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PURPOSE. To improve the detection of glaucoma, techniques for assessing local patterns of
damage and for combining structure and function were developed.

METHODS. Standard automated perimetry (SAP) and frequency-domain optical coherence
tomography (fdOCT) data, consisting of macular retinal ganglion cell plus inner plexiform
layer (mRGCPL) as well as macular and optic disc retinal nerve fiber layer (mRNFL and
dRNFL) thicknesses, were collected from 52 eyes of 52 healthy controls and 156 eyes of 96
glaucoma suspects and patients. In addition to generating simple global metrics, SAP and
fdOCT data were searched for contiguous clusters of abnormal points and converted to a
continuous metric (pcc). The pcc metric, along with simpler methods, was used to combine
the information from the SAP and fdOCT. The performance of different methods was assessed
using the area under receiver operator characteristic curves (AROC scores).

RESULTS. The pcc metric performed better than simple global measures for both the fdOCT and
SAP. The best combined structure-function metric (mRGCPL&SAP pcc, AROC ¼ 0.868 6
0.032) was better (statistically significant) than the best metrics for independent measures of
structure and function. When SAP was used as part of the inclusion and exclusion criteria,
AROC scores increased for all metrics, including the best combined structure-function metric
(AROC ¼ 0.975 6 0.014).

CONCLUSIONS. A combined structure-function metric improved the detection of glaucomatous
eyes. Overall, the primary sources of value-added for glaucoma detection stem from the
continuous cluster search (the pcc), the mRGCPL data, and the combination of structure and
function.

Keywords: glaucoma, glaucomatous, detection, diagnosis, sensitivity, specificity, visual fields,
standard automated perimetry, optical coherence tomography, retinal nerve fiber layer, retinal
ganglion cells, macula

Because of the progressive nature of the disease, early
detection of glaucomatous damage is one of the key

objectives of the glaucoma specialist. However, despite the
availability of tests that yield quantitative structural and
functional measures relevant to glaucoma, there is currently
no ‘‘gold standard’’ for diagnosis. In fact, even for a particular
diagnostic test, there is usually no universal consensus on what
constitutes an abnormal result. For example, a wide variety of
criteria are used when interpreting the results from visual field
data obtained from standard automated perimetry (SAP),
ranging from simple global metrics, such as mean deviation
(MD), to more local analyses, such as the glaucoma hemifield
test.1

Along with other technologies, such as confocal scanning

laser ophthalmoscopy and scanning laser polarimetry, the

introduction of time-domain optical coherence tomography

(tdOCT)2 more than 2 decades ago has allowed clinicians

access to noninvasive in vivo imagining of optic nerve tissue,

yielding a quantitative measure of structure in addition to the

functional data already provided by the SAP. The tdOCT

measures typically used for glaucoma detection are based on

the circumpapillary retinal nerve fiber layer (cpRNFL) thick-

ness, which has performed reasonably well in separating

groups of healthy controls from glaucoma suspects and patients

(see Refs. 3 and 4 for reviews).
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The subsequent development of frequency-domain OCT
(fdOCT; also referred to as Fourier- or spectral-domain OCT)5

has allowed for faster, higher-resolution imaging, but has
further increased the complexity of the data available. A
fundamental question is how to make better use of this data.
Although fdOCT has the potential to significantly increase the
performance of glaucoma detection as compared with tdOCT,
current studies have been underwhelming, suggesting perfor-
mance similar to, or only incrementally better than, tdOCT (see
Refs. 6–8 for reviews). A contributing factor for the apparent
similarity of fdOCT and tdOCT performance is that many of
these studies, to establish agreement with the tdOCT, limit
their analyses of fdOCT data to cpRNFL thickness measures
(i.e., 1-dimensional circular scans rather than 2-dimensional
optic disc RNFL [dRNFL] thickness measures), which can be
derived from volumetric scans.

One approach to make better use of the more complex
fdOCT information is machine learning, which has been fairly
effective in separating healthy controls from glaucoma suspects
and patients using both SAP and tdOCT (see Ref. 9 for a review).
For example, a recent study reported an improvement in early
glaucoma detection by using fdOCT dRNFL thickness combined
with machine learning as compared with using thickness
alone.10 An alternative approach for dealing with the complexity
of fdOCT data is to try simpler, more intuitive strategies, such as
a topographic pointwise probability map, as used in SAP
analysis.11 A prior study has suggested that measures derived
from such a probability map of the dRNFL may outperform the
traditional cpRNFL measures.12

Another approach is to use the 2-dimensional topographic
information from the fdOCT macular scan protocols. In fairness,
reports of quantitative structural damage from macular noninva-
sive imaging have predated the fdOCT (see Ref. 13 for references),
although most of these reports, with a few notable excep-
tions,14,15 have relied on macular total retinal (mTR) thickness
measures. Nonetheless, perhaps surprisingly, even using fdOCT
data and increasingly sophisticated segmentation algorithms to
better distinguish the macular RNFL (mRNFL) and macular retinal
ganglion cell plus inner plexiform layer (mRGCPL) from the
combined macular ganglion cell complex (mGCC; defined as
mRNFLþmRGCPL) has yielded diagnostic performance that is, at
best, equal or marginally better than cpRNFL (see Refs. 13,16, and
17 for reviews; for use of mRGCPL separate from mGCC, see in
particular Refs. 18–20). A more sophisticated approach, similar to
the pattern deviation (PD) of SAP, also failed to perform better
than average cpRNFL thickness.21

Yet another technique employed is hemiretina asymmetry
(HA),22 which is similar to the glaucoma hemifield test used in
SAP analysis. HA analyses using tdOCT23 and fdOCT24,25 did
not show a marked improvement over cpRNFL measures. One
fdOCT study26 argued for an improvement over cpRNFL
measures, but the glaucoma patient population included only
localized RNFL defects based on red-free fundus photos, so
these results may not generalize to other populations. Notably,
all of these fdOCT HA analyses used mTR measurements
instead of a subset of inner retinal layers.

Along with the need to better understand how to use the
richer fdOCT dataset, another fundamental question is the
potential advantage of combining structural and functional
measures for the purpose of glaucoma detection. Previous
studies have used various strategies (e.g., simple logical
rules,27–29 machine-learning classifiers,30–39 or a priori mod-
els40,41) to combine measures of visual function (e.g., SAP,
short-wavelength automated perimetry, and frequency-dou-
bling technology perimetry) with measures of structure (e.g.,
fundus photos, confocal scanning laser ophthalmoscopy,
scanning laser polarimetry, and OCT). These methods have
yielded performance equal to or better than methods using
structural or functional measures alone.

In this study, we use fdOCT and SAP data to assess various
methods, including a novel continuous cluster criterion, in an
attempt to better classify individuals as either healthy or
glaucomatous. In particular, we combine the information from
the SAP and fdOCT data, using both simple logical rules as well
as a relatively simple a priori model that tests for spatially
correspondent patterns of damage. In addition, the aspects of
these analyses that yield the most value-added are discussed.

METHODS

Subjects

The glaucomatous group (156 eyes of 96 patients, aged 55.7 6

11.9 [mean 6 SD] years) consisted of patients in whom at least
one eye exhibited glaucomatous optic neuropathy, defined
based on stereophotography evaluation by glaucoma special-
ists using the following criteria: focal or diffuse neuroretinal
rim thinning, focal or diffuse RNFL loss, or an intereye vertical
cup-to-disc ratio asymmetry greater than 0.2 not explained by
differences in disc size. All eyes had open angles as viewed
during gonioscopic examination. When the fellow eye had
reliable test results, it was included, even if all the test results
were normal. Therefore, the glaucomatous group included
eyes that were glaucoma ‘‘suspects’’ (based on the fellow eye)
without any other indication of glaucomatous damage.
Moreover, to avoid bias in evaluation of the classification
ability of the SAP data and to increase the number of subtle
cases included in the study, abnormal SAP results were not part
of the inclusion criteria for the glaucoma group. Consecutive
patients were enrolled retrospectively based on availability of
test data. Patients with cataracts, a history of ocular surgery, or
a history of any other ocular or neurological diseases that could
affect structural or functional measures were excluded.

The control subjects (52 eyes of 52 individuals, aged 52.7 6

7.6 years) were included based on the following criteria:
spherical refraction between�6.0 diopters (D) andþ3.0 D, IOP
� 21 mmHg, axial length between 22 mm and 26 mm, and a
normal clinical examination. Subjects were excluded if they
had a history of ocular disease or a family history of glaucoma.
Controls were part of a previous study.42 Normal SAP results
were not required for the control group. The characteristics of
both groups are summarized in Table 1.

Written, informed consent was obtained from all of the
participants. Procedures followed the tenets of the Declaration
of Helsinki, and the protocol was approved by the institutional
review boards of Columbia University and the New York Eye
and Ear Infirmary.

Standard Automated Perimetry

All subjects were tested with SAP (24-2 SITA Standard43

protocol, Humphrey 750i Visual Field Analyzer; Carl Zeiss
Meditec, Inc., Dublin, CA). Subjects were required to have

TABLE 1. Population Characteristics

Controls Glaucoma Significance, P*

Eyes 52 156

Individuals 52 96

Age, y 52.7 6 7.6 55.7 6 11.9 0.208

MD, dB �0.4 6 1.2 �3.1 6 3.7 0.012

PSD, dB 1.5 6 0.4 3.2 6 3.0 0.760

* Significance based on a GEE, accounting for intereye correlations.
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fixation losses less than or equal to 33%, false-negatives less than

or equal to 33%, and false-positives less than or equal to 15%.

Other than reliability of the test, the SAP was not used as an

inclusion or exclusion criteria. The MD of the control group was

�0.4 6 1.2 dB and of the glaucoma group was �3.1 6 3.7 dB.

The pattern standard deviation (PSD) of the control group was

1.5 6 0.4 dB and of the glaucoma group was 3.2 6 3.0 dB. The

Advanced Data Export module (Carl Zeiss Meditec, Inc.) was

used to obtain the raw data in XML format. To classify the

subjects as either normal or glaucomatous, the significance level

of the MD of the 24-2 was used as a baseline metric (pMD). The

total deviation (TD) SAP data, converted to probability values

based on the internal normative database of the machine, also

were analyzed for clusters of abnormal points (see Cluster

Analysis, below).

Optical Coherence Tomography

All subjects were also tested using fdOCT (3D-OCT 1000/2000;

Topcon Medical Systems, Inc., Oakland, NJ) with the volume

FIGURE 1. Measurements from fdOCT. (A) Fundus photo with an en face fdOCT (C-face) intensity image superimposed within a blue square. (B) The
central slice through the macula of the fdOCT image (B-scan) corresponding to the horizontal green line in (A). Superimposed green lines mark the
boundary between anatomical layers. The thicknesses of the RNFL and RGCPL are shown with yellow vertical bars. The white vertical calibration bar

represents 100 lm. (C) The 3-dimensional macular RGCPL thickness (left) and a top-down view (right) with thickness represented in pseudo-color. (D)
The macular RGCPL superimposed on a fundus photo (left) and the macular and disc RNFL superimposed on a fundus photo (right).
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(cube) scan protocol (6 3 6 mm, 128 horizontal B-scans with
512 A-scans each, see Fig. 1A) with both macular and optic disc
fixation targets. Scans with poor fixation (as indicated by poor B-
scan alignment or by grossly off-center scans) and blink artifacts
(as indicated by missing B-scans) were rejected. The thickness of
retinal layers was determined using a previously validated
segmentation algorithm,44 which was manually corrected as
necessary45 (see Fig. 1B). In particular, the thickness of the
retinal nerve fiber layer (RNFL) and the combined retinal
ganglion cell plus inner plexiform layer (RGCPL) was deter-
mined for the macular and disc scans (see Figs. 1B–D). Because
the RGCPL is quite thin near the disc, only the mRGCPL,
mRNFL, and dRNFL were analyzed (Fig. 1D).

The mean thickness of the cpRNFL, converted to probabil-
ity (pMT), was used as a baseline metric for classifying the
subjects as either normal or glaucomatous. (The cpRNFL,
extracted from the volume scan, was based on a circle,
centered at the optic nerve head, with a diameter of 3.4 mm
and was therefore analogous to the 1-dimensional RNFL circle

scan obtained from a tdOCT machine.) The mean thickness of
a layer over the entire 2-dimensional cube scan, converted to
pMT, was also used as a baseline metric. The thickness data
were also converted to point-by-point probability values as
previously described11 (see Figs. 2A, 2B for a control and Fig.
2C for a patient) and clusters of abnormal data points were
determined (see Cluster Analysis, below). For ease of
comparison, the fdOCT data are presented in field view from
Figure 2 onward. In addition, the layer thicknesses were
normalized in a manner similar to the PD analysis of SAP (by
dividing the thickness values based on the 85th percentile of
thickness within a scan), and the HA across the horizontal
midline was assessed by taking the difference between the
superior and inferior retinal thicknesses. Both PD and HA
values were also converted to probability values based on
controls and were analyzed for clusters of abnormal points.
Note that, unlike the thickness probability values, the
probability values for the PD and HA were two-tailed because
both low and high values suggested abnormalities.

FIGURE 2. Measurements from fdOCT and SAP converted to probability values. (A) The mRGCPL as well as the mRNFL and dRNFL thicknesses for a
healthy control eye (left three panels). The 24-2 SAP total deviation values for the same eye (right). (B) The data in (A) converted to probability
values. (C) Data from a glaucomatous eye in the same format as (B).
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Cluster Analysis

Both SAP and fdOCT data were analyzed for the presence of
clusters of abnormal points that respected the horizontal
midline. As a baseline metric, the common 5-5-1 cluster
criterion was used, requiring a contiguous set of three or more
points, all of which were significant at P � 0.05, with at least
one significant at P � 0.01.46 For instance, Figure 3A shows a
24-2 SAP with an example of a 5-5-1 cluster (blue squares).
(Note that there are many possible 5-5-1 clusters, but only one
is indicated.)

For the fdOCT, the data was first downsampled from 128 3
512 pixels to a 16 3 16 grid and then this reduced dataset was
converted from thickness to probability values (see Fig. 3B).
Next, a region of interest (ROI) was determined a priori for
each fixation and thickness combination (see Fig. 3C) based on
exclusion of regions that were relatively thin (e.g., fovea or
raphe) or regions that were near the edge (1 pixel border) of
the scan.17,42 Data outside the ROI were ignored for cluster
evaluation (e.g., smaller squares in Fig. 3B, at the center and
edges, corresponding to the black regions in Fig. 3C, indicate
data ignored when evaluating clusters). Figure 4 shows the
complete set of downsampled fdOCT data for the patient in
Figure 2C, including thickness probabilities (Fig. 4A), the PD
analysis (Fig. 4B), and the HA analysis (Fig. 4C).

In addition to the 5-5-1 cluster criterion, a novel continuous
cluster metric was used. Unlike the 5-5-1, which returned a binary
(yes/no) value for each hemifield or hemiretina based on whether
or not a cluster was found, the continuous cluster metric returned
a continuous value (pcc). This value is related to the probability of
observing a particular cluster of points. Similar to the 5-5-1, the pcc

required a contiguous set of points, all of which were significant
at P � 0.05 (the threshold probability). However, the pcc metric

also considered the number of contiguous points as well as the
actual probabilities of these points.

For the fdOCT, the continuous cluster metric generated the
pcc value by first assessing, through computer simulation, the
probability of observing a set of n contiguous points in a 16 3

16 grid of points (equivalent to the downsampled fdOCT),
where the set of points respected the previously defined ROIs
and was contained entirely within one hemiretina. For
computational simplicity, the maximum tested value for n

was 6. Note that the simulation was based on a randomly
generated grid of 16 3 16 points and ignored any correlation
between the points, which does exist in fdOCT from healthy
controls. Thus, this value should not be thought of as a true
probability of observation, but rather as a quantitative metric of
convenience that ranks the relative probability. To further
distinguish between the probabilities of different clusters of
points, particularly when the number of points n is the same,
the probability of the lowest observed P value in the set was
also taken into account when determining pcc by using a
separate set of computer simulations. Thus, for each hemiret-
ina, the value of pcc was assigned by multiplying the simulation-
determined probability value based on the largest number of n

contiguous points found by the simulation-determined proba-
bility value based on the lowest observed P value in that set. (If
no contiguous set of abnormal points was found [i.e., n ¼ 1],
then pcc was defined based on the point within the ROI with
the lowest probability value, also adjusted based on computer
simulations.) For the SAP, the pcc metric was determined in the
same manner, although the values of pcc were based on the set
of 24-2 SAP points rather than a 16 3 16 grid, requiring a
separate set of computer simulations.

FIGURE 3. Cluster analysis and ROIs. (A) The 24-2 SAP data as in Figure 2C with a set of points meeting the 5-5-1 cluster criterion outlined by light

blue boxes. (B) Probability values from mRGCPL thickness data downsampled into a 16 3 16 grid. Data are from the same eye shown in Figure 2C.
The small squares indicate values outside the ROI. White squares indicate missing data (which often occurs at scan edges after centering the scan).
A set of points meeting the 5-5-1 cluster criterion is outlined by light blue boxes. (C) The ROIs shown in white for the mRGCPL, mRNFL, and dRNFL
data. The dRNFL is offset from the mRNFL data based on anatomy, as shown in Figure 1D.17,42
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Combining Structure and Function

Although there are several reasonable ways to combine
structural and functional measures, the analysis here was
confined to using the pcc metric in a very simple manner.
First, structure and function were ‘‘combined’’ by simply
multiplying the pcc of the inferior or superior retinal mRGCPL
with the pcc of the correspondent hemifield of the SAP. Then,
a metric combining the mRGCPL and SAP (mRGCPL&SAP pcc)
was defined as the minimum value of the two hemifields.
Finally, a more generic combination of fdOCT and SAP data
(fdOCT&SAP pcc), using both the mRGCPL and dRNFL, was
defined as the minimum of the mRGCPL&SAP pcc and
dRNFL&SAP pcc. To separate the effect of using the pcc

metric from the combination of structure and function, a
‘‘baseline’’ metric for combining structure and function
(fdOCT&SAP pMT/MD), based on the mean thickness of the
OCT and the MD of the visual field, was defined as the
minimum of the mRGCPL pMT, the dRNFL pMT, and the SAP
pMD.

Data Analysis and Evaluation

Data were analyzed using custom code written in MATLAB
(version 2012a; MathWorks, Inc., Natick, MA). For cluster

simulations, cloud-based computing resources were used (EC2
Elastic Compute Cloud; Amazon.com, Inc., Seattle, WA). A
generalized estimating equation (GEE) approach, which
accounts for intereye correlations, was used to compare
means among groups (as in Table 1). When calculating
thickness probability in any of the fdOCT metrics, the control
group was also used as the normative database. However, to
prevent a bias in the reported specificity, a ‘‘leave-one-out’’
approach was used when analyzing the control group. To
evaluate the classification of subjects as either normal or
glaucomatous, areas under receiver operator characteristic
curves (AROC scores) were determined. An AROC score of 1
represents perfect discrimination of the two groups, whereas
an AROC of 0.5 indicates performance no better than chance.
Standard error (SE) of AROC scores and statistical tests
between AROC scores of different classification metrics were
performed (as in Tables 2 and 3) according to the method of
Obuchowski.47 This method is based on the nonparametric
method of DeLong et al.,48 but also adjusts for intereye
correlations. (This approach has been used in previous studies
using similar data [e.g., Ref. 21]) Sensitivity at an arbitrary fixed
specificity value of greater than or equal to 85% was also
determined. An a level of 0.05 was used to determine statistical
significance.

FIGURE 4. Sample data from a glaucomatous eye. (A) The downsampled mRGCPL, mRNFL, and dRNFL fdOCT data, as well as the 24-2 SAP data
from the same glaucomatous eye shown in Figure 2C. The white squares near the center of the dRNFL data represent data missing due to the optic
disc. (B) The fdOCT data after the PD analysis in a similar format as (A). (C) The fdOCT data after the HA analysis in a similar format as (A).
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RESULTS

Evaluation of Structure and Function

Independently

The performance of the metrics in classifying subjects as either
controls or glaucomatous was evaluated using AROC scores
(see Table 2), although the sensitivity at an arbitrary fixed
specificity of greater than or equal to 85% is also provided for
context. First, consider only the SAP data. An example of a
clearly abnormal 24-2 SAP, with an MD of�6.74 dB, is shown in
Figure 4A (right). Using only the baseline metric of SAP pMD

yielded an AROC of 0.768 6 0.029. The 5-5-1 cluster criterion
was applied to the SAP data and resulted in a similar AROC
score (0.760 6 0.030). The continuous cluster criterion, pcc,
yielded a slightly higher AROC of 0.797 6 0.034 and a greater
sensitivity of 72% (vs. 62% for SAP pMD). The difference in the

AROC scores between the SAP pcc cluster criterion and the SAP
p5-5-1 cluster criterion was statistically significant (P ¼ 0.018),
although the difference between the SAP pcc and SAP pMD was
not (P ¼ 0.063).

Consider next the fdOCT data alone. Figure 4A shows an
example of mRGCPL, mRNFL, and dRNFL data from a patient
with clear glaucomatous damage. In general, the mRNFL data
performed slightly worse than either the mRGCPL or the
dRNFL, so for the sake of simplicity, the mRNFL data have been
omitted from the quantitative results (e.g., Table 2); however,
when considering an individual subject, as in Figure 4, the data
are still shown for context. The performance of the baseline
metrics of mean circumpapillary RNFL thickness and mean
optic disc volume RNFL thickness yielded AROC scores lower
than those for the MD of the SAP (cpRNFL pMT AROC¼ 0.718
6 0.041 and dRNFL pMT ¼ 0.724 6 0.041, as compared with
SAP pMD 0.768 6 0.029), whereas the AROC score of the
mRGCPL pMT (0.775 6 0.038) was higher than the SAP pMD.
However, none of these differences were statistically signifi-
cant.

Perhaps surprisingly, the PD and HA analyses (see Figs. 4B,
4C for an example), which are similar in concept to the pattern
deviation and glaucoma hemifield test analyses commonly used
with the SAP, performed worse than the mRGCPL pMT and the
dRNFL pMT, which were baseline global metrics based only on
mean thicknesses (see Table 2 for AROC scores). Furthermore,
although the dRNFL pcc (AROC ¼ 0.739 6 0.037) performed
better than the dRNFL pMT, the sensitivity at 85% specificity
was worse and the difference in AROC scores was not
statistically significant (P ¼ 0.312). However, the mRGCPL pcc

(AROC¼ 0.818 6 0.035) did perform better than the mRGCPL
pMT (P ¼ 0.040), with a greater sensitivity of 62% (vs. 56% for
mRGCPL pMT).

Evaluation of Combined Structure and Function

The performance of the best fdOCT global metric, mRGCPL
pMT, was similar to the SAP global metric, SAP pMD. Likewise,
the performance of the overall best fdOCT metric, mRGCPL
pcc, was similar to the best SAP metric, SAP pcc. To assess the
value-added from combining structure and function, we
incorporated the best structural and functional metrics (the
pcc metric for both mRGCPL and SAP) into a single metric,
mRGCPL&SAP pcc. This combined structure-function tech-
nique yielded an AROC of 0.868 6 0.032. We then compared
the performance of this metric to the baseline (global) and pcc

(local patterns) metrics of structure and function considered

TABLE 2. Performance of Classification Metrics

Metric AROC 6 SE* % SN at ‡85% SP

SAP alone

SAP pMD 0.768 6 0.029 62

SAP p5-5-1 0.760 6 0.030 62

SAP pcc 0.797 6 0.034 72

fdOCT alone

cpRNFL pMT 0.718 6 0.041 56

mRGCPL pMT 0.775 6 0.038 56

mRGCPL p5-5-1 0.758 6 0.034 59

mRGCPL pcc 0.818 6 0.035 62

mRGCPL (PD) pcc 0.644 6 0.046 34

mRGCPL (HA) pcc 0.676 6 0.043 37

dRNFL pMT 0.724 6 0.041 56

dRNFL p5-5-1 0.681 6 0.034 31

dRNFL pcc 0.739 6 0.037 49

dRNFL (PD) pcc 0.619 6 0.043 38

dRNFL (HA) pcc 0.520 6 0.043 24

fdOCT & SAP combined

mRGCPL&SAP pcc 0.868 6 0.032 78

fdOCT&SAP pcc 0.859 6 0.032 78

fdOCT&SAP pMT/MD 0.831 6 0.034 62

SN, sensitivity; SP, specificity.
* Standard error based on the method of Obuchowski,47 accounting

for intereye correlations.

TABLE 3. Comparison of Classification Metrics

Metric AROC 6 SE* Compared Metric AROC 6 SE* Significance, P*

Entire population (n ¼ 52 control eyes, 156 glaucoma/suspect eyes)

mRGCPL&SAP pcc 0.868 6 0.032 SAP pMD 0.768 6 0.029 <0.001

SAP pcc 0.797 6 0.034 0.003

cpRNFL pMT 0.718 6 0.041 <0.001

mRGCPL pMT 0.775 6 0.038 0.001

mRGCPL pcc 0.818 6 0.035 0.005

fdOCT&SAP pMT/MD 0.831 6 0.034 0.038

SAP (PSD) used as inclusion and exclusion criteria (n ¼ 49 control eyes, 73 glaucoma/suspect eyes)

mRGCPL&SAP pcc 0.975 6 0.014 SAP pMD 0.897 6 0.026 <0.001

SAP pcc 0.942 6 0.024 0.066

cpRNFL pMT 0.809 6 0.045 <0.001

mRGCPL pMT 0.867 6 0.034 <0.001

mRGCPL pcc 0.922 6 0.025 0.004

fdOCT&SAP pMT/MD 0.931 6 0.025 0.003

* Significance and SE based on the method of Obuchowski,47 accounting for intereye correlations.
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independently (Table 3). As shown in Figure 5A, the
mRGCPL&SAP pcc had a significantly higher AROC than the
SAP pMD (P < 0.001) and the SAP pcc metrics (P ¼ 0.003) as
well as the cpRNFL pMT (P < 0.001), mRGCPL pMT (P¼ 0.001),
and mRGCPL pcc metrics (P ¼ 0.005).

However, because our combined structure-function metric
relies on the continuous cluster method, we wanted to
determine to what extent the higher AROC of the combined
structure-function metric could be explained by merely using
both fdOCT and SAP data, independent of the pcc metric.
Therefore, we tested a structure-function ‘‘baseline’’ metric
based on the minimum of the SAP pMD, mRGCPL pMT, and
dRNFL pMT; this ‘‘baseline’’ method (fdOCT&SAP pMT/MD) can
be thought of as classifying a subject as abnormal if either
structure or function is abnormal (simple logical rules on
global measures), without testing for subtle patterns (as with
the pcc) and without combining the structural and functional
information in a weighted and spatially correspondent manner
(see Methods for details of the mRGCPL&SAP pcc). When we
compared the mRGCPL&SAP pcc AROC (0.868 6 0.032) to the
fdOCT&SAP pMT/MD AROC (0.831 6 0.034), the pcc structure-
function metric performed better (P ¼ 0.038) than the
‘‘baseline’’ structure-function metric (Fig. 5A).

Evaluation of a Subpopulation Selected Based on
SAP

SAP was not used as inclusion or exclusion criteria for the
control or glaucomatous groups to avoid biasing the AROC
scores in favor of SAP-based metrics and, more importantly, to
allow for inclusion of subtle cases. However, to allow for a
comparison with studies that use SAP as inclusion criteria, we
analyzed a subpopulation in which a SAP criterion (PSD P �
0.05) was used as exclusion criteria for the control group and
inclusion criteria for the glaucoma group. As expected, the
AROC scores increased for each metric, with the
mRGCPL&SAP pcc metric now yielding an AROC of 0.975 6
0.014. The mRGCPL&SAP pcc metric performed significantly (P
< 0.001 to P ¼ 0.004) better than all the other methods that
were previously tested on the full population (see Table 3 and
Fig. 5B), with the exception of the SAP pcc metric (P¼ 0.066),

which is not surprising given that this subpopulation was
defined based on SAP. For structural measurements considered
independently, the pcc metric performed better than the pMT

metric for the mRGCPL, mRNFL, and dRNFL, although this
difference was statistically significant only for the mRGCPL (P
¼ 0.005) and mRNFL (P ¼ 0.012). For functional measures
considered independently, the SAP pcc metric performed better
than the SAP pMD metric (P ¼ 0.019).

DISCUSSION

Our purpose here was to combine structural and functional
data, to make better use of the individual OCT and SAP
measures, and to assist with glaucoma detection. We found that
combining structure and function by taking into consideration
spatially correspondent patterns of damage improved the
proper classification of the control and glaucomatous groups.
In general, the techniques used in this study improved the
diagnostic capabilities of the fdOCT and SAP data in two steps.
First, we considered structural and functional measures
independently by using a novel technique that searches for
many different types of spatially contiguous clusters of
abnormal points and then converts the result into a single,
continuous value (i.e., the pcc metric). Next, we combined the
structural and functional information in a spatially correspon-
dent manner. Both steps offer value-added, although in
different ways, as discussed below.

Evaluation of Structure and Function
Independently

The continuous cluster (pcc) metric has theoretical advantages
when compared with similar techniques used in the past.
When evaluating SAP data, the common cluster criterion of
three contiguous points significantly abnormal at P � 0.05,
with at least one point significant at P � 0.01 (i.e., the 5-5-1
cluster criterion), has been shown to offer classification
performance that is on par with or better than other commonly
used SAP metrics.46 However, this criterion yields a binary
response (whether or not a cluster is found) rather than a

FIGURE 5. Receiver operator characteristic curves for various metrics. (A) Receiver operator characteristic curves for the entire population. (B)
Receiver operator characteristic curves for a subpopulation in which SAP was used as inclusion and exclusion criteria.
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continuous metric and, at times, this rule can seem arbitrary.
For instance, the 5-5-1 criterion does not consider the number
of contiguous points nor the actual probabilities. As long as
there are three or more contiguous points significant at P �
0.05, the 5-5-1 does not distinguish between, for example,
three contiguous points versus six contiguous points, even
though the latter is much less likely to be observed due to
chance alone. Thus, a set of six contiguous points at P¼ 0.02
would not meet the 5-5-1 criterion (because not a single point
has P � 0.01), despite being less probable than three
contiguous points with two points at P ¼ 0.05 and one point
at P¼0.01. Likewise, the 5-5-1 criterion treats two points at P¼
0.05 and one point at P¼ 0.01 the same as three points at P <
0.001, even though, again, the latter is much less likely.

Our use of the pcc metric does involve some assumptions.
For the fdOCT data, the appearance of abnormal points may be
correlated (i.e., spatially clustered) in controls due to
interindividual variability. For example, if a control has an
RNFL distribution at the optic disc that differs from most other
controls, a pattern of contiguous abnormal points may appear.
One way to address this issue is the use of ‘‘superpixels’’ to
group correlated areas.10 Another approach is to better
understand factors leading to interindividual variability among
controls and to attempt to correct or control for these
underlying factors in the fdOCT data. In this study, we simply
take the pcc metric applied to the fdOCT data as an
approximate ‘‘score’’ that ranks relative probabilities of
observing clusters of abnormal points. Because the metric
yields continuous values, an ROC curve can be generated by
varying the threshold for considering a pcc value as abnormal,
which yields an empirical result for the optimal value in our
population (without making any assumptions regarding the
true probabilities of observing particular clusters of abnormal
points in the fdOCT data). In the future, an independent study
with a larger number of controls or a more advanced
simulation might yield a better understanding of how the pcc

metric relates to true probabilities of observation in the fdOCT
data. In any case, empirically, the pcc metric performs better
than the other methods tested in this study.

A specific example illustrating the advantage of the pcc

metric when applied to fdOCT data can be seen in Figure 6.
The average thickness of the mRGCPL for this eye lies near the
32nd percentile for the eyes in the control group. Although the
mRGCPL pMT classifies this eye as a control when using the
optimal point of the ROC curve, the mRGCPL pcc metric
classifies this eye as glaucomatous. Surprisingly, the PD and HA
analyses did not perform very well overall. (It is important to
realize that the focal loss volume metric,21 although it makes
use of a pattern deviation analysis for the mGCC, is
implemented differently from the PD method tested here.
For details, see Ref. 15.) Certainly, there are some specific cases

in which these strategies would be helpful. For instance, Figure
7A shows a control mRGCPL that had considerably fewer
abnormal points once the PD analysis was applied. Similarly,
Figure 7B shows the mRNFL of a patient (same eye as Fig. 6) in
whom the abnormal points within an arcuate became more
statistically significant when using the HA analysis. However,
overall, these strategies did not offer much value-added beyond
mean thickness. It is possible that the PD analysis removed
some diffuse thinning that assisted with classifying the
glaucomatous eyes when using mean thickness. Similarly, it is
possible that symmetric damage was removed when using the
HA analysis. It is also possible that in most cases the defects
enhanced by the HA technique would already be detected
using analyses based on mean thickness. In other words,
perhaps early glaucomatous damage in the macula is always
either diffuse (symmetric across the horizontal midline) or
focal damage in the form of a deep, thin arcuate (as in Fig. 6). If
true, then the HA technique would not offer much of an
advantage in either of these cases. Notably, recent studies24–26

using an HA strategy in fdOCT do not offer comparisons to the
performance of macular measurements based simply on mean
thickness. In any case, it is clear that there are some advantages
to the PD and HA strategies on a case-by-case basis (as seen in
Fig. 7).

Whereas our use of the mRGCPL thickness distinguishes
our study from previous reports combining structure and
function, recent studies18–20 have also considered the diagnos-
tic value of the mRGCPL (separate from the mGCC) when
considering structure alone. In particular, Mwanza et al.18 and
Takayama et al.19 have used a ‘‘minimum spoke’’ approach to
analyzing the mRGCPL. Although minimum probability values
performed worse than the pcc metric in our study (data not
shown), the ‘‘minimum spoke’’ approach is more complex
than the analysis we used, so it is difficult to make a meaningful
comparison. Further work would be needed to compare these
methods in a fair manner. In any case, the pcc metric is a more
general approach that can be applied to the thickness of any
layer at various regions of the retina, whereas the ‘‘minimum
spoke’’ approach is probably most applicable to mRGCPL
thickness.

Prior studies considering the diagnostic power of the
macular region in fdOCT have almost always found perfor-
mance similar to cpRNFL or dRNFL (see Refs. 13 and 16 for
reviews). However, in our study, the best mRGCPL parameter
performed considerably better than cpRNFL or the best dRNFL
parameter. The reason for this discrepancy is not entirely clear;
it may be due to population differences or other factors.
Regardless, although our population may include more
glaucomatous individuals with central defects than in other
studies, the lack of a large source of bias suggests that a fair

FIGURE 6. Example of an eye, belonging to the glaucomatous group, with a subtle arcuate defect in the macula. Data are in the same form as shown
in Figure 4A.
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number of these individuals do exist and would therefore
benefit from better analysis of the macular fdOCT data.

Evaluation of Combined Structure and Function

Combining structure and function yielded an improvement
beyond using structural and functional measures independent-
ly, in agreement with many of the previous studies combining
structure and function to aid in glaucoma detection.27–41

Although some of these studies have evaluated the benefit of
combining structure and function in comparison with simple
independent measures, such as the average cpRNFL thickness,
here we followed the logic of those studies that tested the
combined structure-function method against the best indepen-
dent measures of structure and function (i.e., the pcc metric in
this study). Additionally, previous studies that have used
machine-learning classifiers or a priori models have often
neglected to include a simple combination of structure and
function to test for the value-added of using a more complex
technique to combine structure and function. Here, we
compare our best combined structure-function metric
(mRGCPL&SAP pcc) against a simpler model of combining
structure and function (fdOCT&SAP pMT/MD) to provide a more
rigorous test for the value-added of our technique. It is
important to note that even our ‘‘simple’’ model of combining
structure and function involves more than the simple logical
rules used in past studies. For instance, if we were to consider
an individual glaucomatous if either the SAP pMD or the
mRGCPL pMT or the dRNFL pMT were abnormal at a significance
level of P � 0.05, then the corresponding AROC score would
be 0.785 6 0.033 (compare with values in Table 2), slightly
better than simple metrics using structure or function alone,
but considerably worse than even our ‘‘baseline’’ combination
of structure and function (fdOCT&SAP pMT/MD), which merely

uses the minimum value of either the SAP pMD or the mRGCPL
pMT or the dRNFL pMT to provide a continuous metric.

Many of the previous attempts to combine structure and
function used machine-learning approaches,30–39 including an
early study by Caprioli.30 (Here, we include linear discriminant
analysis under the umbrella of machine learning.) Two recent
studies by Bowd et al.36 and Bizios et al.38 used tdOCT and SAP.
Bizios et al.38 found that their artificial neural network
approach tested on a moderate glaucomatous population
(SAP MD¼�11.0 6 8.2 dB) yielded better discrimination than
cpRNFL or SAP MD alone, although not better than using their
machine-learning approach on cpRNFL alone. Bowd et al.36

found that their Bayesian machine-learning classifiers using
both structure and function, tested on a mild glaucomatous
population (SAP MD¼�3.1 6 3.4 dB), performed better than
cpRNFL or SAP MD alone and also performed better than the
best machine-learning approach on independent structural and
functional measures, although the difference between the best
functional measure and the combined structure and function
approach was not statistically significant. Other studies using
machine-learning approaches on data other than OCT have
also reported improvements when combining structure and
function as opposed to the best independent structural or
functional measure.33,34,37,39 Ultimately, the philosophy behind
machine-learning approaches differs fundamentally from the
approach used in this study. There is no clear ‘‘right answer’’;
both machine-learning and a priori models involve trade-offs.

Even relatively simple logical rules to combine structure
and function have been shown to be useful in previous
studies.27–29 In particular, the study of Shah et al.27 concluded
that combining structure and function offered a statistically
significant advantage over the best independent structural and
functional measures, even though their method of combining
structure and function did not require spatial correspondence.

FIGURE 7. Examples of PD and HA analyses. (A) The mRGCPL probability values based on thickness (left) and the PD analysis (right) for an eye
belonging to the healthy control group. (B) The mRNFL probability values based on thickness (left) and the HA analysis (right) for an eye belonging
to the glaucomatous group. Same eye as shown in Figure 6.
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The study of Hirashima et al.29 is, to the best of our knowledge,
the only previous work combining structure and function to
aid in glaucoma detection that uses 2-dimensional fdOCT data;
however, when combining structure and function, the authors
do not account for spatial correspondence and also use very
simple global measures, such as average cpRNFL thickness,
average mGCC thickness, and MD.

Two recent studies40,41 have used more complex a priori
models to combine structure and function in glaucoma while
taking into account spatial correspondence. Boland and
Quigley40 created a simple model that relates the probability
of abnormality in both confocal scanning laser ophthalmosco-
py and SAP data to the probability that these abnormal data
points are spatially correspondent, based on an extension of a
structure-function spatial map created by Garway-Heath et al.49

Although the Boland and Quigley40 approach to relating
structure and function is elegant, we used a coarser approach
for spatial correspondence for two reasons: the Garway-Heath
et al.49 map in its current form does not fully apply to 2-
dimensional fdOCT dRNFL data and the lack of 10-2 SAP data
on all subjects prevented precise spatial relationships in the
macula. In any case, the Boland and Quigley40 model
combining structure and function did not perform better than
using the MD of SAP alone; however, their study attempted the
more difficult task of separating glaucoma patients from
glaucoma suspects (rather than from healthy controls).

Another important a priori model, which combines 1-
dimensional cpRNFL fdOCT data with SAP, has been presented
in a recent study by Medeiros et al.41 Their work attempts the
much more ambitious task of relating fdOCT to SAP by first
converting both datasets to estimated ganglion cell counts
based on a model by Harwerth et al.50 The Medeiros et al.41

model for combining structure and function performed better
than simple global independent measures, such as average
cpRNFL thickness and SAP MD, and this difference was
statistically significant. However, the authors did not test their
model against more complex independent measures of
structure and function or against a simple model combining
structure and function. Additionally, it is worth noting that the
weighting function applied to the combination of structure
and function is heavily biased toward the structural measure
for mild glaucomatous defects (as defined by the SAP). The
relative weighting for the fdOCT-derived estimated ganglion
cell counts is 90% when the MD of the 24-2 SAP is�3 dB and
80% when the MD of the 24-2 SAP is �6 dB. Thus, it is not
surprising that the performance of the Medeiros et al.41

combined structure-function metric was equivalent to average
cpRNFL thickness for their preperimetric glaucoma group
(admittedly a difficult group for glaucoma detection). Although
the weighting function of Medeiros et al.41 makes their
combined structure-function metric largely dependent on
structural measures for mild glaucomatous damage (as defined
by the SAP), in fairness, their metric appears to be aimed more
at progression than early glaucoma detection. Indeed, further
work by this group has framed this combined structure-
function metric in the context of progression.51,52 Although
their combined structure-function metric is limited by the
assumptions and validity of the Harwerth et al.50 model (as
mentioned by Medeiros et al.41 in their discussion), the
conversion of structural and functional measures to estimated
ganglion cell counts allows for interesting speculations
regarding disease mechanisms in glaucoma.51

While combining only fdOCT dRNFL and SAP data (data not
shown) in this study performed better than using dRNFL or
SAP data alone, the best performance was achieved by
combining mRGCPL, dRNFL, and SAP data or simply mRGCPL
and SAP data. Although it may seem unusual that the dRNFL
seems to add little to the combination of mRGCPL and SAP, the

lack of 10-2 SAP data probably makes the 24-2 SAP and dRNFL
somewhat redundant, whereas the mRGCPL offers comple-
mentary information pertaining to macular damage. The
dRNFL may also be subject to interindividual variability to a
higher degree than the mRGCPL. Because 10-2 SAP is not
routinely collected in many clinical settings and is not officially
a part of the protocol for the data collected by many important
multisite studies, the mRGCPL data may serve as an important
indicator of macular damage that might otherwise go
unnoticed in glaucoma suspects and patients.

Inclusion and Exclusion Criteria

By not using more stringent inclusion and exclusion criteria at
the outset, we allowed for the inclusion of more subtle cases.
For instance, we included the fellow eye of glaucoma suspects
even if there was no evidence of glaucomatous optic
neuropathy or abnormal visual fields in that eye. Our rationale
here is similar to the arguments made by Bowd et al.36 in their
study combining SAP and tdOCT data using machine-learning
classifiers. The MD of the SAP in our glaucomatous group was
similar to their study and notably higher than some other
studies (e.g., Refs. 33 and 38) combining structure and
function. In particular, 87% of the eyes in our glaucomatous
group had an MD greater than �6 dB, suggesting ‘‘mild’’
glaucoma according to the Hodapp-Anderson-Parrish classifi-
cation system.53 An example of an interesting subtle case that
would not have been included otherwise can be seen in Figure
6. However, although our population more closely resembles a
screening population, the AROC scores we report (e.g., Table
2) are probably lower because our population is not strictly
defined. Thus, when assessing the AROC scores in Table 2, it is
important to realize that the maximum possible AROC is
probably less than 1 in this context.

To illustrate the differences in the AROC scores, as well as
to demonstrate the performance of these methods on a more
well-defined population, we repeated our analyses on a
subpopulation using SAP as part of the inclusion and exclusion
criteria (see Table 3 and Fig. 5B). Although the performance of
SAP-based metrics is likely to be favorably biased in this
subpopulation, it is important to note that the performance of
different metrics within a particular modality (i.e., structure or
function) will not be affected by such a bias. For example,
regarding the mRGCPL or the SAP data, there is no compelling
reason to believe that the better performance of the pcc metric
was affected by a bias in how the subpopulation was selected.
Ultimately, the lack of a ‘‘gold standard’’ for glaucoma diagnosis
means there will be a certain amount of ambiguity in
interpreting AROC scores, particularly in studies attempting
to combine structure and function, regardless of how the
populations are defined.

Future Directions

The methods used here could benefit from a more refined
model for spatial correspondence between structural and
functional measures. Although a precise local point-to-point
multiplication of probabilities between structure and function
yielded performance better than structure or function alone
(data not shown), the lack of 10-2 SAP data led us to use a
simpler method of combining structure and function. Addi-
tionally, continuous probability values for the SAP data in this
study,54 as opposed to the discrete values derived from
machine-based normative data, may further enhance the
performance of the combined structure-function techniques
shown here. Finally, although we used a priori assumptions in
this study to derive the ROIs for the fdOCT data, optimization
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based on our current dataset may yield better performance in
future studies with independent datasets.

CONCLUSIONS

A combined structure-function metric, taking into consider-
ation spatially correspondent patterns of damage, improved
the detection of glaucomatous eyes. Overall, evaluation of the
techniques used in this study suggests that the primary sources
of value-added stem from the continuous cluster search (the
pcc), the mRGCPL data, and the combination of structure and
function.
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