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Despite many studies on the high alu-
minum (Al) tolerance of rice (Oryza 

sativa), its exact mechanisms remain 
largely unknown. It is also unclear why 
Al improves growth of some plants. Our 
research on interactions between nitro-
gen (N) and Al may help to understand 
these phenomena. Previously, we found 
that ammonium-supplemented rice was 
more Al tolerant than nitrate-supple-
mented rice. Furthermore, Al-tolerant 
rice varieties preferred ammonium, 
while Al-sensitive ones preferred nitrate; 
in fact, Al tolerance was significantly 
correlated with the ammonium/nitrate 
preference among rice varieties. Al even 
enhanced growth of ammonium-supple-
mented rice, while it inhibited growth 
of nitrate-supplemented rice. Based 
on our own and other reports on N-Al 
interactions, we propose that intermedi-
ate products of N metabolism may play 
a role in rice Al tolerance. Al-enhanced 
ammonium utilization may explain why 
Al promotes growth of some plants, since 
Al often coexists with higher levels of 
ammonium than nitrate in acid soils.

Aluminum (Al) toxicity is the primary 
factor limiting crop growth in acid soils. 
Rice (Oryza sativa) is considered as the 
most Al-tolerant crop among small grain 
cereals.1 Most plants tolerate Al toxicity 
by secreting organic acids that immobi-
lize Al ions in the rhizosphere,2 whereas 
this mechanism cannot explain the high 
Al tolerance in rice.1,3,4 Other Al-tolerance 
mechanisms (e.g., phosphate exudation 
from roots, and an increase in rhizospheric 
pH) are also not responsible for Al toler-
ance in rice.5 The Al tolerance of rice has 
been altered by mutations of several genes, 
including those encoding a Cys2His2-type 
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zinc-finger transcription factor, a bacterial-
type ATP-binding cassette, and transport-
ers of citrate, Al, or magnesium.6 Cell wall 
polysaccharides play a role in excluding Al 
from the root apex and thus might play a 
role in rice Al tolerance.4 However, these 
mechanisms are not sufficient to explain 
the high Al tolerance of rice, especially 
the genotypic differences in Al tolerance 
among cultivars. Our recent research on 
the interaction between Al and N yielded 
new information to increase our under-
standing of genotypic differences in Al 
tolerance.7-9

Previously, we demonstrated that 
ammonium alleviates Al toxicity to rice 
and Lespedeza bicolor, compared with 
nitrate.7,8 A similar phenomenon was 
also reported for other plant species.10-14 
Recently, we found a significant correla-
tion between Al tolerance and the ammo-
nium/nitrate preference of rice varieties: 
Al-tolerant rice varieties showed a prefer-
ence for ammonium while Al-sensitive 
ones showed a preference for nitrate.9 We 
also note that rice is more Al-tolerant and 
shows a stronger preference for ammonium 
than other crops, while those crops that 
show a preference for nitrate, such as wheat 
and barley, are generally Al-sensitive. Tea 
trees also showed a preference for ammo-
nium and enhanced growth in response 
to Al.15,16 Thus, it seems that the ammo-
nium/nitrate preference is associated with 
regulating Al tolerance in rice.

Why are two separate traits, Al toler-
ance and ammonium/nitrate preference, 
closely linked in plants? Is it a simple 
correlation, or something more complex? 
Acid soils are characterized by greater 
quantities of ammonium and potentially 
toxic Al compared with neutral soils, 
which generally contain more nitrate 
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in wheat and enhanced the expression of 
a gene encoding glutamine synthetase in 
rice.25,26 However, in another study, Al 
inhibited the activity of nitrate reductase 
and glutamine synthetase, but enhanced 
the activities of other N metabolic 
enzymes in rice.27 In spite of these incon-
sistent results, these reports suggest that Al 
might be involved in regulating N metab-
olism. More research is needed to explore 
in detail how Al affects N metabolism.

Based on the results of our own 
research and other studies, we propose 
that N signaling molecules produced dur-
ing N uptake and assimilation may be 
involved in the Al tolerance of rice, and 
the regulation of N metabolism by Al may 
be one factor in the beneficial role of Al in 
some plants. The interactive regulation of 
N and Al seems to facilitate the growth of 
plants in acid soils.
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