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Abstract
Landmark-based registration using radial basis functions (RBF) is an efficient and mathematically
transparent method for the registration of medical images. To ensure invertibility and
diffeomorphism of the RBF-based vector field, various regularization schemes have been
suggested. Here, we report a novel analytic method of RBF regularization, and demonstrate its
power for Gaussian RBF. Our analytic formula can be used to obtain a regularized vector field
from the solution of a system of linear equations, exactly as in traditional RBF, and can be
generalized to any RBF with infinite support. We statistically validate the method on global
registration of synthetic and pulmonary images. Furthermore, we present several clinical examples
of multistage intensity/landmark based registrations, where regularized Gaussian RBF are
successful in correcting locally mis-registered areas resulting from automatic B-spline registration.
The intended ultimate application of our method is rapid, interactive local correction of
deformable registration with a small number of mouse clicks.
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1. Introduction
Clinical and scientific applications of medical imaging techniques such as MRI and CT
often require automated comparison and registration of 3D images. Depending on the
mathematical approach, registration methods are clearly distinguished into rigid body and
deformable registration categories (Holden 2008). In rigid body registration, one of the
images is translated and rotated to achieve the best match with another image. The
transformation is defined by only six parameters, three displacements and three Euler
angles. However, the differences between medical images often involve deformation, and
therefore non-rigid deformable registration is required. Deformable registration methods can
be broadly classified according to the use of either physics-based models or abstract
mathematical models (Holden 2008). Physics-based models such as linear elastic
transformations (Lester and Arridge 1999) or fluid flow transformations (Christensen et al
1996) have an advantage of easy interpretation, and can achieve a good accuracy for many
applications. Mathematical models often use basis functions to reduce the number of degrees
of freedom in the deformation field. Radial basis functions (Buhmann 2000) and B-spline
basis functions (Unser et al 1991, Unser 1999) are efficient and well-established methods
that also achieve good accuracy.

Although more accurate than rigid body registration, deformable registration is not perfect.
Inaccuracies can arise from the fact that most registration methods tend to match distinctive
global features with sufficiently high contrast, rather than local details with low contrast. As
a result, anatomically important features are sometimes misaligned after the registration. To
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compensate for such misalignment, additional information based on the correspondence
between image features can be used (Zitova and Flusser 2003). We concentrate on point
landmarks, which are relatively easily identified by an expert user. These point landmarks
are well suited for an interactive tool that makes local adjustments to an existing vector
field.

Previously, Kybic and Unser (Kybic and Unser 2003) proposed an extension of automatic
B-spline registration that uses interactive point landmark matching. Their method minimizes
a cost function that balances the mean-square difference between the image intensities and
the distance between the corresponding point landmarks. Sorzano et al. (Sorzano et al 2005)
introduced landmark and regularization constraints into the B-spline optimization algorithm.
However, in these studies, the landmark information is used to influence the deformation
over a region that is defined mainly by the spacing of the B-spline control grid. Because the
spacing of the control grid is usually selected to obtain the best overall matching of image
intensities, there is no independent control for the extent of deformation caused by landmark
matching. Furthermore, the B-spline control grid points are generally placed automatically,
without regard to the positions of the landmarks. More complex hybrid schemes using both
image intensity and landmark positions have been described in (Han 2010, Cao et al 2010,
Loeckx et al 2010).

Rohr et al. (Rohr et al 2004) use a non-uniform grid of control points to show that a
combination of intensity and landmark information significantly improves the registration
accuracy for 2D electrophoresis images. Their work uses Gaussian functions for landmark
localization and regularization in the form of Gaussian filtering (see also (Johnson and
Christensen 2002) for combined use of landmark and intensity information). Christensen et
al. (Christensen et al 1997) used a small number of landmarks in a hierarchical scheme
combining an intensity-based approach and a landmark approach based on linear elasticity
operator. These schemes all use numerical minimization to optimize the results, which can
be computationally expensive.

In other spline-based approaches, such as TPS, deformation is found by solving a system of
linear equations which is computationally very efficient. In the pioneering paper of
Bookstein (Bookstein 1989), the deformation field built on exact matching of landmarks was
computed by minimizing the bending energy assuring smoothness and diffeomorphism.
However, in this approach the influence of the landmarks on registration result is global and
therefore the influence of the landmarks propagates over arbitrarily long distances. An
algorithm for handling landmark localization errors was proposed by Rohr (Rohr et al
2001), which introduced the quadratic Euclidean distances between landmarks weighted
with the inverse of landmark localization errors, so that poorly defined landmarks make a
smaller contribution to the deformation field. Their spline function was derived from a
minimizing of the functional containing the interpolating bending energy term, so that the
overall smoothness of the deformation was guaranteed. Another type of spline was
introduced for image differences caused by physical deformations of tissue by Kohlrausch et
al. (Kohlrausch et al 2005). They derived an analytic solution of the Navier equation to
build a spline-based algorithm for matching of point landmarks. Their method uses splines
to describe deformation of an elastic material under a Gaussian force that allows one to cope
not only with global but also with local image differences if the Gaussian kernel width is
chosen appropriately. These new splines were named Gaussian elastic body splines (GEBS)
and were solved via interpolation scheme with exact landmarks matching. To take into
account landmark localization uncertainties an extended energy functional related to the
Navier equation had been considered in (Worz and Rohr 2008). Pekar et al. (Pekar et al
2006) argued that success of landmark-based registrations depends on finding the optimal
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distribution of a given number of control points. They proposed an approach of adaptive
irregular grid within the model based on the Gaussian elasticity tensor.

In approximation schemes (Christensen et al 1997, Rohr et al 2001, Worz and Rohr 2008)
landmark localization errors are taken into account via weighted distance. A more direct
way to limit the influence of landmarks is to use radial basis functions with local support
(Fornefett et al 2001, Arad and Reisfeld 1995) or the functions with locality parameter like
the Gaussian (Arad et al 1994). Fornefett et al. (Fornefett et al 2001) used the ψ-functions of
Wendland with local support for registration of pre-and post-operative brain images. This
approach can handle only local misalignments, and assumes that prior rigid or affine
registration has been applied to cope with global image differences. Gaussian radial basis
functions allow us to control the local effects by adjusting the kernel width as it had been
done in (Arad et al 1994) in application to facial expressions. These functions are well
suited for registrations that need only local improvements, since the landmark
correspondences do not influence the deformation field on scales sufficiently larger than the
locality parameter. In contrast, globally supported functions without locality parameter such
as TPS (Bookstein 1989) are not well-suited for local corrections.

For an arbitrary number of landmarks situated at distant image points it is not guaranteed
that a landmark-based field is smooth and invertible. To preserve diffeomorphism of the
deformation, the field built on landmark correspondence has to be regularized. In order to
prevent folds in the image space between landmarks one can either appropriately choose the
locality parameter, as discussed in (Kohlrausch et al 2005, Pekar et al 2006, Fornefett et al
2001), or introduce an additional regularization term that penalizes first or second order
derivatives of the deformation (Rueckert et al 1999, Rohlfing et al 2003, Sorzano et al
2005). Penalty terms achieve regularization by introducing a trade-off between the landmark
matching term and smoothness of the deformation field.

Table I summarizes the most relevant previous approaches for image registration using point
landmarks. For computational efficiency, it is highly advantageous to construct the vector
field by solving a system of linear equations, rather than addressing a complex
multidimensional minimization problem. This criterion highlights the advantages of TPS
(Bookstein 1989, Rohr et al 2001) and various RBF approaches (Fornefett et al 2001, Arad
et al 1994). At the same time, regularization, a desirable feature of a registration method,
typically leads to a minimization problem. In prior work, physics-based models like TPS and
theory of elasticity (Christensen et al 1996, Rohr et al 2001, Kohlrausch et al 2005), were
the only registration methods that included regularization, yet can be solved with a system of
linear equations. However, TPS is limited to global registration problems, because
displacing a single landmark can potentially distort the deformation across the whole image.
Our method is the first method that we know that is designed for regularized landmark-
based registration with adjustable localization and does not require gradient descent
optimization.

The clinical goal of this work is to provide reliable, repeatable, and high quality image
registration for radiotherapy treatment planning. As outlined in the report of AAPM Task
Group 142 (Klein et al 2009), quadratic summation of spatial tolerances values should be
designed to achieve an overall spatial uncertainty of less than 5 mm. Therefore, it is highly
desirable to achieve an image registration result which is accurate to better than 3 mm at the
treatment target. For extra-cranial image registration in CT, this accuracy is not consistently
achieved using even state of the art methods (Murphy et al 2010). Interactive registration
using point landmarks offers an attractive alternative, because the accuracy of landmark
identification can be within 2.0 mm (Boldea et al 2008). Therefore, we propose the use of
point landmarks for cases where the automatic image registration accuracy is insufficient.
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For simplicity and efficiency, landmark placement should be limited to the region of the
treatment target, and no more than five to ten landmark pairs should be needed.

The remainder of the paper is organized as follows. Section II describes the method of
Gaussian RBF with the analytic model for regularization. Comparison with Wendland RBF
and TPS both qualitative and quantitative, statistical analysis of large landmark datasets, and
results of registration of synthetic and real case medical images are presented in Section III
followed by Discussion and Conclusions. For the experiments we used our in-house
software publicly available for download at http://plastimatch.org

2. Analytic regularization method
Let us consider two 3D images, reference R and test T. For simplicity, assume that both
images are defined on a single voxel grid so that the position of each voxel is given by a
vector r⃗ with coordinates (x, y, z).

Our landmark-based method utilizes a semi-automatic procedure, where landmarks are
chosen manually, and then our software determines RBF coefficients, creates the vector
field, and warps the test image. This procedure can be used either as standalone method, for
global RBF-based registration, or as a correction step in a multi-stage registration, following
a fully automatic intensity-based step.

2.1. Gaussian radial basis functions
Gaussian radial basis functions can be used to create vector fields which exactly interpolate
landmark correspondences in the reference and test image. The Gaussian RBF function

(1)

has infinite support but essentially is localized due to negligible contribution at ||r⃗|| ≫ σ.

The landmark displacement field u at position r⃗ is a linear combination of RBF, each RBF
being parameterized by the distances from the point r⃗ to the RBF origin. The origins of each
RBF is the positions of the landmarks in the reference image, r⃗Ri, so we can write

(2)

where e⃗p is a unit vector along the p-axis, M is the number of landmarks.

The coefficients αip in (2) are found from the interpolation condition that requires exact
matching of the corresponding landmarks on reference (r⃗Ri) and test (r⃗Ti) images,

(3)

This condition determines the following set of 3M linear equations

(4)
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which are solved numerically.

2.2. Regularization of the transformation
To increase the smoothness of the deformation field we introduce a regularization term
(Rueckert et al 1999, Rohlfing et al 2003)

(5)

Physically this term is reminiscent of the energy of elastic deformation of a solid, with the
regularization parameter λ being conceptually similar to the modulus, although the Young
modulus describes the energetic cost of the first, rather than second order, derivatives of the
field.

For the Gaussian function (1) this term can be calculated analytically over the entire space.
As shown in the Appendix, it equals

(6)

where

(7)

Here we introduced a constant κ = σ−1(π/2)3/2, and a vector a⃗ij = r⃗Ri − r⃗Rj between
landmarks i and j on the reference image. The regularization term (6) is therefore a quadratic
function in the RBF coefficients dependent of the shaping parameter σ and modulated by the
Gaussian function.

Now we have to devise a method incorporating both the landmark matching condition (3)
and the second derivative regularization of the displacement field, (5). Such a method should
produce coefficients αip such that the landmarks are reasonably matched, while the large
derivatives of the displacement field are penalized. Note that since the system (4) has a
unique solution, any alteration of the coefficients αip, e.g. to decrease the field’s second
derivatives, inevitably leads to a certain mismatch between landmarks after registration.

Let us consider the cost function

(8)

The first term within the brackets is a measure of the error at landmarks, and the second
term is the cost of the second derivatives of the displacement field. This function is a
quadratic form in αip, so its derivatives can be easily calculated. The minimum of the
function (8) with respect to αip is found from the following system of 3M linear equations
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(9)

where

(10)

and

(11)

The system of equations in (9) written in the matrix form

(12)

are solved for coefficients αip by matrix inversion using singular value decomposition
(SVD) method. These coefficients are used to calculate the deformation field u in (2), which
is a compromise between the fidelity of the landmark matching and the smoothness of the
deformation. For smaller values of the regularization parameter more precise matching is
achieved, whereas larger regularization values create a very smooth deformation at the
expense of the accuracy of landmark matching. It can be shown that in the case of λ = 0,
when the regularization term does not contribute to the cost function, Eqs. (9) are
mathematically equivalent to Eqs. (4), and the landmarks are perfectly matched.

3. Results
3.1. Registration of synthetic images with three different RBF functions

In this section we compare the results of registration of synthetic images using the Gaussian
function (1), the Wendland ψ-function

(13)

and thin-plate splines (Bookstein 1989).

As it was shown in (Fornefett et al 2001), the shape of the Wendland function (13) closely
resembles the Gaussian function provided that σ and ρ are properly matched. The matching
is defined by the relation σ = ρ/2.63 assuring that integrals over both functions are equal.
Since the shapes of the Gaussian and Wendland functions are very similar, we expect that
they will produce very similar registrations. This property is demonstrated by registering the
synthetic images of Fig. 1(a), where Figs. 1(b) and (c) confirm the nearly identical results
for Wendland and Gaussian RBF. Both functions produce a local registration around the
landmarks and distant parts of the image remain unaltered. In contrast, registration with TPS
demonstrates how the deformation is propagated over the entire image (Fig. 1(d)). Perfectly
matched landmarks guarantee local alignment of the lattice around the outlier but at the
same time global deformation destroys the alignment of the entire image. The calculated

Shusharina and Sharp Page 6

Phys Med Biol. Author manuscript; available in PMC 2014 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vector fields shown in Fig. 1(e)–(g), demonstrate remarkably similar deformations for the
case of Gaussian and Wendland RBF, and a quite different form the case of TPS.

It is therefore evident that for problems that require localized deformations, both Gaussian
and Wendland functions have an advantage over TPS. The use of TPS in this context
requires a uniform landmark distribution throughout the image volume.

As it is known from the clinical practice, in some cases automatic methods fail to register
certain regions within the image. Generally speaking, medical images can be well registered
with an intensity-based method on a large scale, but such a method is often unsuccessful at
aligning large deformations in areas of fine detail. For example, large changes in position or
volume are not generally well aligned for regions with low contrast. Fig. 2 presents cross-
sections of synthetic 3-D images that illustrate this problem using a deformation that greatly
increases the object volume. This mimics registration of full versus empty bladder or
rectum. The automatic B-spline registration does not produce an acceptable result for this
case (not shown), i.e. the lattices on the reference and test images do not match, and
landmark matching using Gaussian RBF improves the registration result significantly, (see
Fig. 2(c)). However, since the volume change is very large, the warped image is stretched
unevenly. Regularization improves the smoothness of the deformation field, as it it seen in
Fig. 2(d). For comparison we show the results of registration using Wendland RBF (Fig.
2(e)) with the appropriately chosen radius (σ = ρ/2.63) and TPS (Fig. 2(f)). Wendland
functions produce the result very similar to the result obtained with Gaussian (cf. Fig. 2(c)
and (e)), but the result of regularized Gaussian is superior to both of them. Since the
landmarks are distributed evenly across the lattice the image warped with TPS is symmetric
(Fig. 2(f)), but has other deficiencies, such as extension of the deformation beyond the fine
lattice.

3.2. Statistical validation of the method
This section is dedicated to validation of our method in statistical terms. We performed a
large number of registrations, using the publicly available sets of pulmonary landmarks
available from the DIR-Lab web site http://dir-lab.com The dataset consists of 4DCT
images, with 300 landmarks manually identified on each image at various time points of the
breathing cycle. These large landmark datasets assume rather global registration which is
beyond the proposed application of the method but they allow for truly statistics-based
conclusions with respect to validity of the method.

In our experiments we evaluate the spatial accuracy of registration on the DIR-Lab data set.
Specifically, we compare the performance of the Gaussian RBF with and without
regularization to the performance of the Wendland RBF and TPS. To assess the effect of
using different numbers of landmarks, we randomly selected M = 1, 2, 4, 6, 8, 10, 15, 25, 50,
75, 100 landmarks out of 300 to be used for registration (“active” landmarks). For each M,
10 different random choices for the set of “active” landmarks were considered. Here, we
present the results of the algorithms applied to 5 pairs of images, corresponding to the
extreme inhalation and exhalation phases from 4DCT images of 5 different patients. These
images are already rigidly aligned, and no coarse registration is required before performing
the RBF registration.

It can be expected that specific spatial arrangements of landmarks can cause the Gaussian
RBF to produce non-diffeomorphic vector fields, especially for a large number of “active”
landmarks. To assess this effect quantitatively, we determine the invertibility of the
displacement field. For each image pair and each set of “active” landmarks, we calculate the
minimum and maximum value of the determinant of the Jacobian matrix of the field, or
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simply Jacobian, over the entire voxel volume. Then, for each M, the values of the Jacobian
were aggregated over the 10 choices of landmarks and 5 pairs of images.

The result of this experiment demonstrates that RBF registration can produce noninvertible
transformations in realistic image registration scenarios. In Fig. 3, we show the minimum
and maximum values of the Jacobian (solid lines) for three different values of σ.
Remarkably, the Jacobian may become negative with as few as 20 landmarks for σ = 25 mm
and with about 40 landmarks for σ = 50 mm. For the larger RBF radius of σ = 100 mm the
Jacobian remained positive. From this result, we conclude that Gaussian RBF-based
registrations can indeed contain singularities and non-invertible areas. The same experiment
was then repeated using registration with regularization (λ = 0.1). In this case the Jacobian
was strictly positive over the entire image volume for all image pairs and all sets of active
landmarks (see dashed lines in Fig. 3). Therefore, regularization of the RBF vector field is
necessary, and our method provides it in the familiar RBF linear equations framework,
ensuring computational efficiency.

To investigate the invertibility of deformation field produced by the Wendland function, we
calculated the minimum value of Jacobian following the same procedure as for the Gaussian
(see above). Fig. 4 demonstrates that the deformation field becomes non-invertible at large
number of landmarks for any choice of theWendland RBF radius. Therefore, we conclude
that despite the fact that the Wendland functions are more efficient computationally than the
Gaussian, they too require regularization to avoid non-invertibility of the resulting field.
However, we are not aware of an exact expression for regularizing Wendland RBF, and it is
very likely that it does not exist due to their finite support.

To quantify the accuracy of registration, in Fig. 5 we plot the registration error (the average
residual distance between the 300 − M “passive” landmarks on the reference and warped
images) as function of the number of “active” landmarks M. The case of M = 0 corresponds
to unregistered images with the error reported in the original papers (Castillo E et al 2009,
Castillo R et al 2009).

Fig. 5 shows that registration accuracy improves as more landmarks are used for
registration. If the number of landmarks is less than about 20, either regularized Gaussian or
non-regularized functions produce identical results. As the number of landmarks increases,
the accuracy of registration becomes different for the two settings. For this dataset, the
accuracy is best if one uses Gaussian RBF with regularization, but both regularized and non-
regularized Gaussian functions outperform TPS. The large TPS registration error for a small
number of landmarks is expected, since the method is designed for global registration with
landmarks uniformly distributed in 3D. The error becomes lower with increasing number of
landmarks and at M ≈ 25 performances of Gaussian function and TPS are comparable.
Interestingly, at larger M, the TPS performance decreases again. For the small numbers of
landmarks, expected in the daily clinical applications, the performance of our method (3.6
mm average registration error for 10 landmarks) is close to the goal of 3 mm stated in the
Introduction.

Since regularization involves a trade off between precision of landmarks matching and
smoothness of the vector field, the limits for the regularization parameter λ have to be
established. In Fig. 6 we plot the registration error and distance between “active” landmarks
as a function of the parameter λ. Indeed, increasing λ improves registration accuracy (see
Fig. 6, solid lines) and worsens the landmark matching (Fig. 6, dashed lines). Both quantities
plateau at λ ≈ 0.2 that is the best choice for the regularization parameter for these images.
As more landmarks and larger RBF radii are used, the regularization becomes more
effective and larger values of λ can be used without degrading the matching accuracy.
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In summary, we have established that the regularized Gaussian RBF consistently produce
better registration accuracy at large number of landmarks (see Fig. 5), and that they can
achieve invertible deformation fields. We believe that regularization reduces the registration
error because the displacement field is smoother, and more closely matches the smooth
anatomic change found in the pulmonary images.

3.3. Application to clinical images
Having validated our method in statistical terms, we will now present representative results
of registration of clinical case images.

The following examples will demonstrate the usefulness of our landmark-based RBF
method as a method for enhancing automatic registration based on a B-spline approximation
algorithm (Sharp et al. 2010). Fig. 7 illustrates a case with poor registration. Brain images
were acquired from different modalities at different times: the reference image is the CT of
2-year old patient (Fig. 7(a)) and test image is the MRI of the same patient at 6 months of
age (Fig. 7(b)). By using the automatic B-spline registration we obtain an image with a
properly aligned and sized skull but misaligned intra-cranial features (see Fig. 7(c)). To
correct the registration we marked two landmarks on the superior boundary of the
cerebellum (shown in Fig. 7(c)) and calculate the RBF field. The combination of both vector
fields results in reasonably good alignment of the feature of interest (Fig. 7(d)). In this case,
corrections to the B-spline registration used only a few, localized landmarks, so we did not
have to use regularization.

In a more complicated case, Fig. 8(a) shows a pre-treatment radiotherapy planning CT of a
patient being treated for small-cell lung cancer with a curative dose of radiotherapy,
delivered fractionally over the course of six weeks. After three weeks of treatment, the
patient received a second CT scan, shown in Fig. 8(b), which demonstrates a significant
response to treatment as well as a posterior shift in the position of the tumor by about 2 cm.
At this point, the physician alters the radiotherapy beam geometry to match the new position
of the tumor, and requests a composite dose distribution that aggregates the dose delivered
to the anatomy seen in 8(a) and (b). Deformable image registration is performed using an
automatic B-spline approximation algorithm (Sharp et al. 2010), but only about 1 cm of the
tumor shift is recovered (Fig. 8(c)). The remaining 1 cm of the tumor shift is recovered by
placing five pairs of corresponding landmarks along tumor boundary. In addition we placed
landmarks to recover positions of the left shoulder blade, the aorta, and ribs. A total of 11
landmarks were used on a single axial slice (see Fig. 8(c) where landmarks in the reference
image are shown in pink and landmarks in the test image, obtained after B-spline
registration, are shown in green). Since many distant landmarks are involved in RBF field
calculation, the regularization term will assure a smooth resulting field without unwanted
foldings in the space between landmarks. The final result of registration with composed B-
spline and RBF vector fields is shown in Fig. 8(d). While the accuracy of registration cannot
be measured as rigorously as in DIR-lab data, visual examination of Fig. 8 and 7 suggests
that our algorithm meets the desired performance of 3 mm landmark position error.

Even more complicated deformations involving large volumeric changes are presented in
Figs. 9 and 10. Here, we applied our method to register CT images of the prostate acquired
at different days during radiation treatment. Fig. 9 represents a case with a largely deformed
rectum and Fig. 10 is a typical example of full vs empty bladder registration. In both cases
the change in size of the rectum or the bladder is not captured correctly by automatic
registration using B-splines (see Figs. 9(c) and 10(c)). Accurate registration is, however,
highly desirable since in these cases the deformations of adjacent organs influences the
position of prostate and may cause it to shift out of the radiation field.
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Landmarks were placed on the prostate, rectum, and bladder using the radiotherapy planning
structures. Each contour was fit to an ellipse, and the landmarks were then evenly distributed
along the contour boundary with radially equal spacing. In Fig. 9(a) one can see the
landmarks placed along the contours of the rectum (yellow) and prostate (white) in the
reference image. The test image with enlarged rectum (Fig. 9(b)) is registered with the
reference image. B-spline automatic registration does not produce an acceptable result for
this case (see Fig. 9(c)). To correct the automatic registration we used landmarks along the
contours in the reference image and the image warped with B-splines by applying the
deformation field build on RBFs. Since the decrease in volume of the rectum was very large,
the deformation field was regularized to assure diffeomorphism of the deformation. As one
can see, the application of our landmark matching algorithm significantly improves the
quality of registration (see Fig. 9(d)).

Figure 10 demonstrates a correction of the automatic registration of the bladder. In this case
the size of a full bladder in the reference image is considerably larger than the size of an
empty bladder in the test image, which causes misalignment of the structure after B-spline
registration (see Fig. 10(c)). After registration with the RBF, the empty bladder is well
aligned with the full bladder as seen in Fig. 10(d). The regularization term ensures
deffeomorphism of the deformation.

To assess an accuracy of the registration quantitatively, we calculated the Dice similarity
coefficient (DSC) (Dice 1945) between manually identified contours on the reference image
and the contours propagated onto warped image using different modes of registration. As
shown in Table 2, the structures remain misaligned after rigid as well as B-spline
transformation, whereas registration with regularized RBF field results in nearly perfect
alignment. Use of RBF field without regularization does not improve, but sometimes even
worsens the registration because of vector field folding. This is illustrated in Fig. 11 where
we show the contour of the bladder obtained by warping the contour with the vector field
obtained by composing the B-spline vector field and RBF vector field. A smooth contour in
Fig. 11(a) corresponds to the regularized RBF vector field and irregular contour in Fig.
11(b) is a result of a non-regularized field.

4. Discussion
The contribution of this paper is the introduction of a fast, exact algorithm for a regularized
vector field from Gaussian RBFs. Our algorithm is exact in the sense that the regularization
term is evaluated analytically, and represents a bilinear form in terms of RBF coefficients.
The algorithm is fast, since the the RBF coefficients αij are found by solving a system of
linear equations (12), rather than by gradient descent minimization. We anticipate that the
key practical application of the algorithm will be to correct imprecise automatic registration
results, or enhance the registration results in areas of low contrast.

One important property of the Gaussian basis is its infinite support. It has been argued (Arad
and Reisfeld 1995, Fornefett et al 2001) that infinite support is not desirable, because each
landmark pair affects the field at every voxel. In contrast, RBFs with local support can
ensure that the extra deformation due to landmarks is exactly zero beyond the radius of
support of the function. Furthermore, an RBF with compact support can be interpolated very
quickly, because each RBF influences relatively fewer voxels. The computational advantage
of the Gaussian RBF comes from the ability to calculate the regularization term analytically.
Unfortunately, analytical calculation of the second-derivative integrals for an arbitrary
number of overlapping Wendland functions is not feasible, as it is impossible to predict the
shape of the intersection of multiple compact supports.
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It is interesting to compare our scheme to that of Rohr et al. (Rohr et al 2001), which
introduces the notion of landmark localization error. Rohr et al. argues that since the
positions of landmarks are not precisely known, it is unnecessary to exactly match the
landmarks, especially where this creates strong gradients of the deformation field.
Accordingly, their cost function consists of two terms, the usual TPS bending energy, and
the sum of Euclidean distances between the landmarks, weighted by the “radius of
uncertainty” in landmark location. As in our case, minimization leads to a system of linear
equations, and the resulting vector field is a tradeoff between smoothness and exactness of
landmark matching. However, there are fundamental differences between our approach and
that of Rohr et al. In our case, the radius of influence of each RBF is explicitly controlled by
choosing the width σ of the Gaussian function. Amplitudes of each RBF are then found to
balance between good landmark matching and smoothness of the vector field. In the Rohr et
al. algorithm, the basis functions are the TPS, with infinite support and no control parameter
for the radius of influence. The minimization procedure should then result in decreased
amplitudes of the TPS centered on landmarks whose positions are poorly known, to
minimize the contribution of ill-defined landmarks to the vector filed.

Having an explicit parameter σ to control the radius of influence of point landmarks is an
advantage of our method. While both methods produce a regularized vector field by solving
a system of linear equations, there is no guarantee that suppressing the TPS amplitude would
confine the influence of a particular landmark to a well-defined area. It is also not very clear
how one would determine the relative landmark localization errors that match an interactive
user’s expectations. In contrast, our approach provides the user with two control parameters,
σ and λ one of which has the obvious meaning of the RBF radius, and the other is a control
for smoothness. As presented here, our algorithm assumes that all landmarks have the same
(zero) landmark localization error. An error term could be easily incorporated, by
appropriately weighting the squared distances terms in 8, just as in (Rohr et al 2001). Such
an extension would preserve the structure of all the equations, and so would not result in any
speed or memory penalty. However, considerable effort will be required to develop the
methods of estimating landmark localization errors for each medical application.

Our method of regularization of the RBF-based vector fields is completely general in the
sense that it can be applied to any RBF with infinite support. The calculation of the
regularization matrix Aij for the Gaussian RBF, presented in the Appendix, can be repeated
for other choices of RBF given that they are infinite in space. In the case where the integrals
are too cumbersome or impossible to evaluate exactly, they can be approximated
numerically. Since this should be done only once for a given type and radius of RBF,
registration of large numbers of images is very fast as compared to any numerical
minimization procedure, because it requires only to solve the system of 3M linear equations
(9) for each pair of test and reference images.

Invertibility of the registration transformation requires its Jacobian to maintain the same sign
(usually positive) within the image, and we have shown experimentally that RBF-built
displacement fields are usually invertible. At present, we are not aware of any analytic
method to incorporate constraints on the Jacobian in the RBF registration. The Jacobian is
trilinear in 3D, rather than bilinear, with respect to the coefficients αip, which makes it hard,
if not impossible, to constrain while obtaining the RBF coefficients αip from a system of
linear equations. However, we demonstrate that a penalty on the square of second
derivatives of the displacement field can produce smooth and invertible fields while being
very efficient computationally.
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5. Conclusions
We have developed a practical method for correction and repair of automatic image
registration results. In the intended clinical application, misregistered regions are visually
identified, landmarks are manually placed, and the algorithm will produce a correcting
vector field with several highly desirable properties. First, due to the choice of Gaussian
RBFs, the corrections will be localized to misregistered areas, given that the Gaussian width
is chosen accordingly to the desired extent of the correction. Second, since the vector field is
regularized, it is easy to achieve the invertibility and smoothness of the transformation.
Importantly, our technique employs a novel analytic regularization method, which does not
require gradient descent or other numerical optimization, but calculates the RBF coefficients
for a regularized vector field by solving the system of linear equations. Therefore, our
method is highly computationally efficient, can be generalized to any type of RBF with
infinite support, and easily incorporates into existing software.

Using large, publicly available datasets, we statistically validated our method, and showed
the importance of regularization when registering images with large numbers of landmarks.
The performance of the method was close to a clinically desirable goal of 3 mm error in
landmark position. Furthermore, we provide clinical examples of brain, lung, prostate and
rectum images, where our method has successfully repaired automatic B-spline registrations.
We hope that our general analytic scheme of RBF regularization will prove useful in other
contexts of medical image registration.
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Appendix
The displacement value of the deformation field along x-axis (x-component of the
deformation field) at a position r⃗ is given by a linear combination of radial basis functions:

(A.1)

where r ⃗Ri is a position of ith landmark on the reference image. To evaluate the regularization
term, (5), we substitute (A.1) into (5). Note that (5) conveniently splits into a sum of second-
order partial derivatives and mixed partial derivatives, which can be evaluated separately.
Furthermore, we can interchange the order of summation over the RBFs in (A.1) and
summation (integration) over the entire volume in (5).

To simplify notation, let us introduce the distance vector between two landmarks a⃗ij as

(A.2)

and the distances ρ = |ρ⃗|, ρi = |r⃗ − r⃗i|, ρj = |r⃗ − r⃗j|, and finally ρaij = |r⃗ − a⃗ij|.

Then, the second-order partial derivative term consists of two parts, one of which (I1)
depends only on RBF shape, and the other (I2) depends also on the distances between pairs
of landmarks aij (A.3):

(A.3)

Similarly, the mixed partial derivatives read

(A.4)

Up to this point our expressions are general. For the Gaussian function
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(A.5)

we obtain

(A.6)

so

(A.7)

The Integrals I1 and I2 in (A.3) are written as follows:

(A.8)

and

(A.9)

Using the integrals

(A.10)

(A.11)

(A.12)

we obtain the following result for I1:

(A.13)

Calculation of I2,xx is very similar, as (A.9) can be rewritten

(A.

14)
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After the change of variables u = x − ax/2 and factorization we obtain

(A.15)

where a ≡ ||aij|| is the distance between landmarks i and j. Thus, the sum I2,xx + I2,yy + I2,zz is
equal to

(A.16)

The sum of mixed partial derivatives also splits into two parts (14).

For the Gaussian function the mixed partial derivative reads

(A.17)

so

(A.18)

Using polar coordinates for the second integral in (A.18) we get

(A.19)

so

(A.20)

The fourth type of integrals can be evaluated in a similar fashion:

(A.21)

After change of variables one has to evaluate the integral

(A.22)

and obtain the result
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(A.23)

Using Eqs. (A.13, A.15, A.20, A.23), we finally obtain

(A.

24)

The latter expression can be factorized, and after adding y- and z-components we arrive at
the equation (6) (up to a constant factor).
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Figure 1.
Results of global RBF registration of 3D synthetic images. (a) Overlaid reference (red) and
test (blue) images. 6 pairs of corresponding landmarks are indicated by yellow circles and
green triangles; (b) result of registration using Gaussian RBF with the radius σ = 50mm; (c)
result of registration using Wendland RBF with the radius ρ = 131mm (≈ 2.63 × 50); (d)
result of registration using TPS; (e) – (g) deformation vector fields calculated for the cases
(b) – (d) correspondingly. The size of the images is 440 × 440 mm. No other registration
was used before applying RBF.
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Figure 2.
Results of registration of 3D synthetic images. (a) reference image; (b) test image; (c)
registration using 16 landmarks and Gaussian RBF with σ = 38 mm; (d) same as in (c) with
regularization; (e) registration using 16 landmarks and Wendland RBF with ρ = 100 mm; (f)
registration using 16 landmarks and TPS. The size of the images is 220 × 220 mm.
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Figure 3.
Minimum and maximum values of the Jacobian of the test-to-reference image
transformation as a function of the number of landmark pairs used for Gaussian RBF field
calculations. Different values of σ are tested on 5 sets of images acquired form 5 different
patients. Solid lines are the results for registration without regularization, dashed lines are
for registration with regularization (λ = 0.1).
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Figure 4.
Minimum values of the Jacobian of the test-to-reference image transformation as a function
of the number of landmark pairs used for Wendland RBF field calculations. Different values
of ρ are tested on 5 sets of images acquired from 5 different patients.
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Figure 5.
Registration error as a function of the number of landmark pairs used in RBF field
calculations. Different algorithms are tested on 5 sets of images acquired form 5 different
patients. The result for non-regularized Gaussian RBF with σ = 50 mm is shown in blue and
for regularized Gaussian RBF with σ = 50 and λ = 0.1 is shown in green; result for TPS is
shown in red.
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Figure 6.
Registration error as a function of regularization parameter, λ. Different parameters are
tested on 5 sets of images acquired form 5 different patients. Blue lines: number of “active”
landmarks M = 50 and σ = 50 mm; green lines: M = 50 and σ = 100; red lines: M = 75 and σ
= 50. The distances between “passive” landmarks (accuracy of registration) are shown by
solid lines, the distances between “active” landmarks (mismatch error) are shown by dashed
lines.

Shusharina and Sharp Page 23

Phys Med Biol. Author manuscript; available in PMC 2014 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
(a) Reference image (CT); (b) test image (MRI); (c) result of automatic B-spline registration
of the MRI image onto the CT image; (d) B-spline algorithm and subsequent application of
Gaussian RBF with σ = 35 mm for landmark matching.
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Figure 8.
Results of registration of two CT images of the lung obtained before and during treatment.
(a) The image obtained before treatment (test image); (b) the image obtained during
treatment (reference image); (c) result of automatic B-spline registration of the test image
onto the reference image, 11 pairs of landmarks are placed in the referenced and warped by
B-spline images; (d) result of registration by B-spline algorithm and subsequent application
of Gaussian RBF with σ = 15 mm and λ = 0.1 for landmark matching.
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Figure 9.
(a) Reference image with empty rectum, the landmarks are place along the contours of
prostate (white) and rectum (yellow); (b) test image with full rectum; (c) result of automatic
B-spline registration of the test image onto the reference image, mismatched contours of
landmarks are shown in red and green; (d) result of registration by B-spline algorithm and
subsequent application of Gaussian RBF with σ = 10 mm and λ = 0.5 for landmark
matching.
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Figure 10.
(a) Reference image with full bladder; (b) test image with empty bladder; (c) result of
automatic B-spline registration of the test image onto the reference image, mismatched
contours of landmarks are shown in red and green; (d) result of registration by B-spline
algorithm and subsequent application of Gaussian RBF with σ = 15 mm and λ = 0.7 for
landmark matching.
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Figure 11.
Result of registration of the bladder and contour propagation with composed B-spline and
RBF vector field (a) with regularization; (b) without regularization.
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Table 2

Dice coefficient (DSC) for the contours of the structures shown in Figs. 9 and 10

Transformation to warp DSC DSC

Rectum Prostate

rigid 0.56 0.53

B-spline 0.61 0.59

RBF without regularization 0.54 0.86

RBF with regularization 0.9 0.91

Bladder Prostate

rigid 0.56 0.80

B-spline 0.64 0.80

RBF without regularization 0.70 0.62

RBF with regularization 0.87 0.92
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