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Abstract    

Background: Oral submucous fibrosis  (OSF) is a pre‑cancerous condition with 
features of chronic, inflammatory and progressive sub‑epithelial fibrotic disorder of 
the buccal mucosa. In this study, malignant potentiality of OSF has been assessed by 
quantification of immunohistochemical expression of epithelial prime regulator‑p63 
molecule in correlation to its malignant (oral squamous cell carcinoma [OSCC] and 
normal counterpart  [normal oral mucosa  [NOM]). Attributes of spatial extent and 
distribution of p63+  expression in the epithelium have been investigated. Further, a 
correlated assessment of histopathological attributes inferred from H&E staining and 
their mathematical counterparts (molecular pathology of p63) have been proposed. The 
suggested analytical framework envisaged standardization of the immunohistochemistry 
evaluation procedure for the molecular marker, using computer‑aided image analysis, 
toward enhancing its prognostic value. Subjects and Methods: In histopathologically 
confirmed OSF, OSCC and NOM tissue sections, p63+  nuclei were localized and 
segmented by identifying regional maxima in plateau‑like intensity spatial profiles of 
nuclei. The clustered nuclei were localized and segmented by identifying concave points 
in the morphometry and by marker‑controlled watersheds. Voronoi tessellations were 
constructed around nuclei centroids and mean values of spatial‑relation metrics such 
as tessellation area, tessellation perimeter, roundness factor and disorder of the area 
were extracted. Morphology and extent of expression are characterized by area, 
diameter, perimeter, compactness, eccentricity and density, fraction of p63+ expression 
and expression distance of p63+  nuclei. Results: Correlative framework between 
histopathological features characterizing malignant potentiality and their quantitative 
p63 counterparts was developed. Statistical analyses of mathematical trends were 
evaluated between different biologically relevant combinations:  (i) NOM to oral 
submucous fibrosis without dysplasia (OSFWT) (ii) NOM to oral submucous fibrosis 
with dysplasia  (OSFWD)  (iii) OSFWT‑OSFWD  (iv) OSFWD‑OSCC. Significant 
histopathogical correlates and their corroborative mathematical features, inferred 
from p63 staining, were also investigated into. Conclusion: Quantitative assessment 
and correlative analysis identified mathematical features related to hyperplasia, cellular 
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INTRODUCTION

Oral carcinoma is reported as a global health priority 
especially for the developing world and registers an 
annual incidence rate of over  263,900 new cases and 
over  128,000 mortality.[1,2] Pathogenesis of this cancer is 
often associated with progression through pre‑cancerous 
lesions such as leukoplakia, erythroplakia, lichen 
planus etc., or through conditions like oral submucous 
fibrosis  (OSF).[3] Among these pre‑cancers, OSF is a 
high risk condition with prevalence of 0.3‑3.2% in the 
Indian population and contributing to over one‑thirds of 
all oral pre‑cancers progressing into oral squamous cell 
carcinoma  (OSCC).[4] OSF is a chronic, inflammatory 
and progressive fibrotic disorder of the oral mucosa.[5] 
Progression of OSF into carcinomatous conditions is often 
through dysplastic changes in the epithelial architecture. 
Dysplasia is associated with disturbance in the epithelial 
architecture and increased atypical manifestations in the 
cells constituting the squamous layer. OSF is graded into 
oral submucous fibrosis without dysplasia  (OSFWT) 
and oral submucous fibrosis with dysplasia  (OSFWD) 
based on histopathological findings of the architectural 
changes, loss of cellular maturation and stratification 
with a loss of cell‑cell adhesion, cellular polarity, 
hyperplasia of basal cells, change in rete ridge shapes 
and thickness of basement membrane.[6] Despite the 
development of molecular markers for its assessment, 
the understanding of OSF’s malignant potentiality and 
the mechanism responsible for its transformation is still 
not completely known and remains an open topic for 
investigation.[7]

In the context of assessment of malignant potentiality of 
OSF, proteomic study of epithelial master regulator – p63 
has improved understanding of the state of progressive 
maturation process of epithelial cells in normal and 
disease conditions. This has been instrumental in 
resolving diagnostic ambiguities in the assessment of 
OSF.[8] p63 protein is responsible for maintaining the 
turnover and regulation of epithelial cell related to its 
proliferation, stratification, differentiation, maintenance 
and maturation of the oral squamous epithelium.[9] It 

promotes the viability and maintenance of basal epithelial 
and cancer cells and specifies the epithelial cell 
lineage promoting squamous differentiation. The 
expression pattern of p63 molecule is evaluated through 
immunohistochemistry  (IHC) studies and its altered 
expressional state is a molecular signature predisposed 
toward malignancy.[8]

Computerized image analysis (CIA) based assessment of 
immunostaining pattern enables objective interpretation 
and quantification for differential diagnosis of the state 
of pathology elucidated by the tissue being investigated. 
Yaziji and Barry in their investigations on Diagnostic 
Immuhistochemistry reported the main biases in 
conventional methods of semi‑quantitative diagnostic 
reporting viz. reaction bias (in specimen fixation, tissue 
processing, antigen retrieval and detection system) and 
interpretation bias (in the selection of antibody panels, 
sensitivity of the chosen panel, choice of antibody types 
and clones, results and literature interpretation).[10] In 
this context, CIA has been identified as an approach 
which can lead to wider applicability and standardization 
of IHC procedures. This approach is reported as immune 
to subjectivity and intra‑  and inter‑observer bias of the 
Pathologist and is higher than conventional methods in 
terms of precision and quantitative reproducibility.[11,12]

Immunochemical reactivity has been reported within 
cells  ‑  in nucleus, membrane or cytoplasm or in the 
stroma. Assessment of the reactivity is conventionally 
two‑fold, in relation to its intensity, or in relation 
to its extent; or both.[12] In the present work, p63 
IHC expression has been observed to have attributes 
related to both intensity and the extent of expression. 
This expression has been established to augment the 
understanding of the altered state of arrangement, 
distribution, differentiation, maturation and population 
of the oral epithelial cells in atrophic or dysplastic 
conditions of OSF.[8,11] The phenotypic signatures of IHC 
expression related to its intensity are well‑investigated 
and it has been conclusively reported that it increases 
during the progression of the disease  (from normal to 
severe dysplasia).[8]

stratification, differentiation and maturation, shape and size, nuclear crowding and 
nucleocytoplasmic ratio. It is envisaged that this approach for analyzing the p63 expression 
and its distribution pattern may help to establish it as a quantitative bio‑marker to 
predict the malignant potentiality and progression. The proposed work would be a value 
addition to the gold standard by incorporating an observer‑independent framework for 
the associated molecular pathology.
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In the present work, the attributes on the spatial 
extent and distribution of the positive p63 expression 
in the affected epithelium have been investigated. The 
p63 molecular expression is predominantly nuclear 
and the presented approach reports a selected pool 
of computer extracted biologically relevant features, 
which would act as mathematical bio‑markers and 
are aimed at characterizing object‑level shape and 
morphology, the distribution density and spatial 
arrangement.[13] The spatial arrangement is assessed 
by constructing topological graphs  (Voronoi spatial 
tessellations) using graph‑theoretic approaches.[14] Using 
the constructed graph, spatial‑relation metrics are 
automatically extracted, which characterize the tissue’s 
pathological state and degree of tissue dysplasia. This 
subset of biologically potential mathematical biomarkers 
would help to reduce the ambiguity and augment 
specificity of our understanding of alterations in the p63 
distribution pattern as disease progresses through OSF 
into carcinoma. It is envisaged that investigating OSF 
using these mathematical features would reduce inter 
and intra‑observer variability associated with assessment 
of dysplasia, over and under grading of disease level 
and subjectivity in qualitative image analysis. The novel 
points about the proposed framework are as listed below
1.	 Value‑addition to existing qualitative analysis of IHC 

expression of nuclear stains like p63.
2.	 Establishment of p63 as a reliable biomarker for 

assessment of malignant potentiality of OSF.
3.	 Increased prognostic value over classical histology for 

better reliability and reproducibility of results and 
associated inferences.

4.	 Increased robustness for assessment due to reduced 
methodological bias and reduced intra and inter 
observer variability.

5.	 First work on quantitative assessment of the extent 
and spatial arrangement of p63+  nuclei using graph 
theory in the context of OSF.

6.	 Extension of understanding of classical histopathological 
attributes for OSF assessment in the context of a 
correlative framework with quantitative features 
characterizing molecular pathological signatures.

The scope of the presented work is to improve the 
prognostic value of the histopathological findings by 
corroborating crucial molecular pathology attributes  (as 
p63 is a master regulator of oral stratified epithelium) 
which has a significant impact in indicating 
alteration/deregulation in the homeostatic control 
of the oral stratified epithelium. The work is also 
aimed at improving the prognostic judgments of 
expert pathologists by providing a knowledgebase of 
observer‑independent feature trends associated with 
different stages of OSF as inferred by computational 
image analysis and feature extraction on the IHC 
stained image being investigated.

SUBJECTS AND METHODS

Sample Collection
For the present study, a total of 61 incisional oral biopsy 
specimens were collected and histopathologically graded 
by expert pathologists. Among these, 42  specimens were 
confirmed as OSF with 22 graded as OSFWD and 20 
as OSFWT. The OSCC was confirmed in 9  samples. 
Further for constituting a control study group, 10 
tissue specimens were surgically excised as superfluous 
tissues during trans‑alveolar and intra‑alveolar root‑canal 
extractions. The normal oral mucosa  (NOM) tissue 
samples form the control group while the specimens 
graded as OSF form the case group. The above biopsies 
were performed at the Guru Nanak Institute of Dental 
Science and Research  (GNIDSR), Kolkata, India. It 
was ensured that the specimens were collected under 
informed consent of patients and adhering to the ethical 
clearance of GNIDSR (GNIDSR/IEC/07/15).

The inclusion/exclusion criterions for specimen collection 
are as follows: All patients had deleterious oral habits 
such as smoking tobacco, chewing betel quid, areca nut 
etc., and presented characteristic clinicopathological 
symptoms of OSF; samples were histopathologically 
confirmed by oncopathologists and co‑morbid samples 
were excluded; the minimal sub‑epithelial thickness 
devoid of inflammation was set heuristically at 50  µm 
and non‑compliant samples were excluded. The samples 
graded as dysplastic were confirmed to at least one of 
the following diagnostic features such as polymorphism, 
dyskeratosis, mitosis in supra‑basal layer or atypical mitosis.

Tissue Processing
H&E Staining (Histopathological Gold Standard)
The excised tissue samples were fixed in 10% phosphate 
buffered formalin and processed for obtaining 5  µm 
thick paraffin sections and subsequently placed on 
albumin‑coated  (chicken‑egg) glass slide. Following this, 
the slides were de‑paraffinated by 10‑20  min of xylene 
treatment. These sections were stained with Harris’ 
Hematoxylin  (Cat. No. AG2AF62372, Merck, Mumbai, 
India) and counter‑stained with eosin  –  yellowish  (Cat. 
No. MI7M572117, Merck, Mumbai, India).

p63 IHC Staining
An adjoining tissue section was microtomed and 
subsequently placed on poly‑L‑lysine  (Cat. No. P8920, 
Sigma Aldrich, St Louis, Missouri, USA) coated 
glass slides for p63 IHC staining. This tissue sections 
were subsequently baked for 1  h at 60°C for better 
attachment with the slides followed by 10‑20  min 
xylene treatment for de‑paraffinization and sections 
were then subjected to antigen retrieval  (EZ‑Retriever 
System V.2, BioGenex, San Ramon, CA, USA) in 10 mM 
Tris‑ethylenediaminetetraacetic acid buffer  (pH  9.0) for 
20  min. Subsequently, the sections were immunostained 
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using the IHC kit  (Super Sensitive™ Polymer HRP IHC 
Detection System Cat. No: QD420 ‑ YIKE BioGenex, San 
Ramon, CA, USA). The immunostained sections were 
then incubated at 37°C for 1  h with primary antibody 
(Anti‑p63, human specific, monoclonal, EPR5701, 
Cat. No.  5353‑1) in 1/500 dilution. Binding of primary 
antibody was detected by a HRP conjugated secondary 
antibody using the chromogen 3,3’diaminobenzidine 
and counterstained with Harris’ Hematoxylin  (Cat. No. 
AG2AF62372, Merck, Mumbai, India).

Slides Digitization and Pathological Grading
The images were grabbed manually using a bright field 
inverted microscope  (Zeiss Observer. Z1, Carl Zeiss, 
Germany) under × 10 A‑plan objective (NA 0.25, with final 
magnification  ×  100) with a resolution of 0.63  µm. The 
images were digitized to a pixel range of 1388 × 1040 pixels 
using the charge‑coupled device‑camera  (AxioCamMRc, 
pixel size 6.45  µm  ×  6.45  µm). The image grabbing 
and pre‑processing software package was inbuilt into the 
support AxioVision 4.7.2  (Carl Zeiss, Germany) software 
platform. The pre‑processing protocol included shading 
correction and auto‑white balance to ensure consistency 
in image quality and chromogenic attributes. The grabbed 
images were evaluated for their suitability for the present 
study by the expert pathologists. The selected images were 
annotated with appropriate disease grading and pooled into 
four major study groups: NOM, OSFWT, OSFWD and 
OSCC.

Image Analysis Framework
Prerequisite to quantitative assessment of nuclei 
morphology, density and spatial arrangement is proper 
localization and faithful segmentation of the structures 
of interest  (i.e.  the nuclei with positive expression). For 
the proposed framework, the complete image analysis 
schema for processing the input p63 image to extract 
the associated representative feature set is graphically 
illustrated in Figure  1. The proposed schema for a 
localized structural segmentation of p63+  nuclei was 
organized into the following sub‑modules  (Image 
pre‑processing and conditioning; tissue classification 
and region of interest extraction; nuclei localization 
and segmentation; segregation of aggregating nuclei) as 
discussed in the subsequent sections.

Image Pre‑processing and Conditioning
Prior to quantitative image analysis of histochemical 
images, normalization of images to a standard color 
scheme is required to minimize differences due to 
staining and illumination conditions during image 
scanning  (such as exposure time, sample illumination 
intensity and user‑defined white‑balancing settings). 
Chroma‑information associated with in IHC images 
was preserved in this image enhancement procedure as 
it was generally related to degree of expression of the 
target molecule. Therefore, in the proposed framework 

inter and intra‑observer variability in staining and 
scanning was standardized using a chroma‑preserving 
histogram‑equalization framework. The original image 
acquired in the RGB color space was transformed 
into CIELa*b* color space. This color space optimally 
separated the luma component L from the chroma 
components a* and b*, thus facilitating normalization of 
illumination and preserving the color information.[15] In 
the proposed framework, the image appearance and quality 
were normalized using global histogram equalization 
based contrast enhancement. The L component of the 
corresponding La*b* channels was histogram equalized 
to render Leq  (equalized L‑channel), which was in turn 
used to get back the RGB color space using the inverse 
transformation  (CIELa*b* to RGB). This proposed 
method has been observed to improve the contrast and 
enhance their white‑balance of poorly illuminated images, 
thus increasing the information content  (entropy) and 
enhancing the global visual appearance. The flow for a 
pre‑processing of randomly‑selected poorly illuminated 
image is illustrated in Figure 2a and b. There is an overall 
improvement in the perceptual quality of the image and 
the structures of interest (i.e. positive nuclei).

Following the histogram based color‑preserving contrast 
enhancement, the maximal contrast image plane best 
suited for nuclei segmentation was to be extracted. 
The nuclei correspond to the brown‑channel, which 
was not associated with any of the pure RGB channels 
or their complementary CMY channels. Investigations 
into dimensionality reduction methods, established that 
multi‑level dominant eigenvector estimation using the 
Karhunen‑Loùve Transform produced the plane best 
suited for nuclei segmentation. Figure 2b and c illustrated 
the maximal contrast plane estimation on a randomly 
selected image using the proposed framework. This 
procedure preserved over  97.6% variance of the image 
contrast and thus effectively compressed the available 
multi‑channel information into a single unified channel.

The maximal variance image was further filtered using 
edge‑preserving bilateral range and domain filtering to 
suppress any image compression artefacts, impulse noise 
and Gaussian noise. This method has been established 
to preserve edges as it effectively combines the local 
information derived from geometric closeness  (measured 
using Manhattan distance) and their photometric 
similarity. This filter algorithm is discussed in detail in[16] 
and its technical design and implementation aspects are 
beyond the scope of the presented work. The optimal 
parameters for filter producing the maximal average 
Peak‑Signal‑to‑Noise Ratio  (PSNR) of 42.32  dB  (Average 
Original PSNR value: 33.21  dB) was observed for 
geometric filter parameter σr  =  30 and domain filter 
parameter σd  =  10. This filtering procedure generated 
a filtered maximum‑variance preserving image, which was 
used in further processing stages for nuclei extraction.
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Tissue Classification and Region of Interest 
Extraction
In the presented work, analysis of epithelial dysplasia 
in OSF is performed in a region of interest selected and 
labeled by an expert oncopathologist. The region of interest 

encompassed the complete epithelial thickness between the 
basement membrane and the stratum corneum as shown in 
Figure 3. For ease of selection, the expert used a free‑hand 
selection tool to label out in a rough fashion, which was 
further fine‑tuned automatically. This fine‑boundary 

Figure 1: Framework for analysis and quantitative feature extraction from p63 immunohistochemistry images
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extraction procedure required accurate segmentation of the 
basement membrane, which was performed using a learning 
model‑based tissue classification approach. Basement 
membrane was structurally located at the interface between 
the epithelium and the sub‑epithelial regions of the tissue. 
Thus by extracting these tissue regions we could extract 
the shared boundary, which corresponds to the basement 
membrane. For tissue classification, the expert selected 
tissue‑specific seed regions are used to learn a Gaussian 
Mixture Model for tissue classification into three‑classes: 
Epithelium, Sub‑Epithelium and Background. The model’s 
tissue feature descriptors were defined for the CIELa*b* 
color space and comprised of intensity  (L‑channel), 
chroma  (a*‑channel and b*‑channel) and local texture 
descriptors  (Range and Standard Deviation filters in a 
5  ×  5 window). The theoretical framework for GMM 
is presented in detail in Permuter et  al., 2006 and is 
beyond the scope of the presented work. The learnt 
GMM model is applied to the unlabeled tissue regions 
and the corresponding tissue labels are allotted based on 
a Bayesian maxima a posteriori criterion.[17] The extracted 
tissue regions were further morphologically processed for 
removing stray tissue regions, fill holes and smoothen the 
tissue boundaries. The common boundary pixels between 
the epithelium and the sub‑epithelium tissue regions were 
extracted and labeled as the basement membrane. The 
manually selected freehand region of interest was boundary 
limited by the epithelial tissue regions as obtained from the 
tissue classification procedure and the extracted epithelial 
region of interest was considered further for nuclei 
localization and segmentation procedures [Figure 4].

Epithelial Thickness Measurement in the Region 
of Interest
The epithelial thickness of the oral mucosa is maintained due 
to interplay of factors governing the epithelial stratification 
such as proliferation, differentiation and apoptosis.[18] The 
epithelial thickness was measured specific to each region of 
interest and was evaluated as the mean value between the 
maximum and minimum margin between the basement 
membrane boundary and the stratum corneum layer 
measured in the direction of cellular stratification.

MaximumEpithelialThickness+
MinimumEpithelialThicknessMean EpithelialThickness=

2

Nuclei Localization and Segmentation
In the proposed framework, the nuclei with positive 
expression of p63 in the IHC image were to be localized 
and faithfully segmented in the extracted epithelial 
region of interest. In the filtered maximum variance 

Figure 2: Schema for color normalization, non-uniform illumination correction and maximum variance image generation from filtered 
enhanced image using Karhunen-Loùve transform

Figure 3: Epithelial thickness measurement in the region of interest

Figure 4: Plateau-like intensity spatial profiles of positive nuclei as 
observed in a randomly selected nuclei region within the maximum 
variance preserving image

d c

ba
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image, nuclei were often observed as regional maxima 
with a plateau of high intensity pixels. This was best 
illustrated by Figure  4a‑d where the nuclei sample 
intensity profile in the highlighted sample region of 
the original image was shown. Nucleus boundary is 
defined as the point of maximal color intensity slope 
and intensity lesser than the full‑width half maximum 
value of the intensity values observed in the nuclei 
plateau region. For such cases, the nuclei of interest were 
suitably extracted using the extended maxima transform 
that finds the regional maxima of the nuclei and 
searches iteratively for a possible nuclei boundary as per 
the initialized threshold difference value.[19 ] Further, the 
non‑nuclear components and partially overlap nuclei were 
filtered by area closing and hole filling. The segmented 
image at this stage was presented to the expert user for 
visual‑evaluation of the segmentation performance. If 
the nuclei were observed to be over segmented/highly 
cluttered, the extended maxima threshold was increased 
and for under segmented nuclei it was decreased and 
the above processes were repeated until visually‑optimal 
nuclei segmentation reached.

Segregation of Aggregating Nuclei and Resolving 
Overlap
The proposed segmentation framework has to be further 
augmented with a nuclei segregation schema for resolving 
marginally overlapping nuclei. This procedure finds an 
optimal bounding line between touching nuclei at the 
sides of the touching zones. Such a potential boundary 
extraction was performed using a two‑fold approach 
comprising of geometric and intensity based segregation 
procedures. The geometric approach utilized the 
overlapping nuclei morphometry to determine potential 
touching points, which were resolved using concavity 
analysis  [Figure  5a‑d]. True concave points were 
determined on the basis of concavity degree and concavity 
weight defined in Kong et  al., 2011. The procedure to 
obtain the potential points and to determine boundaries 
was discussed in and its application to the problem was 
illustrated in Figure 5a‑d. This procedure was observed to 
effectively segregate nuclei with  <30% marginal overlap, 
which preserved the boundary‑concavity.

For nuclei where the degree of overlap was higher than the 
threshold for geometric segregation, the above procedure 
may fail to find plausible boundary points. To resolve overlap 
in such nuclei, the well‑established marker‑controlled 
watershed algorithm was used, which utilized the 
complement of the intensity information derived from 
the maximum variance image to find potential watershed 
segmentation lines between the overlapping nuclei.[20 ] The 
final composite nuclei segregation procedure combined the 
geometric and intensity based segregation procedures and 
produces a more robust nuclei segmentation performance. 
Figure  5 illustrated this proposed nuclei segregation 
procedure in a sample aggregated nuclei randomly selected 

for the p63 image database. In Figure 5e and f, the cluster 
1 where the marginal overlap was high, had been resolved 
by the intensity based marker‑controlled watershed method 
while the other nuclei clusters 2‑5 were segregated using 
geometric concavity analysis.

Feature Extraction for Quantitative Assessment
For quantitative assessment of pro‑malignant attributes 
inferred from p63+  nuclei in OSF, it is a common 
practice to extract and evaluate biologically potential 
features. These features would act as mathematical 
bio‑markers and are aimed at characterizing object‑level 
shape and morphology, the distribution density and 
spatial arrangement.[14] Such a framework would reduce 
inter and intra‑observer variability associated with 
assessment of dysplasia, the over and under grading of 
disease and subjectivity of qualitative image analysis.[11,12] 
The following sub‑sections elicit the associated feature 
extraction procedures of three kinds of features: Graph 
theoretic features for spatial arrangement, nuclei 
morphology features and nuclei density (ND) features.

Graph Theoretic Features for Spatial Arrangement
The evaluation of tissue architecture with respect to the 
distribution of p63+  nuclei provided reliable insights 
about the degree of malignant potentiality in the selected 
region of interest of the epithelium. These features 
quantitated the spatial arrangement of the p63+  nuclei 
and assessed the degree of topological closeness and 
similarity considering the surrounding matrix.[17,19] In 
the proposed framework, topological graphs  (spatial 
tessellations) were constructed to derive phenotypic 
signatures of the tissue’s pathological state and computed 
spatial‑relation metrics used for dysplasia analysis. The 

Figure 5: Schema for concavity analysis for geometric overlapping 
nuclei segregation (a-d) and composite geometric (concavity-
analysis) and intensity (marker-controlled watershed) based nuclei 
segregation shown on randomly selected nuclei clusters (e and f)

dcb

f

a

e
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major steps in graph construction and feature extraction 
were described in the following subsections.

2‑D Spatial Tessellation Construction
The constructed topological graph should preserve 
nuclei architecture information such as clustering of 
nuclei, connectivity and the inherent complexity of the 
distribution pattern. For the present application, Voronoi 
Spatial Tessellation was used due to its established 
topology preserving structure and the biological 
potentiality of the associated graph‑theoretic features for 
assessing the spatial arrangement.[13]

The presented framework, considered the region of 
interest R to be bounded by boundary B. This region 
of interest consisted of NR pixels and K nuclei. The 
associated nuclei centroids were 1 2, , k

n n nC C C  The main 
stages in graph construction were.

Node Identification
The Voronoi tessellation seed points correspond to 
nuclei centroids, which act as the nodes for building the 
graph. The centroids are representative of the nuclei’s 
spatial arrangement and graph‑construction around 
these would preserve the architectural topology and the 
global connectivity information entailed in the graph.[13] 
The nuclei centroids were highlighted with yellow plus 
markers in Figure  6, which depicted the Voronoi graph 
components and features.

Edge Establishment
The field of area limited by the boundary pixels B, is 
divided into a set of polygons P  =  {P1, P2, P3...PK}, each 
associated with one p63+  nucleus  (graph node). Any 
pixel c in this boundary limited region R belonged to the 
Voronoi polygon Pz where

argmin  where 

Euclidean distance between  and 

k kz c c c cn nK
kc cn

= − −
∀

=

These convex polygons intersected with each other as 
shown in Figure  6, leading to family of Voronoi Edges 
associated with each polygon EK.

Tessellation Feature Extraction
After constructing the Voronoi Tessellation of the nuclei 
pattern in the region of interest, the following features 
were extracted to assess the nuclei spatial arrangement.[13] 
These features included mean tessellation area  (MTA), 
mean tessellation perimeter  (MTP), tessellation disorder 
of area  (TDA) and average roundness factor  (ARF). The 
associated descriptions and mathematical formulations 
were tabulated in Table  1. As metrics quantifying spatial 
arrangement of nuclei are highly dependent on the 
epithelial thickness, they have to be rescaled to a standard 
thickness value for comparative evaluation. The scaled 
nuclei spatial arrangement features were mathematically 
derived from original features as shown below:

2
ScaledMean Tesselation Area Standard Epithelium Thickness

 
Original Tesselation Area       Observed Epithelium Thickness

=  
×   

ScaledMean Tesselation Perimeter Standard Epithelium Thickness
Original Tesselation Perimeter       Observed Epithelium Thickness

=  
×   

1

Scaled

Mean Tesselation Roundness
Standard Epithelium Thickness

 Factor
Observed Epithelium Thickness

Original Tesselation Perimeter

− 
= ×   

Nuclei Morphological Features Extraction
Quantifying the nuclei shape and size features is relevant 
towards understanding the associated changes in nuclei 
morphology as OSF progresses. These object‑level metrics 
differ significantly and can effectively act as phenotypic 
signatures characterizing dysplasia.[14] The following 
discussion elicited the size and shape metrics extracted 
for the proposed framework and their mathematical 
formulations.[13] Let Ω  (n, m) represent the binary 
object mask consisting of 1’s within the nuclei of interest 
and 0’s in the background, n and m represent the 
coordinates of the nuclei in the x‑and the y‑directions. 
The total numbers of pixels enclosing the nuclei of 
interest were represented by N. The features quantifying 
the morphology of the nucleus included nucleus area, 
nucleus equivalent diameter, nucleus perimeter, nucleus 
compactness and nucleus eccentricity. Their descriptions 
and mathematical formulations are listed in Table  1. 
These morphological features were extracted for each 
of the segmented nuclei in the region of interest. The 
trimmed average  (5% trimming on either side) was 
extracted as a representative measure of the nuclei 
morphological parameters in the region of interest. The 
trimmed‑average measure was adopted to handle possible 
outliers contributed by false‑positive nuclear structures 
and unresolved nuclear clusters. It must be noted that 

Figure 6:  Voronoi spatial tessellation for characterizing p63+ nuclei 
distribution
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Table 1: Description and mathematical formulation of extracted biologically relevant features

Feature name Description and mathematical formulation

Graph theoretic 
features for spatial 
arrangement

Mean tessellation 
area

This measures the mean area of the Voronoi polygons and is related to the degree of topological closeness 
of the nodes of the graph (i.e. nuclei centroids). Lower the tessellation area, more closely packed are the 

nuclei. 
=

= ∑
1

1
Mean tessellationarea Area ( )

K

K

j

Pj

Mean tessellation 
perimeter

This feature quantifies the degree of crowdedness of the nuclei and the complexity of the observed graph 
pattern. Each Voronoi polygon is associated with a family of Voronoi edges and the perimeter is defined as 

the distance around the boundary of the polygon. 
=

= ∑
1

1
Mean tessellationperimeter Perimeter ( )

K

K

j

Pj

Average 
roundness factor

This feature measures the degree of roundness of the Voronoi polygon and takes a lower value for more 

rounded polygons. 
=

= ∑
1

1 4
Average roundness factor

K Perimeter ( )j

K

j P

p

Tessellation 
disorder of area

This feature quantitates the degree of homogeneity observed in the Voronoi polygon areas. Higher the 
homogeneity, lower the standard deviation associated with the polygon areas and hence higher the disorder 

of the area. 1Disorder of area
Standard deviation of tessellation area

1
Mean tessellation area

=
+

 
  

Nuclei morphology 
features

Mean nucleus area The total number of pixels within the nuclei of interest, which quantifies its size,
= Ω∑∑Nucleus area ( , ) 

n m

n m

Mean nucleus 
equivalent 
diameter

The diameter of the circle with the same area as the object measuring the size of the nucleus.

Nucleus area
Nucleus equivalent diameter  2=

p
Mean nucleus 
perimeter

The 8‑connected distance around the boundary of the nucleus. This feature is a quantitative of the nucleus 
boundary and size. Here x and y are the corresponding x‑and y‑coordinates of the bounding pixels. N is the 
total number of the boundary pixels enclosing the nucleus of interest. The boundary is closed in a circular 
fashion, i.e. x (N+1)=x (1) and y (N+1)=y (1)

( ) ( )
=

= + − + + −∑ 2 2

1

Nucleus perimeter ( 1) ( ) ( 1) ( )
N

n

x n x n y n y n

Mean nucleus 
compactness

The compactness feature is a quantitative measure of the roundness of the nucleus and gives minimal value 

of 1 for perfectly circular objects. 
4  Nucleus area

Nucleus compactness  
Nucleus perimeter

×
=

p

Mean nuclei 
eccentricity

The eccentricity feature quantitatively measures the degree of deviation from circularity. A perfect circle has 
an eccentricity of 0, a line has an eccentricity of 1 and an ellipse has values between 0 and 1. Here majlen 
and minlen are the corresponding major axis and minor axis lengths of the nucleus of interest.

−

=

   
      

2 2
majlen minlen

2
2 2

Nucleus Eccentricity  
majlen

Nuclei density 
features

Nuclei density This quantitates the total density of positive nuclei in the region of interest. Higher value is associated with 
an increased number of nuclei showing nuclei positivity and thus a sign of progressive dysplasia in the region 

of interest. 
+

=
Number of p63 nuclei in region of interest

Nucleus density
Total area of the region of interest

Contd...
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the trimming percentage is heuristically chosen as a 
trade‑off between preserving the actual value of the 
central‑tendency measure  (mean) of the extracted 
feature and robustness to outliers.

ND Feature Extraction
Increased nuclei positivity of p63 expression has been 
established as a reliable biomarker associated with 
dysplastic changes in the oral mucosa.[8,10] In the normal 
epithelia, p63 nuclear positivity was focally expressed 
in the basal and the parabasal layer  (lower layers of 
oral epithelia), while as disease progresses; significantly 
higher p63+  expression has been reported in the 
higher epithelial layers.[8] In the proposed work, the 
features which quantitate this over‑expression of p63: 
p63+  nucleus density; fraction of expression and extent 
of expression with respect to the basement membrane 
were extracted. These mathematical features could aid in 
assessment of the expression density of p63 and thus also 
aid in the evaluation of the disease. Their descriptions 
and mathematical formulations are listed in Table  1. It 
must be noted that as elicited earlier nuclear density is 
a feature that is dependent on the epithelial thickness 
and must be standardized to the mean selected epithelial 
thickness before comparative evaluation. The scaled 
nuclear density is given by the following expression:

−
 
 
 
 
 

= ×

Scaled
2

Nuclear density

Standard
epitheliumthickness

Originalnucleardensity
Observed

epitheliumthickness

RESULTS

For quantitative assessment of malignant potentiality of 
a pre‑cancerous condition like OSF, oral oncopathology 
requires a conformal standard and an objective criterion 
for diagnosing and grading of the associated epithelial 
dysplasia. During progression toward malignancy, basal 

atypical cells progressively express at higher epithelial 
layers and detection of the same through histopathology 
has been widely accepted in terms of its universality and 
reproducibility.[18] Figure  7 depicted histopathological 
gold standard  (H&E staining) with corresponding p63 
IHC staining for the considered study groups. However, 
this grading system is subjected to the high degree 
of intra‑  and inter‑observer variability and motivates 
development of molecular markers, which have a higher 
prognostic value over classical histology.

The present study endeavored to establish a logical 
co‑relation between qualitative molecular pathology 
features observed in IHC expression of epithelial master 
regulator molecule  ‑  p63 and quantitative biologically 
relevant mathematical features extracted using CIA 
techniques. These correlative relationships were 
established in the context of assessing epithelial dysplasia 
and advancement of the disease toward malignancy. 
Table  2 tabulates the status of biological correlates 
associated with disease progression and malignant 
potentiality and discusses their variations across 
different study combinations and lists the corroborative 
mathematical features derived from the image analysis. 
The relation between the mathematical features and the 
histopathological correlates is inferred through expert 
knowledge transfer between highly‑experienced oral 
onco‑pathologists and image analysis specialists. The 
features quantify changes related alterations in spatial 
arrangement of nuclei, their morphological patterns 
and associated ND features. It must be noted that 
histopathological correlates have a direct contributory 
influence on the alterations of the associated pool of 
mathematical features as statistically established in the 
latter part of this paper  [Table  3]. This was performed 
with a notion to improve the prognostic value of the 
histopathological findings by corroborating crucial 
molecular pathology attributes  (as p63 is a master 
regulator of oral stratified epithelium) which has a 
significant impact in indicating alteration/deregulation in 

Table 1: Contd... 

Feature name Description and mathematical formulation

Fraction of 
p63 positive 
expression

This feature is a ratio measure of the total fraction of p63 expression to the total area of the region of 
interest. This feature encompasses both positive nucleus size and number for estimating the fraction of 

expression ratio. 
Total area of positive nucleus in region of interest

Fraction of p63  Expression  
Total area of the region of interest

+ =

Expression distance This is a length measure of the extent of p63 positive expression with respect to the basement membrane. 
It is measured as the average of the minimum distance between the centroids of positive nuclei and the 
basement membrane. Let the total number of p63+ nuclei in the region of interest be N and the x‑and 

y‑coordinates of the centroids of the ith nucleus be denoted as centroid
ix and centroid

iy . The region of interest is 

bound lower by the basement membrane whose coordinates are given by BM j
x‑coord and BM j

y‑coord and number 

of pixels by M. ( ) ( )− −∀=

 = − + −  ∑
22

1

1
Expression Distance  min

N
i j i j
centroid x coord centroid y coordM

i

x BM y BM
N
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the homeostatic control of the oral stratified epithelium. 
Hence, this study seemed to be impactful in the context 
of demonstrating prognosis of the disease conditions.

IHC image analysis for p63+  nuclei images resulted 
in a pool of 12 biologically  (four  ‑  Graph Theoretic; 
five  ‑  Nuclear Morphology and three  ‑  ND) relevant 
features quantifying their nuclear morphology, density 

and spatial arrangement of the expression pattern. The 
notch‑box plots of these biologically relevant features are 
illustrated in Figures 7 and 8.

The following sections discussed the quantification 
strategy for assessment of traditional qualitative biological 
correlates such as hyperplasia, cellular stratification, 
differentiation and maturation, anisonucleosis, 

Figure 7: Histopathological gold standard (H&E staining) with corresponding p63 immunohistochemical staining for study groups (a-1, a-2) 
normal oral mucosa, (b-1, b-2) oral submucous fibrosis without dysplasia, (c-1, c-2) oral submucous fibrosis with dysplasia and (d-1, d-2) 
oral squamous cell carcinoma. All images are at ×100 magnification

Table 2: Status of histopathological biological correlates and their variations across different study 
combinations

Histopathological 
correlates

Comparing 
NOM to 
OSFWT

Comparing 
NOM to 
OSFWD

Comparing 
OSFWT to 
OSFWD

Comparing 
OSFWD to 
OSCC

Related mathematical 
features from p63

Hyperplasia No hyperplasia Hyperplasia Hyperplasia Hyperplasia MTA, MTP, ND, fp63 and ED
Differentiation No significant 

change
Differentiation 
hampered

Differentiation 
hampered

Differentiation 
hampered

ARF, TDA, MNE and ED

Maturation No significant 
change

Maturation 
hampered

Maturation 
hampered

Maturation
hampered

TDA, MNC, MNE and ED

Stratification No significant 
change

Stratification 
hampered

Stratification 
hampered

Stratification 
hampered

ARF, TDA, MNE and ED

Nuclear size 
anisonucleosis

Increase Increase Decrease No significant 
change

MNA, MNED and MNP

Proliferation No significant 
change

Proliferation 
increased

Proliferation 
increased

Proliferation 
increased

MTA, MTP, NE and ED

Nuclear crowding No significant 
crowding

Crowding 
increased

Crowding 
increased

Crowding 
increased

MNA, MNP, NE, fp63 and 
ED

Nucleus‑cytoplasmic 
ratio

Increase Increase Increase Increase fp63 and ED

NOM: Normal oral mucosa, OSFWT: OSF without dysplasia, OSFWD: OSF with dysplasia, OSCC: Oral squamous cell carcinoma, MTA: Mean tessellation area, MTP: Mean 
tessellation perimeter, ARF: Average roundness factor, TDA: Tessellation disorder of area, MNA: Mean nucleus area, MNED: Mean nucleus equivalent diameter, MNP: Mean nucleus 
perimeter, MNC: Mean nucleus compactness, MNE: Mean nuclei eccentricity, ND: Nuclei density, fp63: Fraction of p63 positive expression, ED: Expression distance, OSF: Oral 
submucous fibrosis
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proliferation patterns, status of mitotic figures, nuclear 
crowding etc., of oral sub mucous fibrosis associated 
with OSCC.[7] Further, their associations and trends 
with the corresponding extracted mathematical features 
were evaluated for different study groups  (C1  –  NOM 
to OSFWT; C2‑NOM to OSFWD; C3‑OSFWT to 

OSFWD and C4‑OSFWD to OSCC‑IS). Table  3 and 
Figures  8 and 9 depicted the status and trends of the 
biologically relevant mathematical attributes the disease 
toward cancer as well as draws representative diagnostic 
inferences on their corresponding biological correlates. 
For the purpose of identifying significant trends of 

Table 3: Statistical test for significant difference and trend analysis

Feature name C1-NOM (n1=16) to 
OSFWT (n2=43)

C2-NOM (n1=16) to 
OSFWD (n3=45)

C3-OSFWT (n2=43) 
to OSFWD (n3=45)

C4-OSFWD (n3=45) 
to OSCC (n4=11)

Z value Trend P value Z value Trend P value Z value Trend P value Z value Trend P value

Graph theoretic features 
for spatial arrangement

MTA −2.7024  6.90E‑03 −3.6480  2.64E‑04 6.1350  8.49E‑10 3.5880  3.32E‑04
MTP −2.7195  6.50E‑03 3.5497  3.86E‑04 6.0102  1.89E‑09 3.5678  3.60E‑04
ARF 2.8901  3.90E‑03 0.9101  3.62E‑01 −3.3050  9.47E‑04 −4.8876  1.02E‑06
TDA 1.7647  7.76E‑02 0.2869  7.74E‑01 1.6111  1.07E‑01 −3.3206  8.93E‑04

Nuclei morphology features
MNA −5.6301  1.75E‑08 −4.8285  1.37E‑08 4.7163  2.40E‑06 0.5774  5.63E‑01
MNED −5.5668  2.59E‑08 −4.8941  9.87E‑07 4.4993  6.81E‑06 0.8249  4.09E‑01
MNP −5.6861  1.29E‑08 −4.5498  3.37E‑06 5.0085  5.48E‑07 0.7475  8.04E‑01
MNC −5.0841  3.59E‑07 −2.2052  2.74E‑02 5.1504  2.59E‑07 −3.2791  1.00E‑03
MNE 1.7306  8.35E‑02 3.2053  1.30E‑03 1.6778  9.34E‑02 −4.5989  4.24E‑06

Nuclei density features
ND 1.5438  1.22E‑01 −4.6482  3.34E‑06 −6.5945  4.26E‑11 −4.7639  1.89E‑06
fp63 −5.5497  2.86E‑08 −4.8947  9.87E‑07 2.5627  1.04E‑02 −4.5989  4.24E‑06
ED 0.1448  8.84E‑01 −2.7791  5.50E‑03 −4.7080  2.50E‑06 −2.4541  1.41E‑02

: Increasing trend, : Decreasing trend, ó: No significant change, MTA: Mean tessellation area, MTP: Mean tessellation perimeter, ARF: Average roundness factor, 
TDA: Tessellation disorder of area, MNA: Mean nucleus area, MNED: Mean nucleus equivalent diameter, MNP: Mean nucleus perimeter, MNC: Mean nucleus compactness, 
MNE: MeCan nuclei eccentricity, ND: Nuclei density, fp63: Fraction of p63 positive expression, ED: Expression distance, OSF: Oral submucous fibrosis, NOM: Normal oral mucosa, 
OSFWT: OSF without dysplasia, OSFWD: OSF with dysplasia, OSCC: Oral squamous cell carcinoma

Figure 8: Notch box plots of graph theoretic features for spatial arrangement depicting their trends during different stages of the disease 
and progression toward malignancy. (a) Mean tessellation area, (b) Mean tessellation perimeter, (c) Average roundness factor and 
(d) Tessellation disorder of area
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ba
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Figure 9: Notch box plots of nuclei morphology features depicting their trends during stages of the disease and progression toward 
malignancy. (a) Mean nucleus area, (b) Mean nucleus equivalent diameter, (c) Mean nucleus perimeter, (d) Mean nuclear compactness 
and (e) Mean nuclear eccentricity
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the mathematical feature from one study group to 
another, we have proposed to use the non‑parametric 
Mann‑Whitney U‑test, which test the null hypothesis 
that both populations are same against the alternate 
hypothesis that a particular population has higher/lower 
values than the other. For statistically measuring the class 
separability values of features extracted from the two 
study groups, the z‑statistic equivalent derived from the 
Mann‑Whitney U‑statistic has been proposed. Higher 
this class separability measure, higher the associated 
statistical significance in separating the two study groups.

DISCUSSION

Graph‑theoretic features characterizing spatial 
arrangement of p63+ nuclei with specific histopathological 
association would help to recognize the importance of 
these attributes related to the epithelial architectural and 
molecular alteration in different stages of this pre‑cancer 
and its transformation into malignancy. Furthermore, 
the prevailing uncertainty in respect to the utility of 
this molecular marker  (p63) for predicting malignant 
potentiality in dysplastic and non‑dysplastic OSF 
could be better judged by the proposed quantitative 
approach and the measurements explored.[8] Therefore, 
the mathematical features having biological correlates 
became effective in indicating oral epithelial alterations 
due to cell crowding, cell proliferation and impairment 
in cellular maturation processes in the different stages 
of the disease. Comparative interpretations between 
biological processes and graph spatial models have 
established equivalency between biological architecture 

and the graph geometry. The biological mitosis has been 
related to new node addition, cell‑cell adhesion to edge/
links, cell volume to the graph cell surface area and cell 
surface area to graph cell perimeter.[18,21]

A stratified architecture in a normal oral epithelium 
has characteristic signatures, which due to atypical 
manifestations under disease pathogenesis get altered. 
Thus extracting mathematical features indicative of these 
alterations would lead to a quantitative framework for 
analysis devoid of methodological bias and subjectivity in 
histopathological cum molecular pathology assessment.

A pool of graph theoretic features was considered 
in the present work which included MTA, MTP, 
ARF and TDA. Inferring from Table  3, the feature 
MTA was indicative of average area of influence of 
each p63+  nucleus which increased from NOM to 
OSFWT, but decreased as the disease was in dysplastic 
condition  (OSFWD). This decreasing trend continued 
towards malignancy  (OSCC). A  similar trend was 
observed in case of MTP differing only in case of NOM 
to OSFWD transition. This trend could be suggestive of 
an increase in inter‑cellular crowding and dense packing 
in upper epithelial layers with characteristic basaloid 
appearance as the disease progresses. Further, the feature 
ARF assessed the roundness of the Voronoi cell area 
surrounding a particular p63+  nucleus which observed 
to be increased from NOM to OSFWT but decreased 
through OSFWT to OSFWD to OSCC. It indicated 
that Voronoi cells became more rounded in shape as the 
disease progresses and thus attains a higher degree of 
homogeneity in their distribution. Whereas, TDA feature 
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was indicative  (inversely related) of variability of the 
Voronoi cell areas due to the stratification process in the 
oral epithelium. However, the loss of stratification in the 
disease resulted in a significant increase in TDA and this 
trend in OSFWD to OSCC was indicative of the disease 
progression.

To derive a more comprehensive picture of molecular 
pathology involving the variation of p63 expression 
for understanding the OSF conditions and degree of 
progression to malignancy, analysis of nuclear morphology 
and density of expression was also performed in the 
present work. The changes in p63+  nuclear morphology 
were characterized by features related to:  (i) Size such 
as mean nucleus area  (MNA), mean nucleus equivalent 
diameter  (MNED) and mean nucleus perimeter  (MNP) 
and  (ii) shape like mean nucleus compactness  (MNC) 
and mean nuclei eccentricity  (MNE). As inferred from 
Table  3, MNA, MNED and MNP followed consistent 
trends of increment from NOM to OSFWT and then 
declined from OSFWT to OSFWD. They exhibited 
no significant changes on transformation into OSCC. 
This trend was suggestive that each stage of the disease 
often manifested a unique signature with respect to 
attributes of nuclear size due to a complex interplay of 
factors regulating cellular proliferation, abnormal mitosis 
and disrupted cellular maturation and differentiation.[22] 
Manifestations in nuclear shape indicated by MNC and 
MNE again suggested increase in degree of nuclear 
atypism and deviations in different OSF conditions from 
the normal counterpart. Density of p63+  positive nuclei 
and the extent of expression were characterized by the 
mathematical attributes including ND, fraction of p63 
positive expression  (fp63) and expression distance  (ED). 
As indicated in Table  3, increase in ND with advancing 
stages of the disease indicated enhanced nuclei positivity 
to p63 and thus implied the upregulation of this 
master regulator with disease progression, which was in 
agreement with the previous qualitative observation of 
Das et  al.[8] and possibly indicated increased nuclear 
proliferation in this pathogenesis. As mentioned in 
Table  3, the extent of p63+  nuclear expression increased 
consistently with disease progression.[23]

In the context of OSF progression towards OSCC, there 
was increased number of atypical nuclei in the epithelium. 
This biological condition was quantitated using a pool of 
mathematical features including MTA, MTP, ND, fp63 
and ED. Inferring from Figures  7 and 8 and Table  4, 
decreasing trend of MTA and MTP  (increasing cellular 
crowding; decreasing inter‑nuclei distance  –  dense 
packing) with increasing ND  (increased nuclear density), 
fp63  (increased NC ratio) and ED  (increasing extent of 
expression) indicated hyperplasia in C2, C3 and C4 study 
groups and absence of such significant conformal trends 
of these features indicates no significant hyperplastic 
changes in C1.

The nuclear morphology as well as expression and 
distribution pattern based signatures of p63+  nuclei 
are crucial in the context of maintenance of cellular 
homeostasis embedded with cellular proliferation, 
differentiation, stratification, maturation in normal, 
onset and progression of the pre‑cancer. The biological 
attributes include nuclear morphology features viz. 
nuclear size, nuclear shape, nuclear population density 
and nucleus‑cytoplasm ratio. Nuclear measurements were 
assessed by a group of quantitative features including 
MNA, MNED and MNP. In study combinations C1 
and C2, increasing trends of these factors suggest 
increasing nuclear size and thus shows emerging patterns 
of nuclear atypism. This pattern reverses in case of 
C3, but no significant change occurs in C4. Nuclear 
crowding is quantified using features including MTA, 
MTP, ND, fp63 and ED. In study combinations of C2, 
C3 and C4, decreased MTA and MTP  (decreasing 
inter‑nuclei distance  –  dense packing), increasing 
ND  (increasing number density of positive nuclei), 
fp63  (increased p63 positivity) and ED  (increasing 
extent of positive expression) are strongly indicative of 
higher nuclear population density. Nucleo‑cytoplasmic 
ratio is established to increase as the disease advances[7] 
and our observations are consistent and are quantified 
by mathematical features including fp63 and ED. 
Increasing trend of fp63  (increased p63 positivity) and 
ED  (increasing extent of positive expression) in C1, C2, 
C3 and C4 suggests higher nucleo‑cytoplasmic ratio in 
the context of the disease progression toward malignancy.

Advancement of disease is accompanied by enhanced 
cellular proliferation, which is mathematically 
characterized by MTA, MTP, ND and ED. As depicted 
in Figures  8‑10 and tabulated in Table  4, the increased 
proliferative ability is indicated by decreasing pattern of 
MTA and MTP  (increasing cellular crowding; decreasing 
inter‑nuclei distance  –  dense packing) and increasing 
ND  (increased positive ND) and ED  (increasing extent 
of expression). From these patterns, it is inferred that C1 
has no significant change in proliferative ability, which is 
highly enhanced in C2, C3 and C4. This change leads 
to progressive disruption of epithelial cellular maturation 
process as established further. During the onset and 
advancement of the disease toward cancer, epithelial 
differentiation, stratification and maturation are gradually 
disrupted leading to loss of epithelial homeostasis.[24] The 
altered state of these correlates manifests as changes in 
the nuclear morphology and the extent of presence of 
these atypical nuclei in the upper epithelial layers. It was 
in agreement with the related histopathological findings 
of other studies.[23]

Epithelial differentiation and stratification is 
characterized by ARF, TDA, MNE and ED; and 
Maturation is quantified by TDA, MNC, MNE and 
ED. From Table  4 and Figures  8‑10, it is observed that 
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Table 4: Qualitative inference of biological correlates in OSF and OSCC with corroborative mathematical 
features

Biological correlates Mathematical feature-significant trend Qualitative inference

Graph theoretic 
features for spatial 

arrangement

Nuclei morphology 
features

Nuclei density 
features

MTA MTP ARF TDA MNA MNED MNP MNC MNE ND fp63 ED

Hyperplasia
C1 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ NS S NS No hyperplasia
C2 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Hyperplasia
C3 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Hyperplasia
C4 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Hyperplasia

Nuclear measurement
C1 ‑ ‑ ‑ ‑ S S S ‑ ‑ ‑ ‑ ‑ Increase
C2 ‑ ‑ ‑ ‑ S S S ‑ ‑ ‑ ‑ ‑ Increase
C3 ‑ ‑ ‑ ‑ S S S ‑ ‑ ‑ ‑ ‑ Decrease
C4 ‑ ‑ ‑ ‑ NS NS NS ‑ ‑ ‑ ‑ ‑ No significant change

Nuclear crowding
C1 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ NS S NS No significant crowding
C2 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Crowded nuclei
C3 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Crowded nuclei
C4 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S S Crowded nuclei

Nucleus‑cytoplasmic ratio
C1 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ S NS Increase
C2 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S Increase
C3 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S No significant change
C4 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ S S Increase

Proliferation
C1 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ NS ‑ NS Normal proliferation
C2 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S ‑ S Increased proliferation
C3 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S ‑ S Increased proliferation
C4 S S ‑ ‑ ‑ ‑ ‑ ‑ ‑ S ‑ S Increased proliferation

Differentiation
C1 ‑ ‑ S NS ‑ ‑ ‑ ‑ NS ‑ ‑ NS Differentiation
C2 ‑ ‑ NS NS ‑ ‑ ‑ ‑ S ‑ ‑ S Differentiation hampered
C3 ‑ ‑ S NS ‑ ‑ ‑ ‑ NS ‑ ‑ S Differentiation hampered
C4 ‑ ‑ S S ‑ ‑ ‑ ‑ S ‑ ‑ S Differentiation hampered

Maturation
C1 ‑ ‑ ‑ NS ‑ ‑ ‑ S NS ‑ ‑ NS Maturation
C2 ‑ ‑ ‑ NS ‑ ‑ ‑ S S ‑ ‑ S Maturation hampered
C3 ‑ ‑ ‑ NS ‑ ‑ ‑ S NS ‑ ‑ S Maturation hampered
C4 ‑ ‑ ‑ S ‑ ‑ ‑ S S ‑ ‑ S Maturation hampered

Stratification
C1 ‑ ‑ S NS ‑ ‑ ‑ ‑ NS ‑ ‑ NS Stratification
C2 ‑ ‑ NS NS ‑ ‑ ‑ ‑ S ‑ ‑ S Stratification hampered
C3 ‑ ‑ S NS ‑ ‑ ‑ ‑ NS ‑ ‑ S Stratification hampered
C4 ‑ ‑ S S ‑ ‑ ‑ ‑ S ‑ ‑ S Stratification hampered

MTA: Mean tessellation area, MTP: Mean tessellation perimeter, ARF: Average roundness factor, TDA: Tessellation disorder of area, MNA: Mean nucleus area, MNED: Mean nucleus 
equivalent diameter, MNP: Mean nucleus perimeter, MNC: Mean nucleus compactness, MNE: Mean nuclei eccentricity, ND: Nuclei density, fp63: Fraction of p63 positive expression, 
ED: Expression distance, : Increasing biological correlate with increasing trend, : Decreasing biological correlate with increasing trend, : Increasing biological correlate with 
decreasing trend, : Decreasing biological correlate with decreasing trend, Significance level: SP<0.05 significant change, NSP>0.05 not significant change, OSF: Oral submucous 
fibrosis, OSCC: Oral squamous cell carcinoma
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the increasing trend of ARF  (increasing roundness), 
TDA (increased homogeneity in spatial arrangement), 
MNE  (increased nuclear atypism) and ED  (increasing 
extent of expression) is indicative of hampered epithelial 
differentiation and stratification process in C3 and 
C4. Cellular maturation process is also subsequently 
disturbed as indicated by the increasing trend of 
TDA  (increased homogeneity in spatial arrangement), 
MNE  (increased nuclear atypism) and ED  (increasing 
extent of expression) and decreasing pattern of MNC 
(increased nuclear atypism).

A robust nuclei segmentation and localization method 
using regional maxima in plateau‑like intensity spatial 
profiles of nuclei coupled with a hybrid intensity and 
geometric cluster segregation algorithm has been 
investigated into. The progression of oral sub‑mucous 
fibrosis and its transformation into carcinoma is 
characterized by a subset of biologically relevant 
mathematical features derived by using a Voronoi spatial 
tessellation based graph theoretic approach. Further, 
a correlative analysis of various study combinations 
identified possible inter‑relationships between the 
extracted mathematical features and their biological 
correlates. In summary, a quantitative logical framework 
has been proposed for assessment of the IHC expression 
of p63  (epithelial prime regulator molecule) for value 
addition to the evaluation of malignant potentiality 
of oral sub‑mucous fibrosis. This would augment the 
establishment of p63 as a reliable bio‑marker because of 
its characteristic quantitative signatures, which change 
distinctly as the disease progresses. Further it is conceived 
that investigating OSF and OSCC using this framework 
would reduce inter and intra‑observer variability and 
thus may prevent the over and under grading of disease 
stages. Hence, proposed work could be a value addition to 
the gold standard histopathological practices by logically 
incorporating a robust molecular pathology attributes 
toward achieving improved diagnostic specificity regarding 
progression of the pre‑cancer (oral sub‑mucous fibrosis).
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