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Horizontal gene transfer (HGT) is the process of genetic trans-
mission between species and has long been recognized as a driv-
ing force in the evolution of prokaryotes.1 In bacteria, individual 
organisms in changing environments often sample from a large 
global gene pool through constant gene gain and loss. The acqui-
sition of novel genes may allow the recipient organism to explore 
new niches or resources. Some prominent examples of HGT in 
bacteria involve the spread of antibiotic resistance and virulence 
genes.2 Evolutionary novelties introduced through HGT events 
have also been frequently reported in various unicellular eukary-
otes, including many photosynthetic organisms.3 In multicellu-
lar eukaryotes, because acquired genes will have to pass through 
reproductive tissues in order to be transmitted to offspring, 
HGT is often considered to be rare and insignificant. However, 
recent studies show that HGT does occur in animals and plants. 
In particular, HGT is frequently reported in insects and nema-
todes.4 Reports of HGT events in land plants are rare except for 
mitochondrial genes.5 In our recent genome analyses of the moss 
Physcomitrella patens, 128 nuclear genes of 57 families were found 
to be acquired from prokaryotes, fungi or viruses.6 These genes 
are involved in some essential or plant-specific activities such as 
xylem formation, plant defense, nitrogen recycling as well as the 
biosynthesis of starch, polyamines, hormones and glutathione. In 
this addendum, we categorize all 128 acquired genes identified 
in our earlier analyses based on their putative functions and bio-
logical processes. We further discuss the adaptive significance of 
additional genes that were not addressed in the paper.

Of all 128 acquired genes identified in P. patens, 111 can be 
assigned to nine categories based on their more specific biologi-
cal functions, an additional 14 genes have diverse functions and 
three other genes were annotated as unknown functions (Fig. 1). 
The category containing most genes is related to heterokaryon 
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formation in filamentous fungi. These heterokaryon incompat-
ibility (HET) gene homologs are only found in P. patens and fila-
mentous fungi. Because heterokaryosis is not present in plants, 
the biochemical functions of these genes and involved biological 
processes in P. patens remains to be further investigated. Most 
genes assigned to other categories generally are broadly distrib-
uted in extant land plants. The acquisition of these genes has 
affected the evolution of the entire land plant lineage.

HGT may confer recipient organisms novel metabolic capa-
bilities. The gene encoding methionine gamma-lyase (MGL) was 
likely acquired from bacteria. MGL is involved in amino acid 
metabolism and proteolysis. In plants, MGL catalyzes the con-
version of methionine to methanethiol and 2-ketobutyrate, an 
intermediate for isoleucine biosynthesis. It is believed that MGL 
plays a major role in the biosynthesis of isoleucine under osmotic 
stress and possibly salt and drought.7 Another gene acquired from 
bacteria encodes the nucleotide-binding domain of a novel class of 
mitochondrial ABC transporters that are involved in c-type cyto-
chrome maturation in Arabidopsis.8 Photorespiration influences a 
wide range of processes from bioenergetics, carbon metabolism, 
to nitrogen assimilation. Plant photorespiratory metabolism was 
previously thought to be confined to chloroplasts, peroxisomes 
and mitochondria, but recent studies suggest that hydroxypyru-
vate reductase 2 (HPR2) is involved in a cytosolic bypass to the 
photorespiratory core cycle.9 The gene encoding HPR2 was also 
acquired from bacteria. Some other identified gene families are 
related to plant morphogenesis and development. In addition to 
the large and versatile subtilase gene family that is involved in 
the structural development of multiple organs, the vein pattern-
ing 1 (VEP1) gene family is related to vascular development.10 
Our result is consistent with an earlier study that this gene family 
in land plants was acquired from bacteria and might have been 
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functions to the recipient. Similarly, 
recent HGT events of nuclear genes 
between grasses17 and plants of para-
sitic relationship18,19 have also been 
reported occasionally. These recent 
HGT events are important for under-
standing the mechanisms of HGT in 
plants, but usually do not affect the 
evolution of major plant lineages. 
Genes acquired during early stages of 
land plant evolution and retained in 
descendants might theoretically have 
the most significant impact on plant 
evolution.20 Several nuclear genes 
acquired during early land plant evo-
lution have been reported by previ-
ous studies21-23 and some other genes 
acquired by more remote ancestors 
of plants were also identified.24,25 
Clearly, some of these anciently 
acquired genes had long-term impact 
on plant development and adapta-

tion. For example, the γ-glutamylcysteine ligase gene acquired 
from α-proteobacteria is involved in glutathione biosynthesis,21 
and the phenylalanine ammonia lyase (PAL) gene acquired from 
soil bacterial encodes a critical precursor for both flavonoid and 
lignin monomer biosynthesis. The data generated from the anal-
yses of P. patens represent the largest data set of acquired nuclear 
genes in land plants. However, because the study was based on 
analyses of a single genome using strict phylogenomic approach, 
it is reasonable to conclude that many other acquired genes likely 
exist in land plants. It merits further detailed genome analyses 
and experimental investigations to fully understand the impor-
tance of HGT in land plant evolution.
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instrumental to the transition of plants from water to land.11 
These data provide additional evidence that acquired genes have 
contributed to the metabolic and structural complexity of land 
plants.

There are 19 acquired genes in P. patens that are either 
directly or indirectly related to stress response. In addition to 
genes involved in DNA repair, nitrogen fixation and biosyn-
thesis of glutathione and polyamines,6 four acquired acid phos-
phatase genes, which encode vegetative storage protein (AtVSP) 
in Arabidopsis, might play a role in defense against herbivorous 
insects.12,13 Two other acquired genes encode N-acetyl-gamma-
glutamyl-phosphate reductase (argC) and a HAD-superfamily 
hydrolase that are related to the tolerance of cadmium stress and 
cold stress respectively.14,15 These stress-related genes might have 
facilitated the adaptation of land plants to hostile environments.

It has long been speculated that HGT played an important 
role in the evolution of flowering plants.16 Although cases of HGT 
have frequently been reported in plants, most of them involve 
mitochondrial genes.5 Given the residential nature of mitochon-
dria, these mitochondrial genes usually do not confer novel 

Figure 1. Functional categories of horizontally acquired genes identified in Physcomitrella patens, based 
on information of Table 1 in the original paper.6
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