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Abstract

Exome sequencing of families of related individuals has been highly successful in identifying
genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of
the reverse approach, where we use exome sequencing of a sample of unrelated individuals to
analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the
exomes of 100 individuals representing the three major genetic subgroups of the Qatari population
(Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with
effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000
Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of
these Mendelian variants were only segregating in one Qatari subpopulation, where the observed
subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-
marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set
of Mendelian disease variants with potential impact on the epidemiological profile of the
population that could be incorporated into the testing program if further experimental and clinical
characterization confirms high penetrance.
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Introduction

Methods

The nation of Qatar, residing in a peninsula on the northeast coast of the Arabian peninsula,
sits at the crossroads of human migration out of Africa with human habitation dating over
50,000 years (Oppenheimer, 2012). The current Qatari population is comprised of
approximately 300,000 nationals within a resident population of 1.8 million (Qatar Statistics
Authority, 2010). The Qataris are descendants of nomadic tribes with European, Persian and
Southern African influences that reflect the complex migration history of the region
(Omberg et al., 2012). Consistent with this history, the one major genomic study of the
Qatari population conducted to date using DNA microarrays found that the population can
be divided into 3 distinct genetic groups: Bedouin (Q1), Persian-South Asian (Q2) and
African (Q3) (Hunter-Zinck et al., 2010).

Despite the importance of the Qatari people in the history of human evolution and the
importance of this nation in the region and globally, there have been relatively few
applications of genome-wide microarray genotyping (Hunter-Zinck et al., 2010; Omberg et
al., 2012) or high-throughput next-generation sequencing to study this population
(Rodriguez-Flores et al., 2012), particularly in comparison to populations that have been
sampled as part of major genomics consortiums such as the Human Genome Diversity
Project (HGDP) (Cann et al., 2002), HapMap (1000 Genomes Project Consortium, 2010;
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/), or the 1000 Genomes (1000G) Project (1000
Genomes Project Consortium et al., 2012). As a consequence, there is limited information
concerning the genomes of the Qatari people. For example, there is little known about what
Mendelian disease variants are segregating in Qatari genomes and the contribution of these
to the health profile of the modern Qatari population, a situation which is mirrored in other
native populations of the Arabian Peninsula and in other understudied regions of the world.

In this study, we demonstrate the power of applying next-generation exome sequencing in
populations such as the Qatari, who have been understudied from a genomics perspective.
Specifically, to gain further insight into the exome genetic variation of the population of
Qatari nationals and their genome-based risk for inherited disorders, we carried out massive
parallel exome sequencing of a sample of 100 Qatari genomes. By applying a detailed
annotation analysis, we identified 37 polymorphisms that we infer are likely to be
responsible for Mendelian diseases in the Qatari population. Using 1000G, the largest and
most diverse resource of human exome variation (1000 Genomes Project Consortium et al.,
2012) available in populations with some slight degree of genetic relatedness to Qataris
(Hunter-Zinck et al., 2010; Omberg et al., 2012; Rodriguez-Flores et al., 2012), we assessed
whether any of the 37 disease variant alleles identified are at higher frequency in Qatar when
benchmarked vs this worldwide sample. Of the variants we identified, 10 were not
represented in the populations of the 1000 Genomes consortium and an additional 2 were
found to be at significantly higher frequency when comparing to the 1000 Genomes sample.
We also found that 2 of the Mendelian polymorphisms were segregating at disease allele
frequency >1% only within one of the genetic subpopulations (Q1, Q2, or Q3), where these
subpopulations tend to be good predictors of marriage patterns among Qatari (Sandridge et
al., 2010).

Ethics Statement

Human subjects were recruited and written informed consent obtained at Hamad Medical
Corporation (HMC), Doha, Qatar under protocols approved by the Medical Research Center
& Research Committee and the Institutional Review Board of Weill Cornell Medical
College in Qatar.
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Inclusion Criteria

The goal of the study was to assess genetic variation in a population that could be clearly
demarcated by population genetic criteria and also reflects a unit relevant for the current
population in terms of intra-marrying frequency. As selection criteria, we therefore required
that subjects be third generation Qataris where all ancestors were Qatari citizens born in
Qatar, as assessed by questionnaires. Recent immigrants or residents of Qatar who traced
their recent ancestry to other geographic regions were excluded. A previous population
genetic study utilizing genotyping microarrays that used these criteria (Pritchard et al., 2000;
Hunter-Zinck et al., 2010; Rodriguez-Flores et al., 2012) found this approach produced a
sample clearly definable by principal component analysis (PCA) when compared to other
worldwide populations. Individuals selected using this criteria fell into three clearly
definable subpopulations: Q1-Bedouin, Q2-Persian-South Asian, and Q3-African ancestry
(Hunter-Zinck et al., 2010; Omberg et al., 2012) that reflect the historical migration patterns
in the region (Omberg et al., 2012) where studies indicate there tend to be strong patterns of
intra-marrying within population subgroups and that these individuals tend not to marry
outside of this population as a whole (Sandridge et al., 2010). We used a panel of 48 SNPs
genotyped by TagMan (Life Technologies, Carlsbad, CA) sufficient for classification of
Qataris in one of these 3 groups based on >70% ancestry (Figure 1A) in one cluster in a
STRUCTURE analysis with k=3 to identify individuals that could unambiguously be placed
in one of these three groups (Rodriguez-Flores et al., 2012).

Subjects with no known familial relationships satisfying the Qatari ancestry criteria and with
unambiguous assignment to a Qatari subpopulation were selected from a group visiting the
health clinics at Hamad Hospital, Doha, Qatar, for a routine diabetes screening; the
prevalence of type-2 diabetes in Qatar is extremely high (20%) (http://www.idf.org/
diabetesatlas). Selection of the study sample attempted to produce a relatively even
distribution of males and females (32 M and 68 F), a relatively even distribution across each
of the three Qatari subpopulations (36 Q1, 38 Q2, and 26 Q3), and an even distribution of
those with and without type 2 diabetes (51 with and 49 without). The final set of subjects in
the sample matching these criteria was selected from medical record information by
researchers at Weill Cornell Medical College in New York City, who did not have any direct
interactions with the subjects.

Variants Discovered in Qatar

In order to characterize the spectrum of genetic variation in Qataris, 100 exomes were
sequenced by the Beijing Genomics Institute to a median depth of 67x using paired-end 90
bp Illumina reads on a HiSeq 2000 (BGI Americas, Cambridge, MA). Reads were mapped
to human reference genome GRCh37 using BWA 0.5.9 (Li and Durbin, 2010) with
parameters (quality threshold for read trimming 15, maximum number of fraction gap opens
1, indels disallowed within 15 bp of end of read, long gaps disabled, alignment seed length
32 with a maximum of 2 mismatches in seed, and maximum distance between paired end
read mapping of 2,000 bp). Each exome was verified to have =10x depth at >80% of exome
target sites (38 Mb Agilent enrichment platform) with reads mapped in a proper pair of
mapping quality >10 and base quality >17. Mapped reads were prepared for genotyping
using the “Best practices for variant detection v3” GATK (http://www.broadinstitute.org/
gatk/) pipeline, including removal of PCR-duplicate reads, realignment across known indels,
and base quality score recalibration (DePristo et al., 2011). The number of exome bases
covered at =1x and =10x was determined using SAMTOOLS (Li et al., 2009).

Genotypes were called in each individual exome at all exome sites with sufficient coverage
to call a genotype (ref/ref, ref/alt, or alt/alt) using GATK v1.1-24 in “emit all confident
sites” mode. The 100 individual VVCF files were then filtered and merged into a single
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population VVCF file using a Perl script. First, a site list of variants discovered in at least one
exome at >10x depth, <180x depth, and with quality >50 was generated. Second, the 100
individual VCF files were combined to include a genotype (ref/ref, ref/alt, alt/alt) for each
exome. Genotypes with insufficient coverage, excess coverage, or low quality were marked
missing. The allele balance for homozygous and heterozygous genotypes was then examined
using a binomial model. For homozygous sites, a maximum of 1 alternate base was allowed.
For heterozygous sites, a minimum of 2 alternate bases was required, and the binomial p
value of both the reference and alternate allele count was required to be >1073, given the
expected count for both reference and alternate to be 50% of the depth (5 and 5 for 10x
depth). Variants not meeting the heterozygous and homozygous criteria were filtered out.
Next, a Chi-square test of Hardy-Weinberg Equilibrium was assessed for each variant, and
variants with p<10~> were filtered out. Finally, a 90% callability filter was applied,
removing sites where high-confidence genotypes were obtained for less than 90% of the
exomes. A VCF file containing genotypes for this final variant set is available online at:
http://mezeylab.cb.bscb.cornell.edu/Software.aspx.

Coding Variant Allele Frequency

The variants identified in the 100 Qatari exomes were assigned to genes and functionally
classified using gene models from the ENSEMBL (Flicek et al., 2012) database of genes and
transcripts (build 65) by SNPEFF (Cingolani et al., 2012). The population frequency
distribution of 95,840 high-confidence coding variants with known function on the 22
autosomal chromosomes and chromosome X was calculated for the Qatari population while
accounting for gender at sites on the X chromosome (Schaffner, 2004). Variants on the X
chromosome were filtered using gender-aware criteria (1000 Genomes Project Consortium
et al., 2012). Female X chromosome variants were treated as described for autosomes above,
while male X chromosome variants were treated as homozygous haploid variants. Variants
were binned as the “variant is the major allele”, where the alternate allele was the major
allele in Qataris and “variant in the minor allele,” where the alternate allele was the minor
allele in Qataris. The minor allele site frequency spectrum of coding variants was generated
by binning variants by minor allele frequency in 1% bins from 0 to 0.5 and plotted on a log
scale.

Comparison of Qatari Sub-population Allele Frequency

In order to define the “Qatari exome”, variants were binned for the Qatari and for the Q1,
Q2 and Q3 subpopulations as the “variant is the major allele”, where the alternate allele was
the major allele in Qataris and “variant is the minor allele,” where the alternate allele was
the minor allele in Qataris. For each subpopulation, a major allele reference exome was
generated, where the reference allele was replaced with the major allele in Q1, Q2, or Q3.

In order to identify variants that distinguish the Q1, Q2 and Q3 Qatari sub-populations, the
allele frequency was compared for 95,840 coding variants using two methods, Fg and allele
frequency difference (Akey et al., 2002; Holsinger and Weir, 2009). The Fixation Index (Fg)
was used as a measure of population differentiation and was calculated using the unbiased
estimation approach comparing observed mean square errors within and between
subpopulations described elsewhere (Akey et al., 2002). These two statistics were calculated
for comparison of Q1 vs Q2; Q1 vs Q3; and Q2 vs Q3.

Variants Linked to Mendelian Disorders

To identify coding variants linked to Mendelian disorders, a functional classification was
used where in cases of multiple transcripts the most severe was selected in order to
maximize the likelihood of identifying a variant present in the OMIM or HGMD database.
Of these coding variants, 251 were previously reported genetic disorder variants in the
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Comparison

OMIM database (http://omim.org) or HGMD database GenomeTrax webserver (http://
www.biobase-international.com/product/genome-trax. This original list was reduced by a
literature review manual curation down to 37 variants in 33 genes where both the variants
and the genes were clearly linked to 36 recessive, dominant or X-linked Mendelian disorders
by excluding variants under the following categories: greater than 5% disease allele
frequency in Qatari; disease allele unclear; association/risk/susceptibility variant; compound
with other variants in cases; observed in controls, molecular basis not known for phenotype;
insufficient evidence to determine causality; reclassified by OMIM as variant of unknown
significance; conflicting reports in literature; drug metabolism variant not linked to disease;
genotype of cases not specified; modifier not causative; polymorphism with no known
functional impact [referred to by OMIM as a “polymorphism” (http://www.omim.org/help/
faqg)]; somatic mutation in cancer; gene not expressed in disease tissue; observed in
heterozygous state in cases; and SNPEFF and OMIM (or HGMD) disagree on function. This
final list was considered to have the strongest evidence for including true Mendelian
disease-causative variants identified in the sample given available information. These 37
variants observed in 100 Qatari exomes were compared to the 14 SNP Mendelian disease
variants directly genotyped in the panel of genetic tests conducted in the Laboratory
Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar, which is used to screen
Qatari couples before marriage (Supp. Table S1).

In addition, to determine if prior reports of the 36 diseases linked to the 33 genes were
previously observed in Qatar or other Arab populations, the Center of Arab Genomics
Studies (CAGS) database (http://www.cags.org.ae) was queried using the MIM ID number
for each gene (http://omim.org). The CAGS database lists 113 genetic disorders and 27
associated gene loci in the Arab population of Qatar (Tadmouri, 2012), in both text and
online database formats, with each disease and locus indexed by its MIM number. The list
was compiled from articles in Pub-Med and the WHO Index Medicus for the Eastern
Mediterranean.

The analysis identified additional variants observed in the Qatari population that are present
within disease causing genes, although the function of the variants is not yet known. These
variants have the potential to be disease causing. Although it was not the focus of this study,
the list of 3,293 genes present in either the OMIM or HGMD databases was compared to the
list of coding mutations with potential effect on protein function, including nonsynonymous,
missense, splice site donor, splice site acceptor, frameshift, start loss, codon insertion, stop
lost, and codon change plus codon insertion.

of Variant Frequencies in 1000 Genomes Populations

In order to identify variants unique to or at elevated allele frequency in the Qatari, we
assessed the frequency of each of the 37 variants in the 1000 Genomes (1000G) Project
Phase 1 v3 release of genotypes for 14 populations (1000G: ASW, CEU, CHB, CLM, FIN,
GBR, GIH, IBS, JPT, LWK, MXL, PUR, TSI, YRI) (1000 Genomes Project Consortium et
al., 2012). For variants segregating with at least 2 observed alleles that were also observed in
at least one 1000 Genomes population, we used a one-sided binomial test to compare the
frequency of the Qatari sample as a whole to the entire 1000 Genomes sample, using the
latter as the expected frequency. A Bonferroni-corrected threshold was used to assess
significance. For variants found to be significant, we considered the non-zero Q1, Q2, or Q3
subpopulation frequencies of these variants and again used a one-sided binomial test to
check if these subpopulation frequencies were significantly higher when compared to each
of the 1000 Genomes populations that were segregating for the variant, where again the
1000 Genomes population frequencies were used as the expected frequency for these tests.
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TagMan Genotyping

Results

Potential disease-causative mutations were confirmed by allelic discrimination TagMan
(Life Technologies) assays. To accomplish this, an additional 386 Qatari genomes were
genotyped, including n=217 Q1, n=154 Q2, and n=15 Q3. Pre-designed or custom allelic
discrimination reagents were used in TagMan genotyping assays using vendor’s protocols in
the ABI 7500 Sequence Detection System (Life Technologies). End point reads were
confirmed with inspection of fluorophore-specific amplification plots when necessary.

Variants Discovered in Qatar

To characterize the spectrum of genetic variation in Qatari, 100 exomes were sequenced to a
median depth of 67x using paired-end 90 bp Illumina reads on a HiSeq 2000. A total of 2.2
Gb of sequence data was collected for each exome, consisting of reads mapped to human
reference genome GRCh37 using BWA 0.5.9 with reads of mapping quality >10 and base
quality >17 (Table 1). The resulting median depth was 67x in the target exome of 37.4 Mb,
with a median of 36.5 Mb covered with at least one read (97.3% of target exome). All
exomes met a quality threshold of >80% of target sites at >10x depth, a median of 33.3 Mb
covered at this depth. Coverage depth in the X and Y chromosomes was lower and differed
between sexes. For females, the X chromosome mean depth was 76x, with 89.1% of target
sites at =10x depth. For males, the X chromosome mean depth was 43x, with 76.6% of
target sites at =10x depth, lower than in females. The male Y chromosome mean depth was
49x, with 53.2% of target sites at >10x depth.

After filtering of low-quality sites, the proportion of novel variants was counted at both the
individual and population levels, where “novel” was defined as a variant not present in
dbSNP 135. At the population level, a total of 132,303 variants were observed, 23% of
which were novel (Table 1). This call set included 131,036 SNPs (23% novel) and 1,267
indels (53% novel). On average 17,487 variants were observed in each exome, including
17,399 SNPs and 88 indels. The proportion of novel variants was 2% for SNPs and 15% for
indels. The SNP transition-to-transversion ratio (Ti:Tv) was 3.04 overall and 2.57 in novel
SNPs. Stratified by gender, more novel SNPs and indels were observed in the X
chromosomes of females (mean 113 SNPs and 0.75 indels discovered per exome) compared
to the X chromosome of males (57 SNPs and 0.06 indels), a result consistent with the 2:1
ratio of these chromosomes, such that more novel SNPs are expected to be present in a
larger sample of chromosomes. SNPs were observed in individual Y chromosomes; however
the call rate was below 90% across all 32 male Qatari Y chromosomes and they were
excluded on this basis, as described in Methods.

In a preliminary study of the exome sequences of 7 Qatari (3 Q1, 2 Q2, 2 Q3), we identified
38,427 autosomal SNPs in the Qatari population (Rodriguez-Flores et al., 2012). The
majority of these variants (20,208 or 53%) were also observed in the 100 Qatari exomes.
Because these are independent samples of the Qatari population, it provides an indication of
the amount of rare genetic variation yet to be sampled in Qatar.

Coding Variant Allele Frequency

To verify the overall quality of the call set, the site frequency spectrum of coding variants
among Qatari exomes was analyzed. The variants identified in 100 Qatari exomes were
assigned to genes and functionally classified using SNPEFF (Cingolani et al., 2012). A total
of 95,840 coding SNPs were observed in the ENSEMBL (Flicek et al., 2012) database of
genes and transcripts (build 65; Table 2). Of these, 94% were nonsynonymous (49.4%) or
synonymous (44.6%), and the remaining 6.0% included loss of function variants (splice
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donor, frameshift, splice acceptor, start loss, stop gained, start gained). The population
frequency distribution of these 95,840 high-confidence coding variants with known function
on 22 autosomes and the X chromosome was calculated for the Qatari population,
accounting for gender at sites on the X chromosome (Supp. Figure S1). Nearly half (46%)
were “personal variants,” single alleles observed in one exome (minor allele frequency
0.005 or 1 in 200 alleles), 36% were rare variants (minor allele frequency 0.005 to 0.1),
16.5% were common variants (minor allele frequency of 0.10 to 0.50). The variant (non-
reference) allele was the major allele in Qataris for 5.8% of all variants; 0.5% of the Qatari
variants had a non-reference frequency of 1.0 (fixed for the alternate allele).

Characterization of the Q1, Q2 and Q3 Qatari Exomes

Variants that differentiate the Q1, Q2 and Q3 Qatari sub-populations were identified by
comparing the allele frequency for 95,840 coding variants using two methods, F¢ and allele
frequency difference comparisons of Q1 vs Q2, Q1 vs Q3, and Q2 vs Q3 (see Supp. Figure
S2).

In the context that the use of “major allele” reference genomes are more effective at
identification of population-specific variants (Dewey et al., 2011), future studies of Qatari
exomes can benefit from a definition of a reference Qatari exome where the major allele in
Q1, Q2 and Q3 is used in-lieu of the standard reference allele. For this purpose, the Qatari
exomes were grouped into Q1, Q2 and Q3 populations (Supp. Figure S3), the major allele
was determined for each population and major allele reference exomes were generated for
Q1, Q2 and Q3 in FASTA (Pearson and Lipman, 1988) format. In each population-specific
exome, the major allele in the Qatari subpopulation was substituted for the reference allele.
This included a total of 14,192 sites, with 11,043 major allele sites in Q1, 11,033 major
allele sites in Q2 and 11,183 major allele sites in Q3. The overlap among Q1, Q2 and Q3
(Figure 1B) represented 58% of the total major allele sites where the alternate allele was the
major allele in at least one population (8,212 of 14,192).

Variants Linked to Mendelian Disorders

A total of 11,288 coding variants with potential effect on protein function were identified in
3,293 OMIM or HGMD genes, including 11,000 nonsynonymous, 139 missense, 46 splice
site donor, 42 splice site acceptor, 22 frameshift, 17 start lost, 9 codon insertion, 9 stop lost,
and 4 codon change plus codon insertion (Supp. Table S2). Of these, a total of 251 coding
variants in the Qatari exomes were previously linked to a disease phenotype in the OMIM
and HGMD databases and were assigned to a dbSNP rsID. Of these, 91% were
nonsynonymous, 5.3% were synonymous, 3.1% were nonsense, and 0.3% were splice site
donor variants (Table 2). Many of the variants discovered were for complex disorders or
were at frequencies too high to be consistent with a deleterious/penetrant disorder as
identified in OMIM. However, when limiting this set by manual curation of the literature to
those with strongest available evidence for being true Mendelian disease-causative variants
(see Methods), we identified a list of 37 variants in 33 genes, representing 36 disorders, that
had genotype frequencies consistent with deleterious Mendelian effects (Table 3, Supp.
Table S3). All of these were present in OMIM; an additional five variants present in HGMD
and not in OMIM were filtered out using these criteria (BMP4, MIM# 112262, ¢.1070G>A,
p.R287H, modifier mutation; TINF2, MIM# 604319, c.1076C>A, p.S245Y, observed in
controls; PHKB, MIM# 172490, ¢.607G>T, p.M185I, insufficient evidence to determine
causality; AGTR2, MIM# 300034, rs12917810, SNPEFF and HGMD disagree on coding
function; GNPTG, MIM# 607838, rs193302860, SNPEFF and HGMD disagree on coding
function). A full list of variants excluded and the reason for exclusion is in Supp. Table S4.
On the average, we observed 2 curated OMIM variants per person; the highest number of
curated OMIM variants was 5 for one individual.
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Of the 37 potential disease-causative variants, the most common disorders were hematologic
disorders (8 variants, 2 involving 1 gene, 3 involving another gene, and 3 each in a different
gene), metabolic disorders (5 variants, 2 in 1 gene, and 3 each in a different gene), eye
disorders (4 variants, each in a different gene), inflammatory disorders (3 variants, each in a
different gene), cardiovascular (3 variants, each in a different gene) and neurologic (3
variants, each in a different gene; Table 3 and Supp. Table S3). The disorders/genes with
more than 1 variant included hemoglobin (HBB, MIM# 141900, 3 variants; hemoglobin S
sickle cell anemia, MIM# 603903; hemoglobin D (no MIM number); and hemoglobin E
beta-plus thalassemia, MIM# 613985), familial Mediterranean fever (MEFV, MIM#
608107, 2 variants; MIM# 249100) and erythropoietic porphyria (MIM# 177000, FECH2, 2
variants; MIM# 612386).

The majority (56%) of the disorders were recessive, with the remainder dominant (37%) or
X-linked (7%). After carefully reviewing the literature for the 13 dominant disorders, we
classified the 13 variant-disease links into 3 categories, “mild phenotype, difficult to detect”,
“physically obvious phenotype”, and “serious, responsible for deaths”. We classified 9 as
“mild phenotype, difficult to detect” (F5, MIM# 612309, c1601G>A, p.Arg506GIn; MEFV,
MIM# 608107, ¢.2270G>T, p.Ala744Ser; MEFV, MIM# 608107, ¢.2120A>G,
p.Met694Val; NKX2-5, MIM# 600584, ¢.302C>T, p.Arg25Cys; NLRP12, MIM# 609648,
€.1070C>T, p.Arg284Ter; NLRP3, MIM# 606416, c.1344G>A, p.Val198Met; SLC7AY,
MIM# 604144, ¢.661G>A, p.Alal82Thr; KLF11, MIM# 603301, ¢.821C>T, p.Thr220Met;
LPL, MIM# 609708, c.476G>A, p.Asp9Asn), 3 as “physically obvious phenotype” (EVC,
MIM# 225500, ¢.1512G>A, p.Arg443Gin; TGIF, MIM# 602630, c.636A>T, p.GIn107Leu;
WNT10A, MIM# 606268, c.1145T>A, p.Phe228lle), and one as “serious, responsible for
deaths” (CAV3, MIM# 601253, ¢.310C>A, p.Thr78Met). For the mild mutations
discovered, we believe that our pre-screening protocols and that our medical questionnaires
are not detailed enough to provide a direct confirmation as to whether these subjects do have
the disease. For the 3 physically obvious and 1 severe mutations, our results call into
question the penetrance of these variants in the Qatari population.

For the SNP disease variants in the panel of genetic tests currently conducted in the
Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar, which is
used to screen Qatari couples before marriage, only 4 of the variants identified in the present
study are represented, including a GJB2 (connexin 26; MIM# 121011) variant linked to
deafness (MIM# 220290), SLC2A10 (MIM# 606145) variants linked to arterial tortuosity
syndrome (MIM# 208050), HBB (MIM# 141900) variants linked to sickle cell disease
(MIM# 603903) and beta-thalassemia (MIM# 613985), and F5 (MIM# 612309) variants
linked to thrombophilia (MIM# 188055) (Table 3 and Supp. Table S3). Of interest, our
survey did not detect 2 disorders screened for in Qataris, including homocystinuria (MIM#
236200) due to CBS (MIM# 613381) ¢.1006C>T, p.Arg336Cys and cystic fibrosis (MIM#
219700) due to CFTR (MIM# 602421) ¢.3700A>G, p. lle123Val. Other common variants in
Qataris such as deletions of SMN1 (MIM# 600354) or HBA2 (MIM# 141850) would not be
detected by exome sequencing.

Upon query of the Center for Arab Study Database, we found that only 13 of these variants
have been previously identified in this database; only one of these, arterial tortuosity
syndrome (MIM# 208050), has been previously identified in a Qatari family and reported in
a Pubmed-indexed academic journal. These variants include autosomal recessive deafness
(MIM# 220290) (GJB2; MIM# 121011); familial Mediterranean fever (MIM# 249100)
(MEFV; MIM# 608107); Ellis-van Creveld Syndrome (MIM# 225500) (EVC; MIM#
604831); holoprosencephaly (MIM# 142946) (TGIF; MIM# 602630); Stargardt disease
(MIM# 248200) (ABCA4; MIM# 601691); primary congenital glaucoma (MIM# 231300)
(CYP1B1; MIM# 601771); tetralogy of Fallot (MIM# 187500) (NKX2-5; MIM# 600584);
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autosomal recessive chronic granulomatous disease (MIM# 233710), (NCF2; MIM#
608515); cystinuria (MIM# 220100) (SLC7A9; MIM# 604144); Myoshi myopathy (MIM#
254130) (DYSF; MIM# 603009). Only three of the disorders have been previously observed
in Qatar, including arterial tortuosity syndrome (MIM# 208050) (SLC2A10; MIM#
606145); sickle cell anemia (MIM# 603903) (HBB; MIM# 141900); and oculocutaneous
albinism (MIM# 606952) (TYR; MIM# 606933), and the specific causative variant that our
study identified was observed previously only for SLC2A10.

Unique and High Frequency Qatari Mendelian Disorders Compared to 1000 Genomes

Of the alleles observed for the 36 disorders, 10 were not present in the 1000 Genomes
populations (Table 3). Of these 10, 9 were present in only one subpopulation. These
included 2 variants specific to the Q1 population, including TGIF (MIM# 602630) c.
636A>T, p.GIn107Leu linked to holoprosencephaly (MIM# 142946) (Aguilella et al., 2003)
and SLC2A10 (MIM# 606145) ¢.340C>G, p.Ser81Arg linked to the arterial tortuosity
syndrome (MIM# 208050) (Coucke et al., 2006; Faiyaz-Ul-Haque et al., 2008). SLC2A10
(MIM# 606145) ¢.340C>G, p.Ser81Arg was not observed in the 13,000 European
Americans and African Americans sampled by the NHLBI Exome Project 9 (http://
evs.gs.washington.edu/EV'S/) with average depth 72x for other variants in the SLC2A10
gene. The frequency of TGIF (MIM# 602630) c.636A>T, p.GIn107Leu was 0.0002 in
European Americans and 0.0002 in African Americans from the NHLBI Exome Project.

For the 27 variants that were present in at least one of the 1000 Genomes populations, we
compared the frequencies of these variants to the entire 1000 Genomes sample and to 1000
Genomes populations to benchmark which of these variants are at unusually high frequency
in Qatar. After a multiple test correction, we found that only one variant CYP1B1 (MIM#
601771) linked to primary congenital glaucoma (MIM# 231300) (Bejjani et al., 2000;
Vincent et al., 2002; Vasiliou and Gonzalez, 2008) was significant compared to the entire
1000 Genomes sample (p<0.00004), while SLC7A9 (MIM# 604144) linked to cystinuria
(MIM# 220100) (Feliubadalo et al., 1999) was close to significant (p<0.0061) after
correcting for multiple tests. When comparing the subpopulation frequencies of these two
variants (Q1 and Q2 for CYP1B1 and Q2 for SLC7A9) to each of the 1000 Genomes
populations segregating for these variants, all comparisons produced relatively low p values
(greatest p<0.075).

Assessment of Disease-related SNP Frequency

In order to validate the frequency and population specificity for the variants, 4 variants with
single-population specificity and specific frequency higher than all 1000 Genomes
populations (TGIF, MIM# 602630; RP1, MIM# 603973; SLC2A10, MIM# 606145; and
SLC7A9, MIM# 604144) were assessed using TagMan assays in 386 Qataris (Table 4). For
all of the variants tested, the variant was not observed in Q3, consistent with the exome
study results of population specificity of the variants in Q1 and Q2. For 2 of the 4 variants,
(SLC2A10 ¢.340C>G, p.Ser81Arg and RP1 ¢.1266C>T, p.Thr373lle), the trend of
population specificity was conserved, such that if a variant was only observed in one
subpopulation in the exome sample, the same group had the highest allele frequency in the
assessed group. It is likely that the observation of Q1 specific variants in Q2 (and vice versa)
is the result of admixture across Qatari populations (Omberg et al., 2012).

Discussion

The value of deep coverage exome sequencing has been demonstrated repeatedly for studies
where the target is identifying the allele responsible for a disease of relatively simple
inheritance and where the sampling design includes related individuals from families with
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high incidences of the disease. The present study highlights the value of the reverse
approach: exome sequencing of a random sample of individuals for a population, without
regard to specific phenotype, to identify the prevalence of variants previously linked to
Mendelian disorders. Overall, with a median depth of 67x Illumina exome sequencing of a
sample of 100 Qataris providing an overall sampling of SNP and indel exome variation in
this population, we were able to identify 37 variants in 33 genes representing 36 known
Mendelian disorders where the causal SNP has been reported, has a recessive, dominant or
X-linked inheritance pattern, and where there are alleles segregating in the Qatari
population.

With respect to available health informatics resources local to Qatar, this study adds a
considerable amount of information. For example, only 13 of these variants have been
identified in any regional Arabian populations as reported by the Center for Arab Study
Database. This indicates this database is incomplete; a situation that we suspect will be
mirrored in other local databases. As another example, the current panel of genetic tests
conducted on a national basis in Qatar by the Laboratory Medicine and Pathology, Hamad
Medical Corporation, Doha, Qatar, which is used to screen Qatari couples before marriage,
includes only 4 of the variants identified in the present study: GJB2 (connexin 26; MIM#
121011) variant linked to deafness (MIM# 220290), SLC2A10 (MIM# 606145) variant
linked to arterial tortuosity syndrome (MIM# 208050), HBB (MIM# 141900) variant linked
to sickle cell disease (MIM# 603903) and beta-thalassemia (MIM# 613985), and F5 (MIM#
612309) variants linked to thrombophilia (MIM# 188055). Given many of the additional
variants we identified are relatively severe recessive disorders, including POMGNT1
(MIM# 606822) ¢.1666G>A, p.Asp556Asn linked to muscular dystrophy-
dystroglycanopathy (limb-girdle) type C,3 (MIM# 613157) and RP1 (MIM# 603937) c.
1266C>T, p.Thr373lle linked to retinitis pigmentosa (MIM# 180100) (Khaliq et al., 2005),
this study provides additional candidates for this testing panel, after further characterization
of disease causation and high penetrance in Qatar. In general, we suspect that direct exome
studies conducted in understudied populations will similarly reveal the incompleteness of
local genetic testing. Such studies are a cost-effective strategy for identifying candidate
variants that could have an impact on population health.

Another more global benchmark of the value of exome studies of this type is provided by
the analysis of representation and frequency of the 37 candidate disease-causative variants
we identified in the 1000 Genomes populations. For example, we found 10 of our variants
were not represented at all in the 12000 Genomes populations, where only arterial tortuosity
syndrome (MIM# 208050), Hemoglobin S (MIM# 603903), and oculocutaneous albinism
type | (MIM# 203100) had been previously known to be in Qatar and where the bulk of
these were specific to the Q1-Bedouin and Q2-Persian subpopulations as expected, given
that these are less closely related to 1000 Genome populations as compared to the Q3-
African subpopulation. This study therefore added a considerable number of discoveries
concerning what Mendelian variants are comparatively unique to the Qatari population.

The current study highlights the importance of careful consideration of both medical genetic
and population genetic information when discovering Mendelian disease alleles through
random exome sequencing. As a starting point, we used the OMIM and HGMD databases to
identify potentially deleterious disease alleles. However, since we were focused on alleles
that have a high likelihood of having a disease impact in the population (i.e., where the
causal mutation is reported, the result has been confirmed in more than one family and has a
clear Mendelian inheritance pattern), it was necessary to contend with the issue that OMIM
and HGMD include a large number of entries that are not very useful for exome-based
discovery. We therefore excluded a large number of records in our final list, including
alleles reported for complex traits, where the causal mutation has been tagged rather than
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known, the disease allele requires interaction with a second allele on the same haplotype,
and cases where the mechanism of inheritance was unclear. We found a need for a review of
the primary literature to get an accurate assessment of each of these criteria and to identify
other issues, such as cases where the reference allele is the disease allele, multiple alternate
alleles are linked to the same dbSNP rsID, or where databases disagree on the residue
number. While there have been some recent attempts to provide curated sub-lists for OMIM
(Liao and Zhang, 2008; Bell et al., 2011), overall, studies of the type implemented here will
continue to need careful medical informatic analysis, including surveying the primary
literature for reported disease alleles.

After an extensive and thorough filtering process, over 80% of the OMIM/HGMD variants
previously linked to a Mendelian disorder were filtered out based on disease allele
prevalence and literature support. Among the remaining variants, additional false positives
may remain; however, without further characterization of the variants, it is difficult to
distinguish between low penetrance and false positive. For the 3 physically obvious and 1
severe disorders where the inheritance mode is autosomal dominant, the false positive rate
could be as high as 100%, while for recessive variants identified in heterozygotes, the false
positive rate is unknown, although after our extensive filtering process, we expect it to be
nearer the other end of the spectrum, i.e., closer to 0%.

The long-term objective of this study is to provide a foundation for improving and
expanding the set of genetic tests used for premarital and prenatal screening in Qatar.
Among the variants discovered, there are reassuring cases where the variant and disease was
previously observed in Qatar, such as SLC2A10 (MIM# 606145) ¢.340C>G, p.Ser81Arg
and arterial tortuosity syndrome (MIM# 208050); HBB (MIM# 141900) c.129G>A,
p.Glu26Lys and Hemoglobin E beta-plus-thalassemia (MIM# 613985); GJB2 (MIM#
121011) ¢.286G>A, p.Trp24Ter and auto-somal recessive deafness (MIM# 220290). For
SLC2A10, our study serves as a confirmation that the disease allele is segregating in the
population despite a national screening program. For HBB and GJB2, the Hamad list of
genetic tests mentions these genes but does not specify these variants, hence we have
evidence that could potentially narrow the focus of screening in these genes. It is expected
that true causative variants for Mendelian disorders remain at minor allele frequency below
1% (Pritchard and Cox, 2002), hence some of the more interesting variants are those not
observed in any of the 1000 Genomes Project populations and are rare in the Qatari
population (1 in 200 alleles). This is the case for the three variants mentioned above
(SLC2A10, HBB, GJB2). Three other variants that meet this criteria (never observed in
1000G, <1% disease allele frequency in Qatar) include MEFV (MIM# 608107) ¢.2120A>G,
p.-Met694Val, CERKL (MIM# 608381) c.870C>T, p.Arg257Ter, and RNASEH2C (MIM#
610330) ¢.385C>T, p.Arg69Trp. MEFV ¢.2120A>G, p.Met694Val is a well-studied variant
that causes familial Mediterranean fever (MIM# 249100) in up to 80% of affected members
of various origins (Jewish, Armenian, Turkish, Arabian) (French FMF Consortium, 1997).
Given the prior observations in the region, it would not be surprising that the allele explains
a number of familial Mediterranean fever cases in Qatar as well. The CERKL ¢.870C>T,
p.Arg257Ter variant was previously observed in Spanish families with retinitis pigmentosa
(Tuson et al., 2004) (MIM# 608380), and it would be interesting to confirm its existence in
Qatar and causality. RNASEH2C ¢.385C>T, p.Arg69Trp was previously observed in
Pakistani families with Aicardi-Goutieres syndrome (Crow et al., 2006) (MIM# 610329),
with evidence of a founder effect. All three of these variants were observed in the Q2
subpopulation, where genetic origin is the least well understood of the three Qatari sub-
populations.

Consideration of subpopulation genetic analyses of the Qatari population is an important
aspect of this study. Previous studies from our group identified three genetic subpopulations
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within the Qatari population that are of Bedouin (Q1), Persian-South Asian (Q2), and
African (Q3) ancestry (Hunter-Zinck et al., 2010; Omberg et al., 2012). We found that
several of the Mendelian alleles were either exclusively or mostly present in one of these
three subpopulations, such that ignoring population structure would have resulted in lower
frequency estimates for these disorders. The Qatari population history suggests a low degree
of intermarriage between the genetic subpopulations, such that ignoring this population
structure would lead to an inaccurate picture of the potential impact of these disorders, e.g.,
how often recessive homozygotes are expected to occur in each subpopulation. Additional
sampling and sequencing of non-Qatari Arab populations will be of value for future studies,
with a long-term objective of discovering country-specific, population-specific and tribe-
specific genetic variations linked to Mendelian disorders. The unique population structure of
the Qatari and neighboring countries lends itself to such a study of genetic variation within
population isolates.

Finally, we note that it is not unexpected to discover such a set of Mendelian diseases using
a random exome sequencing approach in a population that has not been sampled extensively
and is not closely related to previously sampled populations. What we demonstrate is that a
relatively small sample of exomes can be used to discover Mendelian disorders of interest to
populations where there is relatively little genetic information. Studies of this type are
therefore a cost-effective approach for discovering Mendelian disease variants that are
relevant for population-wide medical genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Qatari subpopulation structure and exome major alleles. A. Plot showing the results of a
STRUCTURE analysis used for the selection of the 100 Qatari in the study (Pritchard et al.,

2000). Each individual was genotyped for 48 SNPs by TagMan where this panel was

designed to quantify the proportion of Bedouin (Q1), Persian-South Asian (Q2), and African
(Q3) ancestry in a Qatari individual. Each pair of columns represents the proportion of Red
= Q1, Green = Q2, Blue = Q3 ancestry for an individual. All individuals in the study had
>70% ancestry in one of Q1, Q2 or Q3 population clusters. B. A Venn diagram showing the
overlap between three sets of Bedouin (Q1), Persian-South Asian (Q2), and African (Q3)
subpopulation major allele alternate variants (total 14,192 variants). For each subpopulation,
the number of sites where the alternate allele is the major allele was counted, and the list of

major alternate allele sites was compared between subpopulations.
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Table 2

Functional Classification of Variants in 100 Qatari Exomes?

Total OMIM + HGMD

Class Number % Total %
Nonsynonymous coding 47,352  49.41 228 90.83
Synonymous coding 42,786  44.64 12 4.78
Utr 3 prime 2,752 2.87 0 0.00
Utr 5 prime 1,253 1.31 1 0.40
Nonsense 665 0.69 9 3.59
Start gained 260 0.27 0 0.00
Splice site donor 210 0.22 1 0.40
Frameshift 163 0.17 0 0.00
Splice site acceptor 163  0.17 0 0.00
Start lost 91  0.09 0 0.00
Stop lost 47 0.05 0 0.00
Synonymous stop 43 0.04 0 0.00
Codon insertion 36 0.04 0 0.00
Codon change plus codon insertion 16 0.02 0 0.00
Nonsynonymous start 3 0.00 0 0.00
Codon change plus codon deletion 0 0.00 0 0.00
Codon deletion 0 0.00 0 0.00
Total 95,840 100 251  100.00

Page 17

]To identify variants linked to Mendelian disorders, the variants identified in 100 Qatari exomes were assigned to genes and functionally classified.
Shown is a summary of 95,840 coding variants observed in the ENSEMBL (Flicek et al., 2012) database of genes and transcripts (build 65). For
each variant, in cases where multiple transcripts are present, the most severe variant was selected, using a severity classification scheme established
by SNPEFF (Cingolani et al., 2012). Of these coding variants, shown is the number and percentage in the OMIM (OMIM, 2012) or HGMD

(Stenson et al., 2009) database of variants linked to genetic disorders with a known molecular basis.
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