we repeated the procedure of random

selection of SNPs, this time filtering by the same genomic regions

used in our Funci{SNP} analysis to define putative enhancers.

Figure 6 shows the relationship of the estimates to random

background vs. random draws from LNCaP biofeatures. To make

the results comparable between different motifs, we expressed the

observed motif disruptions as a z statistic. This statistic is a ratio

of the difference in counts of disrupted motifs from the mean to

the standard deviation (see Methods, eq. 2). None of the factors

of special interest in prostate cancer, i.e. MYC, FOXA, AR,

Figure 5. rs1512268 in two populations. The rs1512268 risk locus is *10 kb downstream of the NKX3-1 gene. An r2{r2{plot reveals SNPs that
are correlated to the index SNP in both populations for which it has been identified as carrying risk. One SNP that is highly correlated in populations
of both African and European ancestry is highlighted in red.
doi:10.1371/journal.pgen.1004102.g005
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GATA1 or 3, ETS1, TCF7L2, and NKX3-1, were enriched

compared to LNCaP background. The regression line (in blue)

clearly indicated significant deviation from the line of unity,

suggesting greater similarity of the GWAS correlated SNPs to

random LNCaP biofeature SNPs compared to background,

consistent with our hypothesis. A Shapiro-Wilk test for nor-

mality revealed that the

z scores from LNCaP and random background are normally

distributed (p~:68 and p~:70 respectively). Hence, the

observed deviations were largely within the range of what we

expected given a random sample of SNPs in LNCaP-specific

biofeatures.

Characterization of putative target genes
Prostate cancer is driven by androgen receptor signaling [12],

and is likely also influenced by basic cellular processes that

contribute to other cancers [35,36]. Therefore there are two

classes of potential targets. The first is the nearest gene(s) to the risk

lesion, the exact location of which is somewhat uncertain but lies

in a region of probability with a local maximum at the index-SNP.

Figure 6. Transcription Factor Response Elements are not enriched in PCa GWAS SNPs. z{scores express number of observed response
element disruptions as a proportion relative to the standard deviation from the background distribution. The regression line is shown in blue with
95% confidence interval. Transcription factors of interest are highlighted with blue text. The inner box (dotted line) demarcates the 95% C.I. of a
bootstrapped distribution for each PWM. A bonferroni box is outside the bounds of the graphic.
doi:10.1371/journal.pgen.1004102.g006
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In this category there are known oncogenes and tumor suppres-

sors. The second class, which does not exclude the first, comprises

genes that are known targets of regulation by the androgen

receptor.

We first took an inventory of nearby genes to the 77 risk loci (see

Table 1) and analyzed gene ontology enrichment using the

annotation clustering tool at the DAVID bioinformatics site [37].

The highest enrichment was for transcription factors (enrichment

score 4.08, Figure 7A). Overall, 20 DNA-binding transcription

factors are directly associated with 35 out of 77 independent

prostate cancer GWAS loci: HNF1B, AR, CTBP2, RFX6, OTX1,

HOXB13, PAWR, FOXP4, ZNF652, ZBTB38, VDR, NCOA4,

JAZF1, NKX3-1, VGLL3, MDM4, MYC, KLF4, KLF5 and

HDAC7. By inspection, we also identified at least 10 additional

transcription factors within 500 kb of 9 other GWAS loci, that

are also reasonable candidates for contributing to prostate cancer

risk: SOX13, ZFP36L2, ATOH8, DLX1 & DLX2 (same locus),

GATA2, SKIL, SP8, ASCL2, and DPF1. Enrichment of broader

categories of genes including transcriptional regulation (enrich-

ment score 3.44), negative regulation of transcription (enrichment

score 2.52), transcription and RNA metabolism (enrichment score

2.06), nuclear compartment annotations (enrichment score 2.00),

and zinc-finger proteins (enrichment score 1.46) was observed.

We also detected enrichment for genes involved in male gonad

and sex differentiation (enrichment score 1.53, Figure 7B) and

gland development and branching morphogenesis clusters (en-

richment score 1.40). The DAVID website suggests 1.3 as an

approximation for an equivalent of the group non-log 0.05 p value

cutoff [38]. These findings suggest that genes involved in the

regulation of transcription and the differentiation of male gonad

structures may be overrepresented in genomic regions with

heightened risk for prostate cancer.

In our second analysis we selected all nearby androgen

regulated genes within 500 kb of putative functional variants.

There were 36 androgen regulated genes near 18 independent risk

loci, including several from the list of transcription factors

discussed in the previous section: MYC, GATA2, NCOA4,

ZBTB38, ZNF652, NKX3-1. Other non-transcription factor

genes were notable for being both androgen regulated and among

the nearest in proximity to the GWAS hit, including KLK3

(otherwise known as prostate serum antigen [PSA]), IGF2R,

CHMP2B, BMPR1B, and the cell cycle reglator Cyclin D1

(CCND1). Table 4 lists the genes and their relative expression in

androgen-stimulated LNCaP cells.

GWAS correlated SNPs encoding disruptive variations in
AR, FOXA1, and NKX3-1 response elements alter
enhancer activity

To test the hypothesis that one or more of our putative

functional polymorphisms disrupts a true transcription factor

response element, we evaluated a sample of the enhancers in an

in vitro heterologous enhancer-reporter luciferase assay in

LNCaP cells. In the absence of good prior information, we could

not predict the magnitude of the effect of a variant at a single

nucleotide in a strong consensus binding site on enhancer activity.

In order to obtain reliable inference on basal enhancer activity

and response to androgen for possibly very slight changes, we

eliminated other sources of variation such as plasmid preparation,

batch and transfection effects. Thus, we sampled evenly over this

parameter space (n~48) and used a hierarchical bayesian model

to estimate the true enhancer activity and androgen (DHT)

response, as well as the effect of SNP alleles on both (see Methods,

equation 3).

The first enhancer containing rs113057513, which encodes

a consensus androgen response element (Figure 8A) near the

androgen receptor gene, showed slightly elevated luciferase

activity of 17.9% (pv5|10{5) for the G allele after DHT treat-

ment (Figure 8D). However, the difference is not biologically

relevant and there was no basal activity for this enhancer relative

to the negative controls.

In contrast to the enhancer at the AR gene locus, the enhancers

near NUDT11 (Figure 8B) and in an intron of the JAZF1 trans-

criptional repressor gene (Figure 8C) showed a strong induction of

6:7- and 8:2-fold, respectively. Even more strikingly, both SNPs had

highly significant allele specific differences in DHT-induction.

Of the three enhancers that we tested, which all contain SNPs

affecting a putative ARE, the enhancer containing rs10486567 in

JAZF1 showed 10-fold elevated basal activity relative to controls

(Figure 8C). All three enhancers showed significantly increased

activity in the presence of DHT (Figure 8D).

The NUDT11-enhancer at rs4907792 has either a T or a C

allele. The C allele creates a reasonably good androgen response

element by the middle C of the ACA motif, whereas the T disrupts

it (see sequence logos, Figure 8B). In our luciferase assay, we did

Figure 7. Enrichment of Gene Ontology. Representative ontology clusters from DAVID [37] enrichment analysis of nearby genes given in Table 1.
Green boxes indicate membership of the genes (as columns) with the annotations (as rows). A. Transcription factor cluster. B. Male gonad
development cluster.
doi:10.1371/journal.pgen.1004102.g007
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not detect a difference between alleles in basal activity, however

the T allele is weaker by an estimated 1.8-fold relative to the C

allele after induction with DHT. This 80% difference in the

activity of the two alleles suggests that rs4907792 is critically

important to the androgen sensitivity of this enhancer, and that the

C allele of rs4907702 has more activity than the T allele.

For the JAZF1 enhancer, we detected a very significant difference

of 1.39-fold (95% credible range of differences 1.21–1.61) in basal

activity between the G and the A allele (Figure 8C, salmon bars). This

particular locus is bound by the tumor suppressor NKX3-1 and the

oncogene FOXA1 in LNCaP cells (Figure 8C, gbrowse view) and the

SNP itself affects a critical residue in the response elements of both

factors (see logos in Figure 8C). Thus, one version of rs10486567,

encoding a G, creates a strong consensus NKX3-1 response element

at this position. The alternate version of the SNP, encoding an A,

destroys the NKX3-1 site in favor of an equally strong FOXA1 site.

Androgen Receptor also binds to the locus (Figure 8C) in LNCaP

cells, and it is flanked by H3K4-monomethyl and H3K27-

acetylation signals, providing additional evidence for this locus as

a true enhancer. Consistent with a role for androgen signaling at this

enhancer, we observed a 6.7-fold induction for the A allele after

DHT treatment. We also detected significant allele-specific differ-

ences in DHT induction of 1.28-fold between A and G (95%

credible range of differences 1.09–1.47), with the A allele being the

strongest. Thus, there is an estimated mean difference of 28% in the

magnitude of the androgen effect between the A and G alleles of

rs10486567.

Therefore, the risk associated with the C allele of rs4907792 creates

a stronger androgen response element and increased NUDT11 ex-

pression by eQTL analysis [39]. Interestingly, the risk associated with

the G allele of rs10486567 in the JAZF1 intron creates an NKX3-1

binding site while destroying a FOXA1 binding site in line with the

DHT-dependent decrease in enhancer activity; we would hypothesize

that JAZF1 is likely a tumor suppressor influenced by this enhancer.

Discussion

Funci{SNP}
We have presented here the most comprehensive account and

annotation of GWAS risk loci for prostate cancer that have been

Table 4. Androgen-regulated genes.

index SNP Gene 100 nM DHT [63] 10 nM DHT [64] 1 nM 1881 [65]

rs10187424 ST3GAL5 25.10

rs7584330, rs2292884 MLPH
LRRFIP1
RAMP1

+6.19
+1.49
21.52

rs17181170, rs7629490
rs9284813, rs2660753

CHMP2B +2.49

rs10934853 GATA2
SEC61A1

23.94
+1.41

rs17021918, rs12500426 BMPR1B
PDLIM5
SMARCAD1

+1.85
+1.97
+1.68

+2.07

rs9364554 IGF2R +1.35

rs6465657 ASNS
BAIAP2L1
BRI3
BHLHA15

+2.83
+1.39
21.90

24.72

rs1512268 NKX3-1
ENTPD4

+5.74
+1.67

+10.9 +5.56

8q24 region MYC 24.53

rs12418451, rs11228565,
rs10896449, rs7931342, rs7130881

CCND1 22.20

rs4430796, rs7501939, rs11649743 TBC1D3
DDX52

21.73
+1.49

rs11650494, rs7210100 TTLL6
ATP5G1
PHB
CALCOCO2
ZNF652

25.66
23.89
21.64
+1.41
+1.56 +1.98

rs2735839 KLK2
KLK3
KLK4
KLKP1
C19orf48
KLK15
VSIG10L

+7.83
+3.40
+1.47
+2.13
+1.60
24.55
23.20

+134
+53.4
+12.3
+9.62
+4.88

+18.8
+6.94

+2.77

rs1327301, rs5945572, rs5945619 MAGED1 21.53

Table of Index SNPs with AR regulated genes. Genes within 1 Mb of functional SNPs. Genes are differentially expressed after exposure of LNCaP to androgen (see
treatment in column header). Data are included from three different RNA-seq studies. Numbers represent fold change post-treatment. Genes identified by more than
one study are indicated in bold typeface.
doi:10.1371/journal.pgen.1004102.t004
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reported to date. We believe that this has value not only as a

framework upon which to test new hypotheses, but to stimulate

other bioinformatics efforts going forward. In the following

sections we will discuss the implications of our findings with

respect to the mechanisms of disease risk and the biology of human

enhancers in such regions. Finally, we will explore some possible

approaches for discovery of true functional SNPs by experimental

means, including this work.

One of our primary motivations for using Funci{SNP} is that it

restricts the number of correlated SNPs to those with biofeatures

in the relevant cell type. We have chosen biofeatures associated

with coding exons, microRNA regulatory targets, and most

importantly, enhancers. Some loci may confer risk by alternative

mechanisms, such as ncRNA, but as these are not well understood

at this time, we think it best to postpone that analysis until it

becomes practical. Furthermore, the vast majority of GWAS

variants and their correlates lie well outside the regions where

primary sequence features of that type (i.e. exon annotations) are

present, hence we believe that many important risk variants will be

identified within enhancer regions.

There are at least two other types of potential regulatory

variation that are difficult to capture with this type of analysis.

One is alterations to the primary sequence that, by mechanisms

which have yet to be elucidated, alter the pattern of nucleosome

spacing or histone modification. It is known that some sequences

contribute to nucleosome positioning in chromatin [40–42]. A

second mechanism that we have not explored in our annotation is

the effect of such polymorphisms on DNA methylation at CpG

sites. Such polymorphisms may contribute to variation in gene

expression levels [43].

Another issue is that many identified GWAS associations consist

of common variants with only slightly elevated risk (odds ratios in

the range of 1.02 to 1.8 (see Figure S18). We anticipate that such

small magnitude of risk is associated with very small changes in the

regulation of certain key genes. Since many of the genes associated

with risk loci are key regulators of development and cellular

biology (e.g. MYC), such disruptions are necessarily tissue specific

and mild so as to confer slightly elevated risk over a lifetime, and

perhaps with cumulative effects or environmental interaction.

So far the vast majority of GWAS risk that has been reported

does not affect protein coding regions. Indeed, as much as 77% of

GWAS variation is associated with DNAse I hypersensitivity sites

[44]. Our findings are consistent with this: 663 of 727 SNPs are

located in enhancers. Moreover, 509 of these SNPs potentially

disrupt known transcription factor response elements, vs. only 13

SNPs encoding putative missense mutations in proteins.

Our analysis of the missense variations in our correlated and

index SNPs suggests that it is possible that a few of them encode

damaging mutations, but this was by no means the unanimous

conclusion from the various algorithms we tried. The only clearly

Figure 8. Allelic effects of prostate cancer-correlated SNPs in enhancer-luciferase assays. A,B,C: alignment of the genomic sequence
surrounding the SNP with transcription factor LOGO, highlighting the disruption. Red box indicates the risk allele. Features of interest in the region
are highlighted, including the biofeatures from Funci{SNP} analysis. D: enhancer activity in the presence or absence of DHT treatment with 95% C.I. for
each allele of SNP and each enhancer (see x{axis labels).
doi:10.1371/journal.pgen.1004102.g008
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damaging variant was rs138213197, which encodes a change from

Glycine to Glutamate in the HOXB13 gene, and was previously

reported to be associated with a high risk of prostate cancer

[45]. This result was also recently confirmed in a GWAS [46].

Expression of HOXB13 is critical for mammalian prostate

development [47], and likely involved in carcinogenesis of the

prostate as a tumor suppressor [48,49]. The allele frequency of this

variant is very low (0:119%), possibly suggesting lower fitness in

utero. Furthermore the risk allele has an odds ratio of 4.42 [46] and

individual carriers are likely to contract prostate cancer at an

earlier age [45]. Nonetheless, it remains possible that even milder

variants in one of the other proteins that we have catalogued in

Table 2 also contribute to risk. It will be necessary to do follow-up

allele replacement experiments either in cell lines or in other

model systems, e.g. mouse to determine the contribution to cellular

or disease phenotype, if any.

In order to zero in on which SNPs are likely to be functional

and causal, we need to know which of the putative enhancer

regions are most likely to be true enhancers. This information will

come from a variety of sources including computational models

using ENCODE data. In addition, chromatin conformation

capture experiments that elucidate the intrachromosomal looping,

which brings transcription factors into association with the PolII

complex at promoters and thereby promotes gene transcription

will be vital to this effort. ENCODE has provided some limited 5C

chromatin interaction data for the MYC region, which we have

superimposed on our Funci{SNP} results in Figure 4. These data

show a clear relationship between the Funci{SNP} results and

regions of chromatin that interact with both MYC and other genes

in the region. Despite the fact that chromatin biofeatures are

scattered evenly throughout the region, the correlated SNPs

appear to fall only within these special regions where intramolec-

ular chromatin interactions are apparent. It is also notable that the

specialist transcription factors AR and NKX3-1 are restricted to

these regions. One of the most striking examples of the power of

the Funci{SNP} approach is the potentially significant information

obtained for the rs188140481 index SNP, which as we have

previously pointed out does not coincide with LNCaP biofeatures

[50]. It resides *90 kb distant from one highly correlated SNP,

rs183373024, that encodes a lesion in a strong consensus FOXA1

binding motif. Rs183373024 also resides in DNAse I and FOXA1

ChIP-seq peaks [50], as well as highly significant 5C interaction

with the MYC locus (Figure 4).

Yet another clue about likely causality may be supplied by our

observation that at loci where GWAS identified the same suscepti-

bility in two or more populations, there are a subset of SNPs with

greater correlation to the index in both populations. Indeed, it has

been previously reported that disease associations that fail to repli-

cate between European and East Asian populations map to regions

where LD structure differs significantly [51]. Thus, the underlying

LD structure has potential to inform the search for functional SNPs.

Because of the importance of this point (illustrated in Figure 5), we

included plots, annotated with multiethnic-significant corrSNPs, of

LD structure for each region where risk was identified in more than

one ethnic group in the supplementary materials. These plots should

serve as a resource for followup studies being conducted on each

individual region. It makes sense in our view to prioritize these SNPs

over others when running empirical tests for functionality. This

finding also highlights the intrinsic value of identifying the same

associations in more than one ethnic group.

On enrichment of targets
A natural question about the prostate cancer GWA studies is

whether they point to specific mechanisms of risk, and whether

they shed any light on the mechanisms of development of prostate

cancer or cancer generally. We decided to look at the GWAS

data through the lens of human genetics and to treat the set of

observations the way one might approach a genetic screen in a

model organism.

Since a significant fraction of the risk occurs within enhancer

regions, it is a reasonable hypothesis that variations in transcrip-

tion factor response elements are responsible for the majority of

the functionality associated with such risk. Furthermore, if there

are one or more factors whose regulatory activity in the risk

regions is more important than the others, we might be able to

detect enrichment in its binding site disruptions. Key to our

analysis is the focus on significant disruptions, i.e. functional SNPs,

and exclusion of SNPs that merely fall within likely binding sites.

We did not find any strong evidence for enrichment of any motifs,

including MYC.

An association was reported for GWAS loci LD-blocks and

genome-wide androgen receptor bound regions [52]. Of course,

such associations imply but do not necessitate direct involvement

of the androgen receptor per se. We have attempted to address the

association specifically with AR by selecting variants with response

element disruptions. Although we did not see enrichment, we

reported two SNPs that exhibit clear effects on androgen sensitive

enhancer activity. However only one of the SNPs disrupts an

androgen receptor response element directly. One explanation to

reconcile our lack of enrichment with the previous study is that

GWAS loci are indeed enriched in androgen sensitive enhancers

(i.e. androgen bound), but the causal variants aren’t biased toward

disruption of a particular factor. Thus, any factor that disrupts

the activity of a particular androgen-sensitive enhancer might be

suspect. Biologically this makes some sense, since we expect the

target gene to be more important than components of the

regulatory network. It has long been known that transcription

factor motifs cluster in regulatory regions [53–55], and it was

reported recently that transcription factors cluster tightly in DNase

accessible regions in a cohesin-dependent fashion [56]. This

arrangement of transcription factors on enhancers in vivo is

consistent with this latter observation. Finally, we note that even

enrichment for androgen-bound mechanisms does not preclude a

subset of loci having androgen-independent risk.

It is worth mentioning the reasons we did not see enrichment and

implications of this for the risk mechanism. A trivial explanation for

lack of enrichment is insufficient sample size (N~663). Typical

disruptions for a given PWM fall somewhere in the range of 0 to

*30 for this sample size, with a median of 6. However, a more

likely scenario is that the signal is lost in the noise. If one or two

SNPs carries the majority of risk (as in Figure 9A), then Funci{SNP}

identifies these SNPs plus a handful of false positives. We would

more likely detect true enrichment if we restricted our analysis to

the set of true causal risk SNPs. On the other hand, it is possible that

clouds of functional variants in correlation with the index (as in

Figure 9B) carry the risk. Indeed, conserved clusters of individual

transcription factor motifs are found near target genes [57]. In that

case, we might have detected enrichment more readily in our

correlated set even if we are capturing only some of the causal

variants. Another possibility that has been proposed is that the

index-SNP is loosely correlated with multiple rare, high-effect

variants (the synthetic hypothesis) [58,59], and our analysis would

be insensitive to such a mechanism.

Which mechanism is most consistent with the aggregate of

PCa GWAS data? We identified several regions with a large

number of associated variants, for example the variants in the

8q24 region and rs7584330 (see also Figure S5). In contrast to

this we also identified many examples with no variants (beside
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the index-SNP), including rs721048, rs1287748, rs1529276,

rs4775302, rs138213197, rs11650494 and rs103294 among

others. The remainder fall somewhere between these extremes.

Thus, a careful review of the 77 loci suggests that a mixture of

mechanisms are in play, and this alone may account for the lack of

enrichment.

It is also worth considering possible underlying causes of risk.

We looked at target enrichment, and found that transcription

factors are enriched in the vicinity of prostate cancer risk regions.

This suggests that risk is heavily influenced by perturbations to

transcriptional networks. We also uncovered evidence for enrich-

ment of factors involved in the development of male gonad and

glandular structures near GWAS risk loci, all consistent with the

biology of the tissue of origin for this cancer. Thus it appears that

dysregulation of these genes may contribute to risk for disease.

The simplest model for risk effectors is that a causal risk SNP(s)

affect the tissue-specific expression of a single key effector gene

(as in Figure 9C). There is some recent evidence from GWAS in

hypertension that multiple genes can be targeted [60] consistent

with the model in Figure 9D in which a single GWAS hit affects

multiple genes. Again, we see examples of loci that appear

consistent with either model (multiple- or single-hit risk), and it will

be intriguing in the coming years to uncover the true functional

SNPs and their effector genes.

Mechanisms for the effect of single nucleotide
substitutions on enhancer activity

We have characterized two SNPs, rs4907792 and rs10486567,

with highly significant effects in a heterologous reporter assay.

These SNPs affect response elements of factors widely thought to

be drivers in the progression of prostate cancer. It is interesting to

compare and contrast the different effects we observed for the SNPs.

Rs4907792, which is located in the enhancer near NUDT11,

directly changes a computationally identified AR response

element. We observed little basal activity for this enhancer, but

a 7.8-fold activation in response to DHT. We detected an 80%

difference in the level of activation between the two alternate

versions of the SNP, consistent with our hypothesis that the SNP

itself affects a critical residue in a true androgen receptor response

element.

The SNP at rs4907792 is in linkage disequilibrium with index

SNPs rs5945572 (r2~0:95) and rs1327301 (r2~0:91), and also

with index SNP rs5945619 (r2~0:91), which is an eQTL with the

NUDT11 gene [39]. The ‘C’ allele of rs4907792, which resulted

in increased expression of reporter, correlates with the risk ‘C’

allele of rs5945619 (‘G’ in [39], referencing the bottom strand)

which is associated with higher expression of NUDT11. Thus,

rs4907792 is potentially the cause of slightly elevated expression

of NUDT11. The eQTLs do not measure androgen sensitivity

directly, and thus potentially underestimate the importance of

this relationship.

In contrast, the JAZF1 enhancer that contains the index

SNP rs10486567, surprisingly affects alternately good NKX3-1 or

FOXA1 binding sites (see sequence logos in Figure 8C). For this

enhancer we detected significant basal activity of 11 times that of

the control enhancers, and also 6.7-fold activation in response to

DHT. We detected an allele-specific difference in this enhancer of

28%, though significantly smaller than the NUDT11 enhancer.

Figure 9. Models for association of risk with effector genes. Red dots indicate the true causal variant position in the genome, as opposed to
variants that may be merely correlated with such functional variants (green dots). In panel I. we consider functionality of such variation within a locus.
Causal association with risk for disease may be the result of a single variant (A) or multiple correlated variants (B) disrupting regulatory elements in
enhancers (white box). In panel II we consider the effector genes of these causal variants. Arrows show regulatory interaction between enhancer and
promoter as revealed by chromatin conformation capture experiments. Risk may arise from a damaging hit to a regulatory region that affects the
expression of a single key oncogene or tumor suppressor (blue box) (C) or several effector genes that target a disease process or pathway (D).
doi:10.1371/journal.pgen.1004102.g009
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These observations are consistent with rs10486567 having a

direct effect on the basal transcription of the JAZF1 enhancer by

altering the stoichiometric balance between FoxA1 binding and

NKX3-1 binding, and an indirect but biologically relevant effect

on androgen sensitivity through the androgen receptor, whose

binding is promoted by FOXA1 [61].

The JAZF1 enhancer is situated in intron 3 of JAZF1, making

JAZF1 the likeliest target. Consistent with our hypothesis that

the index SNP rs10486567 (OR~1:12) is the most significant

functional variant, fine-mapping of the JAZF1 locus suggests that

this index SNP remains the most significant association in the

region [62]. JAZF1 encodes a transcriptional repressor, but its

expression is not regulated by androgens, at least not in LNCaP

[63–65]. It is notable however that LNCaP is homozygous for

the risk-allele ‘G’, which we found to be 39% less active and 28%

less responsive to androgen. Thus, the negative result in androgen

sensitive expression profiling may reflect reduced contribution

of this enhancer within the regulatory milieu of LNCaP cells.

Intriguingly, endometrial stromal sarcomas frequently involve

rearrangements of the JAZF1 locus [66,67]. JAZF1 may encode a

tumor suppressor since loss of expression is associated with

neoplastic development in multiple tumor types involving these

translocations [66], though the mechanism of protective activity is

unknown.

There are also two other nearby androgen regulated genes at

the JAZF1 locus, HIBADH and TAX1BP1. HIBADH encodes a

mitochondrial enzyme, and is negatively regulated by androgen

[63]. However, it is not associated with prostate development

or cancer. TAX1BP1 is a likely essential inhibitor of apoptosis

pathways mediated by NF-kB and JNK signaling [68]. Since the

simplest hypothesis would involve overexpression of this gene, it is

difficult to reconcile the risk allele leading to loss of TAX1BP1.

JAZF1 and TAX1BP1 abut at their 3
0

ends, so another possibility

is that decreased transcription of the JAZF1 locus alters the rate of

transcription or termination from TAX1BP1, thus increasing its

expression and indirectly promoting the anti-apoptotic pathway.

Conclusion

Our data and subsequent analyses paint a picture of prostate

cancer risk loci in which the majority of variants overlap likely

enhancer regions. But we also find a high degree of heterogeneity

in the arrangement of these loci and the number and types of

functional SNPs associated with them. We provided a complete

summary of the functional variants associated with GWAS risk in

prostate cancer, and analyzed the putative causal variants and

effector genes with respect to biological enrichment. In light of

these various observations, we explored the implications for

mechanisms of risk, and found that our data are consistent

with GWAS risk loci encoding one or more damaging variants in

stage- and tissue-specific enhancers. As a preliminary step toward

characterizing these variants, we cloned 3 enhancers and tested

them in an enhancer-luciferase assay with different versions of

the risk-associated SNPs. Two of the enhancers exhibited

androgen-responsiveness, and also exhibited allele-specific differ-

ences. Therefore, it will be interesting to see whether some of

the *200 enhancers we have characterized are tissue- or stage-

specific, which genes are modulated by their activity, and whether

those genes in turn have an effect on cellular phenotype. Going

forward, it will be necessary to characterize the effect of all the

risk elements and the correlated variants on gene regulation in

LNCaP. It will also be instructive to perform chromatin confor-

mation capture experiments, to further characterize and verify

the interaction of these enhancers with their target genes. As a

practical concern, we have identified a seemingly large number

of putative functional variants in need of testing (509 SNPs in

enhancers and 20 SNPs in promoters). Once the enhancers have

been tested for biological activity in vivo using knockout by TALen

or CRISPR, the number of variants will be further reduced. These

variants should then be prioritized by r2, including multi-ethnic

comparisons where possible, then by response element (e.g. an AR

binding sitewGFI1). This work will pay dividends not only for

understanding the etiology of prostate cancer and similar diseases,

but promises to greatly expand our understanding of the biology of

non-coding sequences in the genome.

Materials and Methods

Genome-wide ChIP-seq
LNCaP cells were cultured as described previously [7]. For

H3K27Ac experiments they were first grown with charcoal-

stripped serum and harvested when 80% confluent. LNCaP were

stimulated for 4 hours either with 10 nM DHT or ethanol vehicle

control before collection. LNCaP for TCF7L2 ChIP-seq was

grown in RPMI 1640 supplemented with 5% FBS (not charcoal-

stripped) and collected when 80–90% confluent. Antibodies used

for ChIP-seq were: TCF7L2 (Cell Signaling Technology, Danvers,

MA, USA; C48H11 #2569, lot2), H3K27Ac (Active Motif,

Carlsbad, CA, USA; #39133, Lot#213110044). For the TCF7L2

ChIP-seq assay, 835 mg of chromatin was incubated with 25 ml
antibody; for H3K27Ac, 10 mg chromatin was incubated with

6 mg antibody. TCF7L2 and the H3K27Ac ChIP assays were

performed as described [69] using protein A/G magnetic beads to

collect the immunoprecipitates. Enrichment of ChIP targets was

confirmed by qPCR and libraries were created as previously

described [69]. Gel size selection of the 200 to 500 bp fraction was

conducted after an adapter ligation step, followed by 15 amp-

lification cycles. The TCF7L2 library was run on an Illumina

GAIIx and mapped to the UCSC human genome assembly HG19

using Illumina eland pipeline. LNCaP H3K27Ac libraries were

barcoded and sequenced by the University of Southern California

Epigenome Center on an Illumina Hi-seq and aligned to the

UCSC human genome HG19 using Bowtie 2 [70]. Peaks were

called using Sole-search [71] (a~0:00001, FDR 0.0001 and a

blur length set to 1200 for H3K27Ac; a~0:001, FDR 0.001

for TCF7L2). The complete data for a-H3K27Ac ChIP-seq and

a-TCF7L2 ChIP-seq are deposited at GEO accession #
GSE51621 (http://www.ncbi.nlm.nih.gov/geo/).

Luciferase enhancer assays and site-directed
mutagenesis

Enhancers were amplified by polymerase-chain-reaction using

primers listed in Table 5 from LNCaP genomic DNA and cloned

into TK-luc2 plasmid as previously described [7]. Luciferase

enhancer assays and site-directed mutagenesis were performed

using previously published methods [7].

Models and computation
Funci{SNP} analysis and assessment of SNP effects. To

integrate chromatin biofeature annotations with 1,000 ge-

nomes genotyping data, we used in-house developed R package

Funci{SNP}, available at Bioconductor.org [2]. We selected publicly

available datasets that are relevant to the biology of prostate

epithelia and prostate cancer. The following ENCODE datasets

were employed to filter correlated SNPs that lie within putative

enhancer regions with Gene Expression Omnibus (GEO) accession

IDs 1) LNCaP and RWPEI DnaseI HS sites (GSE32970); PrEC

DNaseI HS sites (GSE29692); LNCaP CTCF ChIP-seq peaks
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(GSE33213); LNCaP H3K4me3 and H3K4me1 histone modifica-

tion ChIP-seq peaks GSE27823); FoxA1 ChIP-seq peaks

(GSM699634 & GSM699635); Androgen Receptor ChIP-seq peaks

[72] & ARBS (GSE28219 [73]); NKX3-1 ChIP-seq peaks

(GSM699633). To define other physical map features (transcription

start sites, 5
0

UTR, 3
0

UTR) we obtained annotations from the

February 2009 release of the human genome (GRCh37/HG19) in

the UCSC genome browser. We used the highly conserved set of

predicted targets of microRNA targeting at mircode.org (miRcode

11, June 2012 release) [18]. Funci{SNP} was run with the following

settings: a window size of 1 Mb around the index SNP was used,

and r2 cutoff §0:5. Linkage disequilibrium (r2) was calculated

separately for all populations in which each index SNP was

originally reported (see Table 1). Analysis of the potential effect of

non-synonymous variants on protein folding was carried out with

Provean [14], SIFT [15], Polyphen2 [16], and SNAP [17] with

default settings. To determine whether Funci–SNP}-generated SNPs

potentially affect the binding of known transcription factors, PWMs

were employed from [22] and [23]. Thus the matrix score M varies

from 0 to 1 and is given as:

M~

Pn
i~0 pi fA,T,C,Ggjð Þ|vi

� �
{Min(M)

Max(M){Min(M)
ð1Þ

where the frequency pi is derived from PWM of factor i and we

introduce the positional weight vi~Max(pi){Min(pi) to account

for the importance of the position in the motif.

Analysis of transcription factor response element

enrichment. The z scores for motif enrichment are calculated as:

zij~
xi{�xxij

sij

,i [ F , j(fgenomic random, LNCaP biofeaturesg

ð2Þ

where the z score for the ith transcription factor against background

j is difference of the counts x and the mean counts �xx for that factor

in background j, as a proportion of the standard deviation, s. The

set of transcription factors, F , is described in the text. We calculated

the bootstrapped background distribution statistics (quantiles for

2.75% and 97.5%) representing the 95% confidence interval for

each PWM individually from 200 random draws of 663 SNPs from

each background. A Bonferroni correction was applied to the

quantiles to correct for the application of multiple hypothesis testing.

Bayesian model of luciferase data. We assumed

log(fireflyi=renillai)~�bbizei for the ith observation where the ei,

estimated from technical replication, were assumed to be exchange-

able, and modeled as normal (0,s) with s having an exponential

prior with mean 1. All logarithms were natural logarithms to base e.

The model for the expected expression level of a given data point was

�bbi~Ee(i)zDe(i)dhtizPp(i)zTt(i)zBb(i)zR ð3Þ

where Ee(i) is the enhancer effect for enhancer e(i), De(i) is the

androgen response for enhancer e(i), dhti is an indicator variable for

whether sample i was treated with androgen hormone, Pp(i) is the

plasmid prep effect for plasmid prep p(i), Tt(i) is the transfection

effect for the particular transfection t(i), and Bb(i) is the batch effect

for all data from the 96 well plate b(i). The level R was the reference

level constrained to be the average of all data for the two negative

control enhancers.

There were typically 6 plasmid preps for each enhancer, and 4

transfections of each plasmid prep in each batch where that plasmid

was measured. Each sample was replicated twice on the plate. The

negative controls and PSA positive control were run on each batch.

The Ej values were given a t distribution prior with degrees of

freedom and scale each exponentially distributed with mean values

20, and 8 respectively. The Dj values were taken to be cauchy

distributed with scale exponentially distributed with mean value

1/2. The plasmid prep effects Pj were taken to be normally

distributed around 0 with standard deviation exponentially

distributed with mean value 1. The transfection effects Tj were

take to be t distributed with exponential priors on degree of

freedom (mean 3) and scale (mean 1/2).

Bayesian model and subsequent inferences were fitted via the

Metropolis algorithm [74] using a Hamiltonian sampler imple-

mented in Stan software [75,76]. In the text and Figure 8, we

report the mean of samples and 95% credible interval (C.I.) for

contrasts of interest. We interfaced to the software via the rstan

package (version 1.3.0) in the R statistical environment (version

3.0.1) on a desktop Intel i7 running Ubuntu release 12.04.

Supporting Information

Figure S1 Histogram of H3K27Ac peaks. Peak height plotted as

a function of peak number for both charcoal stripped serum (css)

and DHT treatment (dht) in LNCaP cells. The dotted line indicates

the cutoff top 25 k peaks used as biofeatures for Funci{SNP}

analysis.

(EPS)

Table 5. Primer sequences.

enhancer name sequence Tm prod. size

8q24 CT1 F: 59 GGGGTACCCCAAGTGGAACCAACTGAC 39

R: 59 GGGGTACCGGCCAAAAGAAAATGGCATA 39

60uC
60uC

1,691

8q24 CT2 F: 59 GGGGTACCGCATGCATTAGGGGAGAAAA 39

R: 59 GGGGTACCGTAGCTCACAGCCGAGATCC 39

60uC
60uC

1,582

AR F: 59 GGGGTACCCCCCCTGGTAGGTTTAGCTC 39

R: 59 TCCCCGCGGGGCTCTTGACTTCCCTACCC 39

60uC
60uC

989

NUDT11 F: 59 GGGGTACCTGATGAGAACACCCCACAAA 39

R: 59 TCCCCGCGGGGCCCTGAAACAGCAATTAT 39

60uC
59uC

1,045

JAZF1 F: 59 GGGGTACCTGCACAAACTCAGGGACAAA 39

R: 59 TCCCCGCGGACAGCCTGATGGAGGAGCTA 39

60uC
60uC

798

Primers used in cloning enhancers for reporter assays. The underlined portion highlights the KpnI and SacII sites used for site-directed cloning of the PCR
product. The PSA control is described in [7].
doi:10.1371/journal.pgen.1004102.t005
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Figure S2 H3K27Ac Overlap of peaks +/2 DHT.

(EPS)

Figure S3 Enrichment of TCF7L2 binding sites within ChIP-seq

peaks. Average number of TCF7L2 motifs as a function of

distance from center of peak. Red line: top 20 k peaks. Blue line:

top 10 k peaks. Green line: top 5 k peaks.

(EPS)

Figure S4 rs12621278 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S5 rs7584330 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S6 rs17021918 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S7 rs7679673 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S8 rs12653946 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S9 rs1983891 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S10 rs339331 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S11 rs9364554 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S12 rs10486567 in two populations. r2{r2{plot
reveals SNPs that are correlated to the index SNP in both

populations for which it has been identified as carrying risk. SNPs

greater than r2~0:5 are highlighted in red.

(EPS)

Figure S13 rs6983267 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S14 rs7127900 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red.

(EPS)

Figure S15 rs10896449 in two populations. r2{r2{plot
reveals SNPs that are correlated to the index SNP in both

populations for which it has been identified as carrying risk. SNPs

greater than r2~0:5 are highlighted in red.

(EPS)

Figure S16 rs11228565 in two populations. r2{r2{plot
reveals SNPs that are correlated to the index SNP in both

populations for which it has been identified as carrying risk. SNPs

greater than r2~0:5 are highlighted in red.

(EPS)

Figure S17 rs8102476 in two populations. r2{r2{plot reveals

SNPs that are correlated to the index SNP in both populations for

which it has been identified as carrying risk. SNPs greater than

r2~0:5 are highlighted in red. Note the vertical scale has been

optimized to make the SNP label readable.

(EPS)

Figure S18 Comparison of relative risk in different cancers.

GWAS odds ratios of SNPs reported for various cancers for

comparison with prostate cancer (red).

(EPS)
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