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Abstract

Objective: To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults.

Rationale: Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with
mortality has recently become feasible.

Methods: We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical
Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality,
using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were
tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis
Outcome Diagnostics (CAPSOD) study.

Results: We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites
differed among ICU survivors versus those who died by day 28 (N= 57 metabolites, p,.05). Associations with 28-day
mortality replicated for 31 of these metabolites (with p,.05) in the CAPSOD population. Replicating metabolites included
lipids (N= 14), amino acids or amino acid breakdown products (N= 12), carbohydrates (N= 1), nucleotides (N = 3), and 1
peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are
lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated
with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate,
3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI,
and 74% of the AUC in CAPSOD (p,.001 in both populations).

Conclusion: Both individual metabolites and a metabolomic network were associated with 28-day mortality in two
independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in
critically ill patients.
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Introduction

More than 4 million patients are admitted to intensive care units

(ICUs) each year in the United States. [1] Despite marked

improvements in care for these critically ill patients, [2,3]

approximately 500,000 die in the ICU each year. [1] Identifying

biomarkers that distinguish the patients at highest risk for poor

outcomes who could be targeted for novel therapies and clinical

trials is critical. [4].

Investigating metabolomics to identify novel biomarkers in the

ICU is promising for several reasons. First, the most widely used

biomarker of ICU mortality identified to date is lactate, a

byproduct of anaerobic metabolism. Second, in the spectrum

from genotype to phenotype, metabolites, like proteomics, are

correlated most closely to phenotype, and are thus likely much

more highly correlated with disease. [5] While metabolomics was

previously highly time-intensive and technologically limited, and

thus could not plausibly be done on a large scale, technological

advances in gas and lipid chromatography and mass spectroscopy

now make such study possible. [6,7] Finally, metabolomic profiling

has been performed in multiple complex trait diseases (notably

recent work in cancer [8], diabetes [9], tuberculosis [10] and, most

recently, septic shock in children [11]), in each case identifying

important novel biologic pathways that contribute to pathogenesis

and prognosis.

For all of these reasons, we performed metabolic profiling to

identify prognosticators of 28-day mortality in a cohort of 90

critically ill adult ICU patients. We identified both widespread

differences in individual metabolites and a network of interacting

metabolites associated with 28-day mortality. The association of

these metabolites with 28-day mortality was then replicated in an

independent cohort of 150 adults with sepsis. We then compare

our results to recent work that examined metabolomics in septic

shock using these same metabolomics profiles but different

analytical methods. [12].

Methods

Populations
Brigham and Women’s Hospital (BWH) Registry of

Critical Illness (RoCI). The BWH RoCI is approved by the

Partners IRB committee (2008-P-000495). The protocol for

recruitment for RoCI has been published in detail elsewhere.

[13] Briefly, adult patients admitted to the BWH Medical

Intensive Care Unit are eligible for inclusion in the RoCI within

72 hours of presentation, unless certain exclusion criteria are met

(see Methods S1). Plasma is obtained on days 1, 3, and 7 of

enrollment. Extensive phenotypic data (including age, gender, key

comorbidities, and APACHE II score), laboratory, radiologic, and

mortality data are recorded for all subjects. Between September

2008 and May 2010, 225 subjects were enrolled in the RoCI.

Among these 225 subjects, 90 subjects were selected for metabolic

profiling: 29 with SIRS, 30 with Sepsis, and 31 with sepsis-induced

ARDS. Cases were selected for profiling based in part on IL-18

levels as part of a separate analysis [13] (sepsis and SIRS patients

with low IL-18 levels, ARDS with high IL-18 levels; 31 of the 34

ARDS cases at that time were used). Cases were not selected with

regards to risk of death or any known metabolic feature.

CAPSOD population. The protocol for enrollment in the

Community Acquired Pneumonia and Sepsis Outcome Diagnos-

tics (CAPSOD) study has been previously published. [12,14,15]

Briefly, 1152 patients with sepsis ($2 Systemic Inflammatory

Response (SIRS) criteria and presumed infection) were enrolled in

emergency rooms associated with 3 US Hospitals. Blood samples

and extensive phenotypic and laboratory data were recorded at

enrollment. Survival/death was the primary outcome. The

validation set of 149 patients (13% of the total CAPSOD cohort)

was selected in five groups that reflected conventional concepts of

sepsis progression as a pyramid from SIRS to sepsis and septic

shock (see Methods S1).

Metabolomic Profiling
Metabolomic profiles were generated independently for the

BWH RoCI samples (N= 90 plasma samples from Day 1 of

enrollment (within 72 hours of ICU admission), targeting 411

metabolites) and the CAPSOD samples (N=150 targeting 439

metabolites) by Metabolon, Inc. Gas and liquid chromatography

and mass spectroscopy was performed as described previously

[16,17] and in the Methods S1. We removed metabolites with

the lowest IQR of variability in the RoCI data, leaving 308

metabolites. We then limited statistical analyses to the metabolites

that were also profiled in the CAPSOD database (N=167

identical metabolites).

Statistical Analysis
Logistic regression. All raw metabolite concentrations were

log2 transformed and normalized. We performed logistic regres-

sion in Rv.2.14, after adjustment for age, gender, race, malignancy

status, and renal function (as estimated by the GFR-MDRD).

Metabolites significantly associated with mortality in the RoCI

cohort (p,.05) were tested for replication in CAPSOD; the

significance level of p,.05 (one-sided) was used to define

replication in the CAPSOD cohort.

Bayesian networks. Comprehensive details of Bayesian

network selection are available in the Methods S1. Briefly,

metabolite levels were log2 transformed and normalized separately

in the RoCI and CAPSOD datasets. We then used 5-fold cross-

validation on RoCI to arrive at hyper parameters for the Bayesian

likelihood calculations. We performed 2500 bootstrap realizations

of the RoCI dataset, and learned a pheno-centric conditional

Gaussian Bayesian network [18] for each bootstrap realization.

From the sample of 2500 networks, we built a consensus network

by starting with the phenotype node and then adding, in sequence,

the most frequent edge occurring in the bootstrap networks, and

measuring the performance of that network on the dataset in cross-

validation to estimate value of adding additional nodes to the

network. Demographic variables were eligible for inclusion in the

model, but none were ultimately selected. The network was then

tested for association in CAPSOD without any parameter refitting.

Predictive performance of the network was assessed by the convex

hull of the Area Under the Receiver Operator Characteristic

Curve (AUC). [19] Statistical significance was determined using

the method of DeLong et al. [20] All Bayesian and related

statistical computations were performed using the CGBayesNets

package [21,22] in MATLAB. To compare our metabolomic

network to that identified in a recent manuscript derived in

CAPSOD and replicated in RoCI using the same metabolomics

profiling data [12], we constructed a Bayesian network comprised

of their variables and compared the predictive performance using

the CGBayesNets package described above. Please see the

Methods S1 for more details.

Results

Baseline characteristics of subjects participating in the RoCI

and CAPSOD cohorts are shown in Table 1. RoCI subjects were
recruited after admission from the ICU, while CAPSOD subjects

were enrolled in the ED with suspected sepsis. Of 149 CAPSOD
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subjects, 65 were admitted directly to the ICU on the day of

admission and metabolomic profiling. As noted, RoCI subjects

were younger, more frequently had cancer, had a higher baseline

APACHE II score, were more often Caucasian, and had a higher

mortality rate (all p,.05 by Wilcoxson or Fisher’s exact tests,

Table 1). Of the 90 RoCI subjects, 60 had sepsis, including 25 of

the 30 patients who died. As shown in Table 1, patients who die in

the ICU differ in several phenotypic ways from those who survive,

including higher APACHE score, more malignancy, and older

age, among other variables.

RoCI Initial Cohort
We first assessed each of the 187 metabolites measured in both

cohorts for an association with 28-day mortality. Nearly one third

of the metabolites (N= 57) were associated with 28-day mortality

in the RoCI cohort, after adjusting for age, gender, race, cancer

status, and renal function (p,.05, Table S1). While p values were

attenuated, the majority of metabolites remain significantly

associated with death, even after further adjustment for APACHE

II score, diabetic status, and use of immunosuppressive medica-

tion, including chemotherapy or systemic corticosteroids (Table
S1). A majority of the 57 metabolites associated with death in the

entire cohort were significant even when limited to the 55 RoCI

patients without cancer (N= 35 of the 57 metabolites, p,.05,

Table S1).

Replication Cohort
We then tested the 57 metabolites for replication in the

CAPSOD cohort. Among the 57 metabolites associated with death

in RoCI, 31 replicated in this independent population (again, after

adjustment for gender, age, race, malignancy status, and renal

function, p1-sided,.05). Replication of 31 metabolites is greater

than the ,3 replications expected by chance (pFisher’s ex-

act = 661029). Top metabolites are shown in Table 2, with a

comprehensive list in Table S2. As shown, elevated lactate level

was significantly associated with death in both populations, though

it was not the top predictor. Plasma level of 1-arachidonoylgly-

cero-phosphoethanolamine, the most significantly associated

metabolite in RoCI, is shown in Figure 1a and 1b, with lower

levels associated with mortality in both cohorts. Conversely, higher

levels of 3-(4-hydroxyphenyl) lactate, a product of tyrosine and

phenylalanine catabolism are associated with mortality in both

cohorts (Figure 1c and 1d). Replicating metabolites cross

multiple metabolic pathways, and include lipids (N=14) amino

acids and their breakdown products (N= 12), carbohydrates

(N= 1), nucleotides (N= 3), and one peptide.

Among the 31 metabolites associated with mortality in both

cohorts, the vast majority (25) were higher in patients who died.

This result is much higher than the ,15 one would expect by

chance (pFisher’s exact = .02). All 6 metabolites that were lower in

non-survivors were part of the lipid metabolism pathway (Table
S2), though lipid metabolites represented only a minority of

metabolites studied (76 of the 187).

A Metabolomic Network Associated with 28-day
Mortality
Given the substantial proportion of metabolites that were

altered in ICU survivors vs. non-survivors, we hypothesized that

developing a predictive network of interacting metabolites would

facilitate identification of individuals at high risk of death. We used

a Bayesian network approach to identify metabolic networks,

developing Bayesian networks in 2500 bootstrap realizations of the

RoCI cohort and identifying those metabolites that appeared in

the largest number of networks. No clinical variables were

included in a sufficient number of networks to be included in

the final model. Results of this iterative Bayesian Network

approach are shown in Figure 2. This network contains seven

metabolites, including two lipids, 2 amino acid/amino-acid break-

down derivatives, 2 peptides, and 1 carbohydrate (kynurenine,

sucrose, gamma-glutamylphenylalanine, gamma-glutamyltyrosine,

1-arachidonoyl-GPC (20:4), taurochenodeoxycholate, 3-(4-hydro-

xyphenyl) lactate) to predict 28-day mortality. Interestingly, the

Bayesian network overlaps substantially with the top metabolites

selected with logistic regression (all 7 are among the top 12

metabolites in Roci, Table S1).

To evaluate the performance of this network, we tested the

AUC for death in both the BWH and CAPSOD cohorts. The

network achieved an AUC for 28-day mortality of 91% in BWH

and 74% in CAPSOD. Both of these numbers represent

statistically significant prediction (p,0.001 in both cohorts).

Table 1. Baseline Characteristics.

RoCI (N=90 CAPSOD (N=149) Roci vs CAPSOD

Live (N=60) Die (N=30) Pval Live (N=115) Die (N=34) Pval Pval

Age 53 (14) 58 (15) 0.15 58 (17) 69 (16) 0.002 0.009

Apache Score 23 (9) 30 (11) 0.00 15 (7) 23 (8) 8.90E–06 1.92E-11

MDRD_GFR 67 (60) 59 (43) 0.60 62 (57) 51 (40) 0.356 0.364

Days Blood Draw 2.2 (1) 2.1 (1) 0.42 0 (0) 0 (0) N/A 1.03E-49

Male gender 28 (47%) 11 (37%) 0.50 53 (46%) 15 (44%) 1.000 0.789

Malignancy 15 (25%) 20 (67%) 0.00 10 (9%) 9 (26%) 0.015 5.25E-06

White Race 42 (70%) 28 (93%) 0.01 35 (30%) 7 (21%) 0.288 5.35E-14

Chronic Kidney Disease 10 (17%) 9 (30%) 0.17 26 (23%) 9 (26%) 0.731 0.844

Immunosuppressive Meds 14 (23%) 16 (53%) 0.01 6 (5%) 2 (6%) 1.000 2.04E-08

Diabetes 18 (30%) 3 (10%) 0.04 38 (33%) 13 (38%) 0.681 0.082

Shown are mean (SD) or N (%). P values are based on Wilcoxson or Fisher’s exact test as appropriate.
doi:10.1371/journal.pone.0087538.t001
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Comparison of Our Model with Prior Metabolomics
Analyses in these Cohorts
These same cohorts and metabolomics profiles were previously

analyzed, using the CAPSOD cohort as discovery and RoCI as

replication, to identify a metabolomics profile associated with

sepsis-related mortality. [12] Using different analytical methods,

their final model included 5 metabolites (cis-4-decenoylcarnitite, 2-

methylbytyroylcarnitine, butyroylcarnitine, hexanoylcarnitine, lac-

tate, age, and hematocrit) and two phenotypic variables,

hematocrit and age. Notably, none of the 5 metabolites were

selected in our final model, although 4 of the metabolites were

significant by logistic regression in RoCI (all but cis-4-decenoyl-

carnitite, Table 2). When the 5 metabolites and 2 phenotypes

were combined into a Bayesian Network model (with Bayes

Factors optimized in CAPSOD, and then tested without refitting

in the RoCI cohort), the model performed similarly to our 7-

metabolite model, explaining 84% of the AUC for death in

CAPSOD and 84% in RoCI (p = .06 and.23 for comparisons with

our models in CAPSOD and RoCI, respectively).

Figure 1. Levels of 1-arachidonoylglycero-phosphoethanolamine and sucrose are associated with 28-day mortality in both RoCI
and CAPSOD cohorts. Log2-normalized level of 1-arachidonoylGPE(20:4), the most significantly associated metabolite in the RoCI cohort, is higher
among ICU survivors in both the RoCI (light) and CAPSOD (dark) cohorts (Figure 1A and 1B). 3-(4-hydroxyphenyl) lactate (HPLA) is lower among ICU
survivors in both cohorts (Figure 1C and 1D). Boxplots depict median (line) and range (edges of boxplots). P values are based on Wilcoxon’s test and
are 1-sided in CAPSOD.
doi:10.1371/journal.pone.0087538.g001
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Discussion

In this analysis, we tested 187 metabolites in two distinct cohorts

of acutely ill patients to assess the potential for metabolomic

profiling to identify biomarkers associated with death. The most

important findings can be summarized as follows. First, in both

populations, a substantial proportion (approximately one-third of

all metabolites evaluated) were different in subjects who lived or

died with a p,.05; this is a much greater number than would be

expected by chance (,8), and suggests major derangements in

metabolism that are present within 24–72 hours of ICU admission

in these patients. There were 31 individual metabolites associated

with 28-day mortality in both cohorts; these metabolites were not

restricted to a given metabolic pathway, but instead included

diverse lipid, carbohydrate, amino acid, and nucleotide products.

In addition to the analysis of individual metabolites, we developed

a network model using a novel Bayesian Network technique that

similarly replicated in both populations, explaining 91% of the

AUC of death in the RoCI cohort, and 74% of the AUC in

CAPSOD.

It is important to evaluate our analyses in the context of two

recent metabolomics studies in critical illness, those of Mickiewicz

Table 2. Top 20 replicated metabolites, logistic regression.

Metabolite Class RoCI b Roci P value CAPSOD b
CAPSOD
P value

1-arachidonoyl-GPE (20:4) Lipid 21.51 0.0001 20.41 0.0142

3-(4-hydroxyphenyl) lactate (HPLA) Amino acid 1.09 0.0003 0.86 1.3E205

5taurochenodeoxycholate Lipid 0.59 0.0007 0.22 0.0028

taurocholate Lipid 0.48 0.0015 0.21 0.0077

gamma-glutamylphenylalanine Peptide 1.59 0.0017 0.61 0.0272

glycochenodeoxycholate Lipid 0.58 0.0020 0.19 0.0114

1-arachidonoyl-GPC (20:4) Lipid 20.56 0.0032 20.30 0.0016

glycocholate Lipid 0.53 0.0036 0.18 0.0259

Hydroxyisovaleroyl-carnitine (C5) Amino acid 0.79 0.0041 0.40 0.0317

hexanoylcarnitine (C6) Lipid 1.15 0.0053 0.97 6.6E205

lactate Carbohydrate 1.11 0.0071 0.69 0.0084

alpha-hydroxyisovalerate Amino acid 0.72 0.0071 0.58 3.8E204

1-methylimidazoleacetate Amino acid 0.63 0.0082 0.38 0.0104

isobutyrylcarnitine (C4) Amino acid 0.71 0.0095 0.34 0.034

beta-hydroxyisovalerate Amino acid 0.83 0.0134 0.37 0.0364

kynurenate Amino acid 0.46 0.0137 0.37 0.0494

2-methylbutyroylcarnitine (C5) Amino acid 0.75 0.0142 0.59 0.0024

1-linoleoyl-GPC (18:2) Lipid 20.42 0.0155 20.30 0.0162

propionylcarnitine (C3) Lipid 0.90 0.0156 0.62 0.0013

cortisol Lipid 0.62 0.0175 0.56 0.0118

b and p values shown are for results for association with 28-day mortality, using logistic regression, after adjustment for age, gender, race, malignancy status, and GFR.
CAPSOD p values are 1-sided, only metabolites with consistent direction were considered replication. Metabolite levels were log2 transformed for analysis. Data for all 31
replicated metabolites are shown in Supplemental Table S2.
doi:10.1371/journal.pone.0087538.t002

Figure 2. Relationship of 5 metabolites included in Bayesian Network to 28-day mortality. This network maximizes the posterior
likelihood of data over all networks predictive of mortality. This network achieves 91% AUC in RoCI and 74% AUC in CAPSOD. Directed edges indicate
statistical dependence and do not represent causative links.
doi:10.1371/journal.pone.0087538.g002
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et al. [11] in septic shock, and Langley et al., [12] who analyzed

the same two adult cohorts described in this work, focusing on

septic shock mortality. Mickiewicz et al. tested 57 metabolites and

identified a network of 18 metabolites that were associated with

mortality in a single pediatric population with septic shock using

principal components analysis. Several of our top metabolites were

not studied. Metabolomics may enable identification of important

differences in the pathophysiology of sepsis in adults versus

children, but further work, including inclusion of identical

metabolites, is needed. Langley et al. approached our same data

sets, but tested first in the CAPSOD population, replicating in

RoCI, and using different analytical methods to identify a

predictive network. It is interesting to note that, even using the

same metabolomics datasets, differences in analytic strategies led

to completely different networks identified, without a single

common metabolite in the 2 networks, yet both highly predictive

of 28 day mortality in both cohorts. This difference highlights the

fact that it is probably premature to focus on a single metabolite or

two, or even a single network, as several metabolites have the

potential to uncover novel biology. The fact that the derangements

are so widespread (with nearly 1/3 of metabolites differing in ICU

survivors vs. those who die) is itself noteworthy.

Several aspects of this analysis are worth highlighting. First,

metabolomic profiling in critically ill adults to identify risk

metabolites is only now feasible because of advances in mass

spectroscopy and lipid chromatography. Second, while the RoCI

cohort was recruited within the ICU, the CAPSOD replication

cohort was comprised of ED patients with presumed sepsis or

community acquired pneumonia. The ED is a critical site for

identifying patients at highest risk for mortality [23], and

biomarkers are particularly useful for patient triage or potential

enrollment in clinical trials early in the course of illness. Thus, the

31 metabolites associated with mortality in both RoCI and

CAPSOD may be especially promising biomarkers. Third, we

used Bayesian networks to identify interdependent metabolites of

interest that together are associated with increased risk of death.

Bayesian networks are an attractive modeling methodology since

they can model complex interactions between many variables of

interest. [24] Finally, to our knowledge, this study is the first to use

Bayesian networks not only to identify novel metabolomic

biomarkers, but to test the predictive ability of a network of

metabolites measured in an ICU setting to predict 28-day

mortality in an independent replication cohort. A replicated

Bayesian network is an important strength of this study, because it

allows the network to be used to construct a straightforward ‘‘ICU

mortality prediction score.’’

Several features of the metabolomic results in our study are

particularly interesting. Among the 31 metabolites that showed

replicated association with mortality, the vast majority (25) were

higher among those who died in the ICU. Interestingly, all 6

metabolites that were lower among subjects who died were part of

the lipid metabolism pathway (Table S2). Mechanisms for this

finding are unclear, but merit future functional validation. Several

variables known to be associated with ICU mortality were also

identified in our data, adding to the validity of our findings, First,

lactate levels were higher in those who died in both RoCI and

CAPSOD (p= .003 and.009, respectively, Table 2). Similarly,

cortisol has long been recognized to be elevated in critically ill

patients because of hypothalamus-pituitary-adrenal axis stimula-

tion, [25,26] though exact mechanisms for cortisol elevation are

still being elucidated [27]. As expected, free cortisol level was

lower among ICU survivors in both the RoCI and CAPSOD

populations (p = .02 in RoCI,.01 in CAPSOD, Table S1).

The 187 metabolites examined in our analysis represent a small

fraction of the more than 5000 human metabolites in plasma. In

addition to the 187 metabolites in this analysis, an additional 121

metabolites were measured and variable in the RoCI cohort. We

focused only on metabolites that could be replicated in CAPSOD;

however, as shown in Table S3, an additional 36 metabolites are

nominally associated in RoCI (p,.05), highlighting the existence

of numerous additional metabolomic differences among survivors

of critical illness.

Our work has several limitations. First, each of the 7 metabolites

incorporated in our model was chosen because it was selected in

the largest number of models created during iterative boot-

strapping. While the resulting model replicated in the independent

CAPSOD cohort, reinforcing its potential importance, it is highly

probable that other metabolites contribute to these results and

were missed. Determining the functional role of these metabolites

will require laboratory-based experimental follow-up. We studied

plasma of patients early in the course of critical illness;

metabolomic changes on a cellular or organ-specific nature (like

those identified with glutamine uptake and cancer [8], for

example) could well be missed in a plasma sample. The RoCI

subjects were enrolled in the ICU, a median of 2 days after ICU

admission; the CAPSOD cohort we studied was at time 0 in the

emergency room. Thus, our analytic strategy favored metabolites

that remain altered over days in the ICU, and may have missed

metabolites with biomarker potential that change more rapidly.

Also RoCI subjects derived from a medical ICU, and mortality in

the cohort is heavily driven by sepsis; similarly a majority of

CAPSOD subjects had infection at enrollment. This may limit the

generalizability of the results of this study in a non-medical ICU

context. Nutritional status can substantially alter the plasma

metabolomic profile; future studies will be strengthened by

including dietary information as a covariate. [28,29] Because we

were focused on discovering novel biomarkers and the overall

differences in metabolomics profiling in the ICU, we chose a

liberal a threshold of.05 in our logistic regression analyses in the

RoCI discovery cohort. While we mitigated our risk of false

positives by focusing only on replicated metabolites, it is certainly

possible that false positives remain. Finally, the two cohorts differ

in many baseline covariates, as shown in Table 1. While such

heterogeneity likely means that some important metabolites did

not replicate (if they are, for example, more important in cancer

patients or vary with race), it also suggests that the identified

metabolites are highly generalizable, and could be important in a

wide variety of settings.

In summary, the combination of metabolomic profiling and

Bayesian network analysis identifies both individual metabolites

and a metabolomic network that are present in plasma early in the

course of critical illness in adults and are associated with higher 28-

day mortality in two different cohorts. Metabolomic profiling may

provide new insights into both pathogenesis and prognosis in

critically ill patients. Conceivably, better risk stratification for

clinical trials and therapeutics can be achieved, perhaps by

combining metabolomics measures with known protein biomark-

ers and standard clinical predictors.

Supporting Information

Table S1 Comprehensive Results, 187 Metabolites in
RoCI. 1 P value and b are for association of a given metabolite

with 28-day mortality in the RoCI cohort, using logistic regression

after adjustment for age, gender, race, and renal function.

Metabolite values are log2-transformed for testing. 2 P value and

b are for association of a given metabolite with 28-day mortality in
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the RoCI cohort, using logistic regression after adjustment for all

variables as described above (1), but additionally adjusted for

baseline APACHE score. 3 P value and b are for association of a

given metabolite with 28-day mortality in the RoCI cohort, using

logistic regression after adjustment for all variables as described

above (2), but additionally adjusted for DM status and use of

immunosuppressive medications, including chemotherapy and/or

systemic corticosteroids. 4 P value and b are for association of a

given metabolite with 28-day mortality in the RoCI cohort using

logistic regression after adjustment for all variables as described

above (1), but limited to the 55 subjects without malignancy, of

whom 10 died.

(PDF)

Table S2 31 metabolites associated with mortality in
both cohorts. 1Metabolite class is defined by Metabolon, inc. 2P

value and b are for association of a given metabolite with 28-day

mortality in the RoCI cohort, using logistic regression after

adjustment for age, gender, race, malignancy status, and renal

function. Metabolite values are log2-transformed for testing. 3P

value in CAPSOD is similarly for logistic regression after the same

adjustments. P values are 1-sided, as only metabolites with

consistent direction are considered replicated.

(PDF)

Table S3 Association with mortality in all 308 Metab-
olites tested in RoCI. Y: Metabolite tested only in RoCI, not in

CAPSOD. P values and b are for association of a given metabolite

with 28-day mortality in the RoCI cohort, using logistic regression

after adjustment for age, gender, race, malignancy status, and

renal function. Metabolite values are log2-transformed for testing.

(PDF)

Methods S1.

(PDF)
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