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Brassinosteroids (BRs) are polyhydroxylated steroid hormones 
ubiquitously distributed throughout the plant kingdom.1 BRs reg-
ulate various physiological processes such as cell elongation, vas-
cular differentiation, responses to light, senescence, root growth 
and resistance to stresses (for a review see ref. 2). BR-mediated 
regulation of stress tolerance might be integrated in a cross-talk 
between BRs and other hormone signaling pathways.3 Moreover, 
Arabidopsis microarray analyses have identified numerous and 
diverse BR-regulated genes, suggesting that BR might trigger a 
complex regulatory network.4,5 Nitric oxide (NO) is a ubiquitous 
bioactive molecule produced in plants by enzymatic and non-
enzymatic routes. The two major enzymatic sources of NO pro-
duction reported in plants are a nitrate reductase (NR; EC 1.6.6.1) 
and a nitric oxide synthase (NOS)-like activity.6-9 NR is the only 
enzyme whose NO-producing activity has been rigorously con-
firmed both in vivo and in vitro.10,11 NO synthase (NOS) catalyzes 
the conversion of L-Arginine to L-citrulline and NO.12 A NOS-
like activity has been strongly demonstrated by pharmacological 
studies in plants using the different substrates or inhibiting of NO 
production by mammalian NOS inhibitors.13-16

Foresi et al.16 provide compelling evidence for the existence 
of a canonical NOS enzyme in the unicellular algae Ostreococcus 
tauri. This work characterizes the NOS gene, the protein structure 
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and activity in vivo and in vitro of the recombinant protein. NO 
orchestrates a wide range of processes in plants. NO acts as a 
signal in disease resistance, stimulates germination, confers pro-
tection against oxidative stress produced by diquat, drought, salt 
and UV-B and has been proposed as a broad-spectrum anti-stress 
molecule.17-21

Two recently published articles reported a connection between 
BRs and NO in plant responses to abiotic stress. In the first arti-
cle, Cui and collaborators22 showed that BRs induce NO in a 
H

2
O

2
-dependent manner, alleviating photo-oxidative stress and 

chilling in cucumber leaves. In the second article, Zhang and col-
laborators23 reported that BR-induced NO production mediates 
ABA biosynthesis, which results in the enhancement of tolerance 
to oxidative damage caused by water stress in maize leaves. Here, 
we provide evidence that NO also participates in plant growth and 
developmental processes regulated by BRs. The link between BR 
and NO was analyzed in Arabidopsis root. It was reported that 10 
nM 2,4-epibrassinolide (BL, one of the most potent BRs) inhibits 
primary root (PR) growth and induces lateral roots (LR) forma-
tion in Arabidopsis, increasing the LR density.24,25 Simultaneously, 
Correa-Aragunde et al.26 reported that NO also induces LR for-
mation and inhibits PR growth in tomato. Thus, we decided to 
analyze a potential NO requirement for BR regulation of root 
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responses were completely abolished 
when BL was applied together with 
NO scavenger 2-(4-Carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-
3-oxide(c-PTIO), suggesting that NO 
could be participating downstream 
BL. Figure 1B shows that both BL 
and GSNO induced a NO burst in the 
roots, visualized by the cell-permeable 
fluorescent probe DAF-FM DA. The 
BL-mediated NO burst was prevented 
by c-PTIO (Fig. 1B).

Figure 1C–E show the quantifica-
tion of the BL effects on root growth 
and NO production. The PR was short-
ened by around 50% and the LR den-
sity showed around a 3-fold increase in 
Arabidopsis seedlings treated with 10 nM 
BL or 200 μM GSNO (Fig. 1C and D). 
Figure 1E shows that a 3-fold increase 
in endogenous NO production was 
induced by BL in Col-0, attaining the 
same level as with GSNO. The effects 
of BL were counteracted by c-PTIO. All 
together, these results indicate that NO 
is involved in the BR signaling pathway 
regulating root development.

Pharmacological and genetic 
approaches were used to study the enzy-
matic source of the NO burst involved 
in the BR regulation of root morphol-
ogy. If NR is responsible for the NO 
burst, BL should have no effect on the 
(NR)-null mutant nia1-2.27 Figure 
2A–C show that BL effect on root 
growth was only partially reduced in 
nia1-2. PR was shortened 33% and LR 
density had a 2-fold increase in nia1-2 
mutant, a week response compared 
with BL-treated Col0. 2-fold increase 
in NO (Fig. 2B and E) indicates that 
NR has a partial participation in the 
NO-mediated BL effect. Similar results 
were obtained when the NOS inhibitor 
L-NAME was applied together with BL 
in wild type plants (Fig. 2A–D). This 
result indicates that the NOS-like activ-
ity also has a partial contribution to the 
NO-mediated BL effect.

Interestingly, Figure 2 also shows that 
the addition of L-NAME to the nia1-2 

seedlings completely abolished the effect of BL, indicating that both 
NR and NOS-like activities are responsible of the NO production 
during the BL-induced effects on root architecture. This result is 
coincident with that reported by Cui et al.22 where both NOS-like 
and NR were responsible for the BL-induced NO production in 

growth and architecture determination. Figure 1A shows that 
root phenotype of Col-0 Arabidopsis seedlings treated with 10 
nM BL was similar to those produced by 200 μM of NO donor 
nitrosoglutathione (GSNO). This phenotype was characterized 
by shortened PR and increased LR number. Notoriously, these 

Figure 1. 2,4-epibrassinolide induces lateral root (LR) formation and inhibits primary root (PR) 
elongation in a nitric oxide-dependent process in Arabidopsis. Col-0 Arabidopsis thaliana seedlings 
were grown vertically on ATS plates for 5 d, treated later with 10 nM BL, 100 μM c-PTIO or 200 μM 
GSNO. Seedlings were analyzed after 3 d of treatment. (A) Representative images of the Arabidopsis 
seedlings. Bar: 1 cm. (B) For NO detection, roots were incubated with 15 μM of the fluorescent probe 
DAF-FMDA and examined by epi-fluorescence (excitation 490 nm; emission 525 nm) in an Eclipse E 
200 microscope (Nikon). Bar: 75 μm. (C) The ratio of LR number/PR length was taken as a measure of 
LR density. LR number only included those roots that were > 1 mm in length after 3 d of treatment. 
(D) Seedlings were photographed, and PR length was measured using Image J software (Universal 
Imaging). (E) For NO quantification, DAF-FM-DA fluorescence was analyzed with the Image J 1.3 
software and expressed as arbitrary units (A.U.). Values are the means ± SE of 5 independent experi-
ments (n = 10). Asterisks indicate significant differences at p < 0.05 (t-test).
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Figure 2. Characterization of NO signaling operating downstream BL in Arabidopsis roots. Arabidopsis thaliana Col-0, nia1-2 and bri1-1 mutant lines 
were grown on ATS plates for 5 d, treated later with 10 nM BL, 100 μM L-NAME or 200 M GSNO. Seedlings were analyzed after 3 d of treatment. (A) Rep-
resentative images of the Arabidopsis seedlings. Bar: 1 cm. (B) For NO detection, roots were incubated with 15 μM of the fluorescent probe DAF-FMDA, 
and examined by epi-fluorescence. Bar: 75 μm. LR density (C), PR length (D) and NO (E) were quantified as indicated in Figure 1. Values are the means 
± SE of five independent experiments (n = 10). Asterisks indicate significant differences at p < 0.05 (t-test).
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response to abiotic stresses. Arabidopsis mutant bri1-1 (mutated in 
the BR receptor)28 was insensitive to BL treatment for both changes 
in LR density and NO increase (Fig. 2A–E), thus supporting 
that BL action occurs through its receptor. However, if the bri1-1 
mutants were supplied with GSNO, the LR density reached similar 
level to that observed in BL-treated Col-0, confirming that NO is 
downstream BR in the signaling pathway (Fig. 2A–D).

Altogether, these results demonstrate that BR promotes an 
increase in endogenous NO concentration, which in turn is 
required for changes in root morphology. For full NO production, 
a functional BR receptor, and both NR and NOS-like activities 
are necessary.
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