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To survive, plant species had to adjust to changes in the envi-
ronment over geological times, or to adapt to niche environ-
ments characterized by extreme, unfavorable conditions. Prime 
examples are crops, most of which originated in subtropical 
areas of the earth. They have been altered to thrive in a range 
of geographical latitudes, under different light intensities and 
light periods, and different temperature, humidity and types of 
soil. Crucial points determining wild plant reproductive success 
and farmer’s yield is the seasonal progression guiding growth, 
flowering and seed or fruit set and ripening. The plant model 
Arabidopsis, a long-day plant like many cereals (barley, wheat, 
oat, etc), spinach, potatoes, radish, onion, sugar beet and horti-
cultural crops (carnation, rapeseed for canola oil) blooms as days 
get longer and flowers when exposed to light in excess of 12 h.1 
Plants measure day length to decide on flowering and the transi-
tion from the vegetative to the reproductive stage.2 A plant inter-
nal biological clock, the circadian clock, is at the basis of this 
photoperiodism. This clock is also a known requisite for plants 
to cope with changing environments and to sustain a number of 
biological functions.3

Arabidopsis GIGANTEA (GI), encoded by a single gene,4 
is confined to plant species, and has so far been found in all 
plants.5-8 The GI protein functions in circadian clock mainte-
nance and the elicitation of photoperiod-dependent flower-
ing.9-12 This is accomplished by day time accumulation of the GI 
protein followed by proteasome-dependent degradation during 
the night.13 GI transcript expression is itself under control by the 
circadian clock.11,12 GI mainly controls flowering by regulating 
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the time of day during which two other crucial components of 
the photoperiod-dependent flowering pathway are expressed. 
One is CO (Constans), a nuclear zinc finger protein,14-16 the sec-
ond being FT (Flowering Locus T), a floral integrator encoding 
a RAF-kinase-inhibitor-like protein.17 gi mutants exhibit lower 
transcript expressions and changed rhythms of two circadian 
clock oscillators, CCA1 (circadian clock associated 1) and LHY 
(late elongated hypocotyl). In addition, gi mutants flower late 
compared with wild type in long days.9

GI seems to be involved in other important biological func-
tions such as sucrose metabolism18 and cell wall deposition.19 
Moreover, gi recessive mutants show defects in abiotic stress 
responses accompanied by pleiotropic phenotypes and tolerance 
to paraquat-induced oxidative stress, which is light dependent.20 
The longer hypocotyl of gi mutants under constant red light sug-
gests GI involvement in PhyB-mediated red light signaling,4 and 
the gi mutant is sensitive to low temperature.21,22 Also, gi plants 
contain high starch levels suggesting starch accumulation and 
the initiation of flowering to be regulated by GI.23

Although precise biochemical functions for GI have not been 
defined it appears that GI is part of a network receiving inputs 
on environmental cues and transmitting them to modulate cir-
cadian timing for growth and development. We have recently 
substantiated this notion based on the recognition that the pres-
ence of GI and its absence in gi mutants are crucial for the initia-
tion of flowering in relationship to the plants tolerance to high 
salinity (Fig. 1).
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complex then establishes export of sodium ions from cells that 
leads to enhanced salt tolerance.

We propose a new model for the functioning of GI as a link 
between the clock and vegetative vs. reproductive growth depend-
ing on a changing environment (Fig. 2). The model establishes a 
precise function for GI that is supported by dynamic changes in 
protein-protein interactions. This model extends an existing salt 
stress response network including transcription mediated gene 
expression and Na+ export from cells by the three components of 
the well-studied SOS pathway.

GI is a very large protein of about 130 kDa, has no known 
or characterized domains. It is not found in other kingdoms. 
Functions of GI can so far only be described biochemically 
by finding interactors. Molecular interactors for GI include 
F-box proteins, FKF1 (flavin-binding, kelch repeat, F-box 1) 
in photoperiod-dependent flowering25 and ZTL (zeitlupe) in 
the circadian clock.26 Another GI interactor is a GA (gibberel-
lic acid) signaling negative regulator, SPY (spindly), O-linked 

N-acetylglucosamine transferase27 whose mutants spy-1 
and spy-3 are resistant to drought and high salinity.27,28 The 
pleiotropic phenotypes of gi mutants suggest various associ-
ating partnerships in diverse biological regulations.

This leads to questions about the significance of GI’s 
involvement indifferent signaling networks. Sequestration 
of GI by SOS2 in the form of a negative regulatory circuit 
interrupts a futile biochemical reaction in the absence of 
salt stress, while at the same time preserving GI to partici-
pate in other functions. The changing environment—salt 
stress—leads to the degradation of GI, which eliminates its 
functioning in its other reactions. This may in fact enable 
other reactions to proceed for which GI is a negative regula-
tor while interrupting circuits for which GI is required as an 
interacting partner.

Salt tolerance is dramatically increased in the presence 
of NaCl as GI is degraded. As a consequence of the absence 

of GI (gi) or following its salt-dependent degradation flowering 
is delayed or abolished. In contrast, salt tolerant gi plants show 
accelerated growth in high NaCl. This indicates the presence of 
functional salt exclusion or export mechanisms in a species that 
is considered highly salt-sensitive, possibly demonstrating higher 
order decision making processes superseding the biochemical 
machinery in plants. The mechanism exemplifies an ability of 
plants to employ synthesized proteins whose accumulation is 
regulated according to the time of day to predict and deal with 
changing environmental conditions.
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Salt stress delays flowering in Arabidopsis wild type as a result 
of reduced transcript levels for CO and FT.24 Flowering of gi in 
the absence of salt stress is similar to the retardation of flowering 
in wild type after salt treatment. However, GI protein amount is 
drastically decreased upon salt treatment. In fact, salt promotes 
26S proteasome dependent degradation of the GI protein. The 
resistance against salt of gi mutants is not due to increased high 
levels of salt-induced osmoprotectants, such as proline based on 
expression of, P5CS1 (delta 1-pyrroline-5-carboxylate synthe-
tase) and the ABA independent transcription factor, DREB2A 
(dehydration-responsive element binding protein 2A). Rather, 
increased tolerance is based on enhanced activity of SOS1 (salt 
overly sensitive 1), a Na+/H+ antiporter.

The process is regulated by protein:protein interactions 
between three proteins: GI, SOS2, a kinase and the SOS1 anti-
porter protein localized to the plasma membrane. In the absence 
of NaCl, GI protein directly binds to the SOS2 kinase which 
is then prevented from phosphorylating and thus activating the 
antiporter activity of SOS1. The salt stress dependent degrada-
tion of GI frees SOS2 to interact with SOS3, a Ca2+ activated/
binding protein. SOS1 phosphorylation by the SOS2/SOS3 

Figure 1. gi mutants exhibit increased salt tolerance. three-wk-old 
plants were irrigated every other day with naCl solution for two wk.

Figure 2. the interaction between Gi and components of the SoS pathway. 
Gi acts as a negative regulator of SoS1 activity in the absence of elevated 
[naCl]. naCl-induced degradation of Gi leads to SoS2-initiated activation of 
SoS1 by phosphorylation, while SoS1 is constitutively active in the absence 
of Gi (gi). Salt-dependent degradation of Gi or its absence retard or abolish 
the progression toward flowering.
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