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ABSTRACT  We report the nucleotide sequences of iaaM
and iaaH, the genetic determinants for, respectively,
tryptophan 2-monooxygenase and indoleacetamide hydrolase,
the enzymes that catalyze the conversion of L-tryptophan to
indoleacetic acid in the tumor-forming bacterium Pseudomonas
syringae pv. savastanoi. The sequence analysis indicates that
the iaaM locus contains an open reading frame encoding 557
amino acids that would comprise a protein with a molecular
weight of 61,783; the iaaH locus contains an open reading
frame of 455 amino acids that would comprise a protein with
a molecular weight of 48,515. Significant amino acid sequence
homology was found between the predicted sequence of the
tryptophan monooxygenase of P. savastanoi and the deduced
product of the T-DNA #ms-1 gene of the octopine-type plasmid
pTiA6NC from Agrobacterium tumefaciens. Strong homology
was found in the 25 amino acid sequence in the putative
FAD-binding region of tryptophan monooxygenase. Homology
was also found in the amino acid sequences representing the
central regions of the putative products of iaaH and tms-2
T-DNA. The results suggest a strong similarity in the pathways
for indoleacetic acid synthesis encoded by genes in P. savastanoi
and in A. tumefaciens T-DNA.

The association of the tumor-forming bacterium Pseudo-
monas syringae pv. savastanoi (P. savastanoi) and its hosts,
oleander and olive plants, provides a system for studying the
molecular basis of virulence of a bacterium in plants. Tumor
formation by these plants is a response to high concentrations
of indoleacetic acid (IAA) introduced into infected tissue by
the bacterium (1); thus, production of a tumor is used to
assess virulence of the bacterium. The bacterium produces
IAA from tryptophan, with indoleacetamide as the interme-
diate. The enzymes involved are tryptophan 2-monooxygen-
ase [L-tryptophan:oxygen 2-oxidoreductase (decarboxyl-
ating), EC 1.13.12.3], which catalyzes the conversion of
L-tryptophan to indole-3-acetamide, and indoleacetamide
hydrolase, which catalyzes the conversion of indoleacetam-
ide to ammonia and IAA (2).

The genes for the two enzymes, iaaM and iaaH, are part
of an operon that is borne on a plasmid, pIAA, in oleander
strains of the pathogen; in olive strains these genes are on the
chromosome. Mutants cured of pIAA are weakly virulent on
oleander; when transformed with pIAA, they are restored to
full virulence (3). Moreover, iaaM has been cloned and its
role in virulence has been demonstrated (3-5). Unlike the
crown gall disease caused by Agrobacterium tumefaciens, in
which transferred DNA (T-DNA) from the tumor-inducing
(Ti) plasmid is stably integrated into the nuclear genome
(6-12), there appears to be no genetic transformation of host
tissue by P. savastanoi.
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To determine whether there is a common basis for bacteria-
induced tumor formation in plants, we compared IAA syn-
thesis in P. savastanoi with that in other systems associated
with neoplastic growth in plants. Evidence from previous
investigations on crown gall tumor tissue suggested that
T-DNA, which carries genetic determinants encoding
phytohormone synthesis, confers a tumorigenic state when
integrated into host tissue (13). Subsequently, Schroeder et
al. (14) and Thomashow et al. (15) demonstrated that the
tms-2 locus of crown gall T-DNA encodes an enzyme
possessing indoleacetamide hydrolase activity and further
proposed that the zms-1 locus encodes an enzyme catalyzing
the conversion of trytophan to indoleacetamide. However,
tryptophan monooxygenase activity has yet to be demon-
strated in crown gall tissue or in A. tumefaciens. In recent
hybridization experiments under low-stringency conditions,
homology was demonstrated between DNA sequences bear-
ing the tms-1 locus of T-DNA and iaaM and between tms-2
and iaaH (unpublished results ).

In this study, we present the nucleotide sequences of iaaM
and iaaH from P. savastanoi; we compare these sequences
with the sequences reported by Klee et al. (16) and Gielen et
al. (17) for the tms-1 and tms-2 loci in crown gall T-DNA. On
the basis of the deduced amino acid sequences, we find
significant homology between the iaaM and tms-1 gene
products, and lesser, yet significant, homology between the
tms-2 and iaaH gene products. ‘

MATERIALS AND METHODS

Bacterial Strains and Plasmids. Escherichia coli SK-1592
(pLUC2) (4), E. coli HB101 (pCP3) (to be described else-
where) were used for plasmid isolations. The restriction maps
of the cloned fragments of P. savastanoi DNA contained in
the plasmid pLUC2 and pCP3 are shown in Fig. 1. E. coli 7118
was used for nucleotide sequencing experiments (18). Bac-
teria were grown in LB medium (19).

Plasmid DNA from E. coli was isolated by the procedure
of Froman as modified by Tait et al. (20) and purified by
cesium chloride density-gradient centrifugation (21).

Materials. Restriction endonucleases were purchased from
New England Biolabs, Bethesda Research Laboratories, or
Boehringer Mannheim; DNA polymerase I large fragment,
pentadecameric primer, isopropyl B-D-thiogalactoside
(IPTG), 5-bromo-4-chloro-3-indolyl B-p-galactoside (X-Gal),
and polyacrylamide, from Bethesda Research Laboratories;
[a-*?P]dATP, [**Slmethionine, and coupled transcription/
translation system, from Amersham; exonuclease III and
nuclease S1, from Boehringer Mannheim; ultrapure urea,
from Research Organics, Cleveland, OH; and Kodak x-ray
film XAR-5, from Merry X-ray Chemical.

Abbreviations: IAA, indoleacetic acid; Ti plasmid, tumor-inducing
plasmid; T-DNA, DNA transferred from the Ti plasmid to a plant
cell.
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Fi1G. 1. (a) Restriction maps of fragment M (pLUC2) (4) and
pCP3. (b) Strategy used for nucleotide sequencing of the promoter
region, iaaM, and iaaH. Arrows show the extent and direction of
sequence analysis. Both strands have been sequenced.

Nucleic Acid Sequence Determination. The recombinant
plasmids pLUC2 and pCP3, constructed from pBR328 and
pIAA fragments bearing iaaM and iaaH (4), provided the
DNA to be sequenced (Fig. 1). The plasmids were digested
with Aha 111, Bal 1, BamHI, EcoR1, EcoRV, Hincll, HindIII,
Kpn 1, Pst 1, Sac 1, Sau3Al, Sal 1, Sph 1, and the resulting
restriction fragments were cloned in the M13 vectors mp8,
mpll, mpl8, or mpl9 (22). Fragments treated with exo-
nuclease III and nuclease S1 were also cloned in the M13
vectors (23). E. coli 7118 transformants (white plaques) were
screened by the method of Messing and Vieira (24).
Exonuclease III- and nuclease S1-derived clones were
screened by plaque-hybridization using fragment M (Fig. 1a)
as a probe. Phage clones of both strands of the fragments
bearing iaaM and iaaH were isolated for sequencing. A
single-stranded phage template was prepared as described by
Messing et al. (22) and used for the dideoxy sequencing
reactions as described by Sanger et al. (25). Electrophoresis
for nucleotide sequencing was carried out in 8% polyacryl-
amide (BRL model SO apparatus; gel 34 X 40 cm, 0.4 mm
thick) or 6% polyacrylamide (BRL model S1 apparatus; gel 30
X 84 cm, 0.4 mm thick). Computer analyses of the nucleotide
sequences were done using programs kindly provided by R.
Larson and J. Messing, University of Minnesota.

In Vitro Protein Synthesis and Enzyme Activities. The
proteins encoded by pCP3 were labeled with [**S]methionine
by the procedures in the coupled transcription/translation
system of Chen and Zubay (26). Proteins were subjected to
NaDodSO,/PAGE in a modified Laemmli system (27).
Tryptophan monooxygenase and indoleacetamide hydrolase
activities were assayed as described (3).

RESULTS

DNA Sequence Determination. The nucleotide sequences of
iaaM and iaaH are shown in Fig. 2. The sequence (5' to 3')
from the EcoRI site of fragment M is presented for only one
strand. The open reading frame of iaaM encodes a 557 amino
acid protein with a molecular weight of 61,783, which
corresponds closely to the molecular weight of 62,000 deter-
mined for the purified tryptophan monooxygenase monomer
by NaDodSO,/PAGE (29). The first 10 amino acids of the
coding region correspond exactly to the amino-terminal
amino acid sequence determined for the purified protein (29).
The nucleotide sequence of the tms-1 region of the octopine-
type plasmid pTiA6NC from A. tumefaciens shows an open
reading frame that encodes a 755-residue protein of molecular
weight 83,769 (16). As shown in Fig. 3a, the deduced amino
acid sequences of the iaaM and tms-1 products show strong
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homology throughout the entire length of the region coding
for tryptophan monooxygenase, provided that tyrosine at
position 90 and proline, methionine, and threonine at posi-
tions 494-496 in the iaaM sequence are skipped. Overall, the
deduced amino acid sequences of tryptophan monooxygen-
ase and the tms-1-encoded protein show 50% perfect match-
es.
The open reading frame of iaaH encodes a protein of 455
amino acids, with a molecular weight of 48,515. As shown in
Fig. 3b, the deduced amino acid sequences of the iaaH and
tms-2 products show lesser homology (27% for perfect
matches, if threonine at position 251 in the tms-2 sequence is
skipped) than the iaaM and tms-1 products. Strongest ho-
mology occurs in the sequences of the core of each protein.
Comparison of the nucleotide sequences shows there is 54%
homology between iaaM and tms-1 and 38% homology
between iaaH and tms-2.

Predicted Sequence of the FAD-Binding Region. Previous
studies showed that tryptophan monooxygenase possesses
FAD as a cofactor (29). Further, Klee er al. (16) detected
homology between amino acids 239-263 of the predicted
tms-1 product and amino acids 5-29 in the FAD-linked
hydroxybenzoate hydroxylase from P. fluorescens: the latter
sequence is rich in hydrophobic amino acids and has been
shown by x-ray crystallography to comprise the pocket in the
hydroxylase protein that binds the adenine moiety of FAD
(30). The same deduced sequence of the tms-1 product shows
strong homology with amino acid residues 42-66 of tryp-
tophan monooxygenase (Fig. 4). We suggest that residues
42-66 comprise the FAD-binding site in tryptophan mono-
oxygenase.

In Vitro Protein Synthesis and Enzyme Activities. To verify
that the cloned sequences encode intact iaaM and iaaH
products, we determined protein synthesis in a DNA-di-
rected transcription/translation system. pCP3 encoded two
proteins, of M, 62,000 and 47,000 (Fig. 5). In the control
reaction mixture with pCP3AR1, which has the 2.8-kilobase-
pair fragment M deleted (Fig. 1), no radioactive protein of M,
> 30,000 was found. Fragment M in pLUC2 encodes proteins
of M, 62,000 (tryptophan monooxygenase) and 39,000 (which
appears to be a truncated indoleacetamide hydrolase pro-
tein). The two proteins encoded by pCP3 correspond in size
to those predicted by the open reading frames in the nucle-
otide sequence; they were identified as tryptophan mono-
oxygenase and indoleacetamide hydrolase, since activities of
both enzymes were detected in cell-free preparations of E.
coli HB101 transformed with pCP3. IAA accumulated to
levels of 58 ug/mg (dry weight of cells) in culture filtrates in
which E. coli HB101 transformed with pCP3 had been grown
overnight. Neither the above enzyme activities nor IAA were
detected in cell-free preparations of E. coli HB101 cells
transformed by the vector plasmid pBR328 alone.

Ribosome Binding Sites of iaaM. The nucleotide sequences
upstream from the initiation codons (ATG) of the iaaM and
iaaH coding regions are shown in Fig. 2. There are two
possible ribosome binding sites of iaaM, AAGAG and
AGAG, which are similar to sequences near the 3’ end of the
16S rRNA of P. aeruginosa (31). The putative ribosome
binding site of iaaH, AAGAG, is also shown (Fig. 2). All
three of these sites show a high degree of homology with
ribosome binding sites of other genes characterized from
Pseudomonads (32, 33). However, we find no consensus

sequence characteristic of the Pribnow box or a —35 region
(34).

DISCUSSION
Production of IAA confers virulence in P. savastanoi for its
hosts, oleander and olive. Knowledge of the mechanisms
regulating production of IAA therefore is important for the
understanding of mechanisms controlling expression of vir-
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ALA ALA BGLU LEU ARG GLU AKG ALA
GCT GCG GAG CTG CGC GAG CGT G6CG
2050

PHE ILE ARG GLU GLY ASF ALA VAL
TTC ATA CGT GAG B6T BGAT BCG GTC
2100

THR PRO LEU TRF BLY MET PKO VAL
ACT CCA CTC TGG BGA ATG CCG BTT
2150

LEU THR ALA GLY THK ARG GLY MET
TT6 ACA GCC BGG ACG CGA GBA ATG

SER GLN LEU ARG ALA LEU GLY ALA
AGT CAA CTC AGA BCC CTC GBG BCT

PHE GLY VAL THK SER ILE ASN PRO
TTC GGA GTG ACC TCC ATC AAT CCT
2350

TYR CYS ALA BLY GLY SEK SEK GLY
TAT TGT GCC GGA GGT AGT AGT GGT
2400

LEU SER VAL GLY THR ASF THK GLY
CT6G TCG GTG GGG ACC BAC ACG GGG
2450

THR GLY PHE ARG PRO THR THR GLY
ACG B8C TTC ABA CCC ACT ACT 8BA

THR LYS ASP CYS VAL 6LY LEU LEU
ACA ARG GAT TGC GTT GGG TTG CTG

LEU LEU SER BLY LYS BLN BLN SER
CTG TTG TCA BBC ARG CAG CAB TCT
2650

LEU PRO VAL SER MET TRP SER ASP
CTA CC6 BTC TCC ATG TG6 TCC GAT
2700

LEU SEK LEU LEU ARG LYS THR GLY
CTC ABC CTE CTG COC AAE ACA GGG
2750

6LU LEU ASN GLN THR LEU THR FHE
BAA CTG AAC CAG ACA CTC ACG TTZ

GLN SER LEU LEU SEK LEU 6LY TRF
CAG TCA TTG CTC TCC 7768 @BC TaG

ASF ALA ASN VAL LYS 6LY ILE ILE
GAT GCC AAC GTB AAA BBC ATC ATC
2950

HIS TYK LEU SBER SER LEU GLN ASN
CAC TAT TT6 ABT TCA CT6 CAA AAT
3000

ALA ARG HIS ASN ILE GLU LEU LEU
GCT CBT CAT AAT ATC B8AG CTC CT6
3050

ASF HIS ALA AGP ARG PRO GLU PHE
BAT CAT GCT GAC CGA CCA GABS TTT

ASN ALA MET LEU PRO SER ILE THR
AAT BCB ATE CTC CCC TCC ATTY ACT

LEU SER PHE ASP ALA LEU ARG GLY
TV6 ABC TTT BAT BCT CTA ABA 6686
3230

6LU GLN VAL LEU GLY PHE VAL ARG
BAG CAG BTA TTA GBT TTT GTA CoA
3300

ACA ACG TAG 6CTACABGCCABCETGACCATGBCTECETABCTCTTRBCCABCTTET
3350

C61ABCGBETGCCGATTCGBCGET TCTCTTTTABCCABCCARACATCCBCTCAATGATBTTGCEBCTBCCBATACT TTEEA
3400

FiG. 2. Nucleotide sequences of the promoter region, iaaM, and iaaH and amino acid sequences predicted by the iaaM (Left) and iaaH
(Right) open reading frames. Numbers above each line refer to amino acid positions in the predicted iaaM a.nd iaaH products; numbers below
each line refer to nucleotide positions starting from the EcoRI site of fragment M at the 5’ end. Sequence is shown from 5’ to 3'. The boxed
sequences are the proposed Shine-Dalgarno (ribosome-binding) regions (28).

ulence. Previous investigations showed that insertions in
iaaM had polar effects on iaaH expression. This suggested
that expression of iaaH depends upon the promoter for iaaM
and that the two determinants occur in an operon. To further

elucidate their organization in an operon, we determined the
fine structure of the two genes and confirmed their expres-
sion in E. coli.

The sequence analysis of iaaM shows an open reading
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Deduced amino acid sequences of the iaaM and tms-1 products (a) and of the iaaH and tms-2 products (b). One-letter amino acid

abbreviations are used. Asterisks indicate matching amino acids. (a) Numbers above each line refer to the position of amino acids in the tms-1
sequence; those below refer to iaaM. To obtain maximum homology, gaps have been inserted in the tms-I-encoded sequence at positions
corresponding to positions 90 and 494-496 in the iaaM product (b) Numbers above each line refer to the position of amino acids in the tms-2
product; those below refer to iaaH. A gap has been inserted in the iaaH-predicted sequence (corresponding to position 251 in the tms-2-predicted
sequence). The tms-1 and tms-2 sequences shown are those determined by Klee et al. (16) for the octopine-type plasmid pTiA6NC from A.
tumefaciens; identical sequences were reported by Gielen er al. (17) for the comparable regions (transcript 1 and transcript 2) of the T-DNA
of the octopine-type plasmid pTiAchS except that N, R, and P are at positions 718, 719, and 721 in the transcript 1-encoded sequence.

frame sufficient to encode a protein of M, 61,783, which is
consistent with the apparent M, of 62,000 estimated for the
monomer of purified tryptophan monooxygenase (29). Sim-
ilarly, the predicted amino-terminal amino acid sequence
(Met-Tyr-Asp-His-Phe-Asn-Ser-Pro-Ser-Ile-Asp-) is in per-
fect agreement with that determined by chemical analysis of
the purified protein. As shown by the coupled in vitro
transcription/translation system, determinants borne on the
DNA fragments sequenced in this study encoded two pro-
teins of molecular weights (62,000 and 47,000) that corre-
spond closely to those determined for the products of iaaM
and iaaH from the deduced amino acid sequences. That the
encoded proteins are tryptophan monooxygenase and
indoleacetamide hydrolase was demonstrated by detection of
their activities in extracts of E. coli transformed with pCP3.

Similarities between the P. savastanoi and crown gall
systems for IAA synthesis are further evident in the nucle-
otide sequence and in the deduced amino acid sequences of
the iaa operon and the tms locus of A. tumefaciens T-DNA.
The strong homology observed in the apparent FAD-binding
domains suggests that the tms-1 product is functionally very
similar to the tryptophan monooxygenase from P. savasta-
noi. No similarities are seen in the possible regulatory
sequences of the genes from the two sources. Moreover,
iaaM and iaaH are organized in an operon in P. savastanoi
(35), whereas the comparable genes in T-DNA are
monocistronic (16, 17), as might be predicted, since they
function in the plant cell.

Although tms-2 and iaaH are similar in size, the open
reading frame of tms-1 is substantially larger (594 base pairs)

42 * * 66
IaaM Val Ala Ile|Val|Gly Ala Gly Ile Ser Gly Leu Val Ala Ala] Thr [Glu Leu Leu|Arg{Ala Gly Val|Lys|Asp Val
239 * * 263

Tms-1 |Val Ala|Val JIle Gly Ala Gly Ile Ser Gly Leu Val Val Ala Asn Glu Leu Leu|His|Ala Gly Val Asp Asp Val
) 5 * * * 29
p-HBH |[Val Ala Ile Ile Gly Ala Gly| Pro|Ser Gly Leu]Leu Leu Cly Gln Leu|LeujHis Lys|Ala GlyjIle|Asp]Asn|Va

FiG. 4. Amino acid sequence homology between the predicted iaaM product (IaaM), the predicted tms-1 product (Tms-1), and

p-hydroxybenzoate hydroxylase (p-HBH) at the nucleotide-binding site. The conserved amino acids are boxed. Functionally similar amino acids
are indicated by asterisks.
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F1G. 5. Autoradiograph obtained after NaDodSO,/PAGE of
[>*S)methionine-labeled proteins encoded by various plasmids using
the coupled transcription/translation system. Lanes: a, no DNA; b,
pBR328; ¢, pLUC 2; d, pCP3; e, pCP3AR1 (pCP3 with fragment M
deleted). Positions of iaaM and iaaH gene products (IaaM and IaaH)
are indicated at right. Positions and molecular weights of concur-
rently electrophoresed standards (bovine serum albumin, ovalbu-
min, a-chymotrypsinogen, and g-lactoglobulin) are at left.

than the open reading frame of iaaM. The significance of the
size differences is unknown, but the additional polypeptide in
the tms-1 product may reflect the structural requirements for
its function in the plant cell.

Since tryptophan monooxygenase exhibits broad substrate
specificity for methylated and halogenated tryptophan deriv-
atives (4, 29), IAA™ strains of P. savastanoi are resistant to
tryptophan analogues such as S-methyltryptophan. IAA~
mutants, which lack tryptophan monooxygenase, are sensi-
tive to S-methyltryptophan (1). The same phenotype is
exhibited by T-DNA-transformed cultured tobacco cells,
which are more resistant to 5-methyltryptophan than are
nontransformed cells (36). These results suggest that T-DNA-
transformed cells contain tryptophan monooxygenase, which
provides detoxifying activity toward S-methyltryptophan.
This further argues for the similarity between P. savastanoi
and A. tumefaciens in IAA synthesis and suggests there is a
common origin for the genes encoding the synthetic pathway
for IAA in the two systems.

We thank Gene Nester, Frank White, and Martin Yanofsky (Univ.
of Washington) for valuable discussions during the course of this
work. This material is based upon work supported by Grants
PCM-8011794 and DMB-831872 from the National Science Founda-
tion.

1. Smidt, M. & Kosuge, T. (1978) Physiol. Plant Pathol. 13,
203-214.

2. Kosuge, T., Heskett, M. G. & Wilson, E. E. (1966) J. Biol.
Chem. 241, 3738-3744.

bl

10.

11.

12.
13.

14.
15.

16.

17.

18.
19.
20.
21.

33.
34.

35.
36.

Proc. Natl. Acad. Sci. USA 82 (1985)

Comai, L. & Kosuge, T. (1980) J. Bacteriol. 143, 950-957.
Comai, L. & Kosuge, T. (1982) J. Bacteriol. 149, 40-46.
Kosuge, T. & Comai, L. (1982) Plant Infection: The Physio-
logical and Biochemical Basis, ed. Asada, Y. (Springer, Ber-
lin), pp. 175-186.

Chilton, M.-D., Drummond, M. H., Merlo, D. J., Sciaky, D.,
Montoya, A. L., Gordon, M. P. & Nester, E. W. (1977) Cell
11, 263-271.

Chilton, M.-D., Saiki, R. K., Yadav, N., Gordon, M. P. &
Quetier, F. (1980) Proc. Natl. Acad. Sci. USA 77, 4060-4064.
Lemmers, M., De Beuckeleer, M., Holsters, M., Zambryski,
P., Hernalsteens, J. P., Van Montagu, M. & Schell, J. (1980) J.
Mol. Biol. 144, 353-376.

Thomashow, M. F., Nutter, R., Montoya, A. L., Gordon,
M. P. & Nester, E. W. (1980) Cell 19, 729-739.

Thomashow, M. F., Nutter, R., Postle, K., Chilton, M.-D.,
Blattner, F. R., Powell, A., Gordon, M. P. & Nester, E. W.
(1980) Proc. Natl. Acad. Sci. USA 71, 6448—6452.
Willmitzer, L., De Beuckeleer, M., Lemmers, M., Van
Montagu, M. & Schell, J. (1980) Nature (London) 287,
359-361.

Yadav, N. S., Postle, K., Saiki, R. K., Thomashow, M. F. &
Chilton, M.-D. (1980) Nature (London) 287, 458-461.
Akiyoshi, D. E., Morris, R. O., Hinz, R., Mischke, B. S.,
Kosuge, T., Garfinkel, D. J., Gordon, M. P. & Nester, E. W.
(1983) Proc. Natl. Acad. Sci. USA 80, 407-411.

Schroeder, G., Waffenschmidt, S., Weiler, E.W. &
Schroeder, J. (1984) Eur. J. Biochem. 138, 387-391.
Thomashow, L. S., Reeves, S. & Thomashow, M. F. (1984)
Proc. Natl. Acad. Sci. USA 81, 5071-5075.

Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C.,
Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E. &
Gordon, M. (1984) Proc. Natl. Acad. Sci. USA 81, 1728-1732.
Gielen, J., De Beuckeleer, M., Seurinck, J., Beboeck, F., De
Greve, H., Lemmers, M., Van Montagu, M. & Schell, J. (1984)
EMBO J. 3, 835-846.

Vieira, J. & Messing, J. (1982) Gene 19, 259-268.

Miller, J. H. (1972) Experiments in Molecular Genetics (Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY), pp.
431-435.

Tait, R. C., Lundquist, R. C. & Kado, C. 1. (1982) Mol. Gen.
Genet. 186, 10-15.

Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) in Molec-
ular Cloning: A Laboratory Manual (Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY), p. 93.

Messing, J. (1983) Methods Enzymol. 101, 20-78.

Henikoff, S. (1984) Gene 28, 351-359.

Messing, J. & Vieira, J. (1982) Gene 19, 269-276.

Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl.
Acad. Sci. USA 14, 5463-5467.

Chen, H. & Zubay, G. (1983) Methods Enzymol. 101, 674—690.
Laemmli, U. K. (1970) Nature (London) 227, 680—685.
Shine, J. & Dalgarno, L. (1975) Nature (London) 254, 34-38.
Hutcheson, S. & Kosuge, T. (1985) J. Biol. Chem. 260,
6281-6285.

Wierenga, R. K., Jong, R. J. D., Kalk, K. H., Hol, W. G. J.
& Drenth, J. (1979) J. Mol. Biol. 131, 55-73.

Bassel, B. A. (1979) Nucleic Acids Res. 6, 2003-2016.

Gray, G. L., Smith, D. H., Baldridge, J. S., Harkins, R. N.,
Vasil, M. L., Chen, E. Y. & Heyheker, H. L. (1984) Proc.
Natl. Acad. Sci. USA 81, 2645-2649.

Inouye, S., Elina, Y., Nakazawa, A. & Nakazawa, T. (1984)
Proc. Natl. Acad. Sci. USA 81, 1688-1691.

Rosenberg, M. & Court, D. (1979) Annu. Rev. Genet. 13,
319-353.

Comai, L. & Kosuge, T. (1983) J. Bacteriol. 154, 1162-1167.
Sanger, M. & Kosuge, T. (1984) Plant Physiol. Suppl. 75, 42.



