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Abstract

Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used for breast cancer
diagnosis as supplementary to conventional imaging techniques. Combining of diffusion-weighted imaging (DWI) of
morphology and kinetic features from DCE-MRI to improve the discrimination power of malignant from benign breast
masses is rarely reported.

Materials and Methods: The study comprised of 234 female patients with 85 benign and 149 malignant lesions. Four
distinct groups of features, coupling with pathological tests, were estimated to comprehensively characterize the pictorial
properties of each lesion, which was obtained by a semi-automated segmentation method. Classical machine learning
scheme including feature subset selection and various classification schemes were employed to build prognostic model,
which served as a foundation for evaluating the combined effects of the multi-sided features for predicting of the types of
lesions. Various measurements including cross validation and receiver operating characteristics were used to quantify the
diagnostic performances of each feature as well as their combination.

Results: Seven features were all found to be statistically different between the malignant and the benign groups and their
combination has achieved the highest classification accuracy. The seven features include one pathological variable of age,
one morphological variable of slope, three texture features of entropy, inverse difference and information correlation, one
kinetic feature of SER and one DWI feature of apparent diffusion coefficient (ADC). Together with the selected diagnostic
features, various classical classification schemes were used to test their discrimination power through cross validation
scheme. The averaged measurements of sensitivity, specificity, AUC and accuracy are 0.85, 0.89, 90.9% and 0.93,
respectively.

Conclusion: Multi-sided variables which characterize the morphological, kinetic, pathological properties and DWI
measurement of ADC can dramatically improve the discriminatory power of breast lesions.
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Introduction

The development of noninvasive methods of tissue character-

ization that could be applied early in the course of diagnosis to

assess risk and to guild subsequent treatment would allow

clinicians to tailor therapy on an individual. Conventional

magnetic resonance imaging (MRI) of the breast has proven to

be less successful than expected [1]. Breast MRI has demonstrated

a high sensitivity, but with the shortcoming of varying specificity,

reported to be from 37% to 97% [2,3,4], and therefore multiple

biopsies tests have to be conducted as supplementary. Recently,

more specialized methods, including dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) and diffusion-weighted

magnetic resonance imaging (DW-MRI), have advanced to the

point where they provide quantitative measurements of tissue

properties that are highly related to the assessing of tumor

progression and/or responses [1,2,5,6,7]. DW MRI was designed

to reflect water movement within tissues by measuring the degree

of random molecular motion and quantify such movement with

apparent diffusion coefficient (ADC) value. Recent studies

[8,9,10,11,12,13] found that the ADC is significantly lower in

malignant tumors than in benign breast lesions or normal tissue in
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DW MRI. This special observation is mainly due to a high cell

density, caused by an increased restriction of the extracellular

matrix and an increased fraction of the signal from intracellular

water [8,11,14].

The advances in imaging techniques allow for the possibility to

investigate the diagnostic performance by combining the merits of

different image modalities. Such investigation is promising in

clinical diagnosis by reducing inter-observer biases in interpreta-

tion of the images [15,16], and by shortening the diagnosis time

[17]. For example, it has been shown that the morphological

features in breast MRI as adjunct diagnostic criteria can improve

the specificity without significantly reducing the sensitivity

[18,19,20]. Combining morphological characteristics with en-

hancement kinetics can also improve the diagnostic performance

of breast lesion interpretation [21]. Yabuuchi et al. [22] reported a

high accuracy in enhancing breast masses through the combina-

tion of DWI and DCE-MRI features.

However, there are few researches on investigation of the

combinational performance of both MRI and DWI in discrimi-

nating of pathologically verified breast masses. In the current

study, we retrospectively investigated the potential discriminatory

power of image features estimated from both of DWI and DCE-

MRI. Four distinct groups of features were estimated to

comprehensively characterize the image in a multi-sided way.

To remove the redundancy as well as to increase the diagnosis

capabilities of the features, a hybrid feature selection scheme was

conducted on the four feature groups and a pathological variable

group. The resulted seven features, including one for pathology,

one for morphology, three for texture and one for kinetic

characteristics, were widely tested by standard classification

models to demonstrate their combinational prognostic capabilities.

Materials and Methods

Patients and Lesions
The study comprised of 234 female patients from - Sun Yat-sen

University Cancer Center (Guangzhou, China P. R.). The

consecutive patients (mean age, 46.2 years 610.9 [standard

deviation]; range, 18–78 years) were enrolled into the study

between September 2008 and December 2011. This study was

approved by the Ethics Committee of Sun Yat-sen University

Cancer Center, and all patients signed consent to participate in

this study.

There were 85 benign lesions and 149 malignant lesions.

Enrollment of the lesions abided by a strict inclusion criteria: (a)

MR imaging was performed on a 1.5 T superconductive magnetic

system (GE, Signa, HDx), with a bilateral, dedicated four-channel

phased-array breast coil in its prone position.; (b) both DCE-MR

imaging and DW MR imaging sequences were performed; (c)

diagnosis was confirmed following a pathological analysis after

core-needle biopsy or surgical excision (248 lesions), or lesion

stability was confirmed at a minimum follow-up of 2 years (27

lesions); (d) lesions were presented as a mass according to the BI-

RADS MRI lexicon; and (e) patients had not had a biopsy or

received therapy before MR examination. Table 1 shows the

distribution of histopathological findings of all analyzed lesions.

Features Estimated from MR Images
To fully characterize the pictorial properties of the lesions, four

different groups of features were estimated from the image to

portray the distinct and remarkable features related to lesions, and

another one group included the patients’ pathological test results.

The five groups produced twenty-eight measurements (called

feature herein) for each lesion. All the features obtained were

extracted by two radiologists with ten years’ experience in

interpreting breast MR. They were blind to the histological results

on current patients. The images were assessed independently and

all disagreements were resolved through consensus. All images

were analyzed on a workstation (Centricity Radiology RA 600 V

7.0, GE, USA). The four groups of features were summarized

below:

1) Kinetic features: The shape of time-signal intensity curve

has been shown to be an important criteria in differentiating

benign from malignant breast lesions [23]. Both of the early-

phase enhancement and the signal enhancement ratio (SER)

[24] were estimated to represent the kinetic behavior of the

lesion signal intensity of lesion before and after the injection of

Gd-DTPA. They are defined as:

Early{phase Enhancement~
I1{I0

I0

|100 25½ �,

SER~
I1{I0

Ilast{I0

where I0,I1, and Ilast represent the signal intensity in the pre-

contrast, the first post-contrast and the last images, respectively.

The morphology and enhancement kinetic features were also

investigated to determine their diagnostic performance to differ-

entiate between malignant and benign lesions that present as mass

versus non-mass types [26,27].

Table 1. Histopathology of benign and malignant breast
lesions.

Tumor group Number Percentage

Malignant lesions 149 63.68

Invasive ductal carcinoma 120 51.3

Intraductal carcinoma 17 7.26

Ductal carcinoma in situ 4 1.7

Mucinous carcinoma 3 1.28

Medullary carcinoma 1 0.43

Others 4 1.71

Benign lesions 85 36.32

Fibroadenoma 26 11.11

Fibrocystic changes 24 10.26

Fibroadenosis 3 1.28

Intraductal papilloma 4 1.7

Hyperplasia 3 1.28

Phyllodes tumor 2 0.85̀

Adenomyosis epithelioma 1 0.43

Inflammation 1 0.43

Follow-up 21 8.97

doi:10.1371/journal.pone.0087387.t001
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1) Morphological Features: The manually identified lesion

was further segmented to have its contours. The segmentation

used a two-step approach to incorporate fuzzy c-means (FCM)

clustering [28] and gradient vector flow (GVF) snake

algorithm [29]. Once the lesion was segmented, eleven

morphological features were calculated to quantify its

morphological characteristics. The lexicon by using morphol-

ogy characteristics, such as shape and margin categories, have

long been adopted in discrimination of breast lesion [30]. Its

diagnostic capability were also widely studied by combining it

with various factors, such as kinetic descriptor [31], texture

features [26,32] and DWI [33]. In the current study, eleven

morphological features include compactness, spiculation,

extent, elongation, solidity, circularity, entropy of radial

length distribution, fractal, heterogeneity, area, and eccen-

tricity were borrowed to serve as morphological character-

ization. Inclusion of the eleven features followed a strict

criteria: either they are used in clinical practice or have been

reported to be effective [30,34]. An illustrate examples is

shown in Figure 1.

2) Texture Features: The textural attributes evaluated via

GLCM method were combined with morphologic descriptors

in DCE-MRI to achieve a nice discrimination power

[30,31,32,35]. It has also been reported that MRI texture

features are significantly associated with breast tumor subtype

and neoadjuvant therapy response. Thirteen texture features

were estimated on the segmented lesion through its gray level

co-occurrence matrix (GLCM) [36]. The texture features

included: angular second moment, contrast, correlation,

inverse difference moment, sum average, sum variance, sum

entropy, entropy, difference average, difference variance,

difference entropy, information measure of correlation 1, and

Figure 1. Segmentation of a sample breast lesion on MRI, confirmed as Invasive ductal carcinoma, for a 50 year old woman. (a) Area
including a suspicious breast lesion is highlighted by a blue rectangle; (b) Initial segmentation result on (a) by using FCM-based method; (c) Final
segmented lesion after GVF snake model initialized from (b).
doi:10.1371/journal.pone.0087387.g001

Figure 2. A sample image of fibroadenoma for a 28 year woman. (a) Raw dynamic contrast-enhanced MR image on lesion, which exhibits
high signal intensity. The mass-like enhancement area is marked by purple arrow and the lesion; (b) Raw Diffusion-weighted MR image (b = 800 s/
mm2); (c) Calculated ADC map from (b). Lesion area exhibits with light green (pointed in purple arrow), implying a high ADC value. ADC measured in
this lesion is 1.9161023 s/mm2.
doi:10.1371/journal.pone.0087387.g002

Breast Masses Diagnosed by Machine Learning Method

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e87387



information measure of correlation 2 [36]. This feature group

is widely used in field of pattern recognition, such as

handwriting discrimination [37,38], and medical image

analysis [39,40]. Readers can refer to File S1 for the rigorous

mathematical definitions of the pictorial features.

3) DWI Features: The apparent diffusion coefficient (ADC)

value was used to quantify the Diffusion weighted (DW) MRI.

Firstly, the region of interests (ROIs) were manually drawn on

the diffusion-weighted images (b = 800 s/mm2) (Figure 2) by

carefully inspecting the regions with high signal. ROIs that

were larger than 20 mm2 were considered meaningful and

therefore retained for further analysis [41]. Then the DWI

intensity for each lesion was dichotomized into low and high

values by that of the corresponding background breast tissue.

Finally, the mean ADC values were then obtained to serves as

the quantification of the DWI characteristics.

The status of breast masses enrolled in the study was all verified

in histopathology, or confirmed by at least two years of follow-up

subsequently. Therefore, the features aforementioned, coupling

with the lesion status, can be considered as a binary classification

problem.

Diagnostic Feature Selection
Univariate analysis is limited since it ignores the role of

combinational potentials which could provide a good classifica-

tion. Therefore, we conducted firstly on the selection of a

subgroup of informative variables that were able to distinguish

malignant lesions from benign ones. This process is known as

feature subset selection (FSS) [42,43,44,45].

Feature selection algorithms usually fall into two categories [42]:

filter and wrapper methods. Filter selects subsets of features as a

preprocessing step, independently of the chosen predictor. In

comparison, wrapper uses a base classifier to score subsets of

features according to their predictive power. In many cases,

wrapping with classical classifiers such as Support Vector Machine

[44], Naive Bayes [46] and Nearest Neighbors produce compa-

rable performance [47]. The wrapper has the advantage of better

performance; however, its usage in biomedical area is limited due

to its high computational cost [42]. To alleviate this problem, we

used a hybrid filter-wrapper algorithm [48]. In this hybrid feature

Figure 3. The workflow of the hybrid FSS scheme to have a compact but informative feature subset.
doi:10.1371/journal.pone.0087387.g003

Table 2. The features removed after Step 2–4 by using the proposed FSS algorithm.

Step 2: Heterogeneity, Rectangular degree, Elongation, Eccentricity

Step 3: Fractal dimension, Circularity, Spiculation, Area, Correlation, Inertia, Sum Variance, Sum entropy, Difference Average, Difference Average,
Difference Entropy.

Step 4: Compactness, Solidity, Entropy of Radial Length Distribution, Energy, Sum Average, Information Correlation 2

Final: Output ADC, Slope, SER, Age, Entropy, Inverse Difference, Information Correlation 1

doi:10.1371/journal.pone.0087387.t002

Breast Masses Diagnosed by Machine Learning Method
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selection model, the features were firstly filtered by t-test to find out

the statistically significant variables with confidence level of 95%.

The 24 variables obtained are then gone through FSS via the

wrapper of the classifier of SVM. To alleviate computation cost in

wrapping, genetic algorithms was used to find out an informative

feature subset. After this step, thirteen features were selected. In

the final step, each feature left was examined through the

classification test by SVM to remove the features whose

contribution to classification accuracy is negligible when it was

omitted. Therefore, a compact but highly informative feature

subset was obtained. The main advantage of this hybrid approach

is that it remains a great part of advantages in wrapper, while

reducing the computation cost greatly. We draw a workflow to

illustrate the hybrid FSS algorithm in Fig. 3. Table 2 summarized

the features removed after each step and the resulted compact

features.

Classification Model
The combination of the parameters as a whole could reflect

different aspects of lesion properties and is potentially a

comprehensive approach to characterize lesion status [49]. The

differentiation of malignant from benign lesions was treated as a

two-class pattern classification problem. Classical classification

algorithms, including support vector machine (SVM) [44], Naı̈ve

Bayes (NB), k-nearest neighbors (KNN), and logistic regression

(LR) model, were used to evaluate the diagnostic performance of

the carefully selected variables [44,47,50]. To make an extensive

comparison, the derived classier was evaluated through ten-fold

cross validation scheme. In the scheme, the data were randomly

divided into ten equal subsets. In each experiment, nine subsets

were used to construct the predication model and the one left

behind was served for testing. The averaged performance after ten

times’ experiments was used to evaluate the prognostic capabilities

of the selected variables by using measurements including

sensitivity, specificity, area under the ROC curve (AUC) and

overall accuracy (OA). The hyper-parameters involved in classi-

fication models were estimated via five-fold cross validation

scheme before testing the corresponding classification algorithm.

Results

Diagnostic Performance of each Feature Individually
The proposed feature selection algorithm produced seven

features, including one morphology (slope) and three texture

(entropy, inverse difference, information correlation 1) parameters,

one kinetic parameter (SER), one pathological parameter (age) and

ADC. Univariate statistical analyses were conducted to demon-

strate the diagnostic capabilities of each feature. All features

selected were shown to be statistically different between malignant

and benign lesions. Table 3 summarizes the mean and standard

deviation and the diagnostic performance on the whole dataset of

the seven selected parameters. Among the seven parameters, the

diagnostic accuracy of SER was the highest.

Diagnostic Performance of the Combined Features
In this experiment, we evaluated the diagnostic performance of

each individual feature group as well as their combinations

through ten-fold cross validation scheme. The whole data were

randomly divided into ten equal sized subsets, among which 9

subsets were trained to find out the classifier or optimal cut-off

values and the one left behind was used for testing. For the group

in which only one feature was selected, univariate analysis was

carried out by Receiver Operating Characteristics (ROC). For the

feature group which has more than two features, classical

classification algorithms including SVM, Naı̈ve Bayes (NB),

KNN and Logistic Regression were conducted and their averaged

performance was calculated.

The experimental results were summarized in Table.4. When

only individual feature group was used, the prediction perfor-

mance was unsatisfactory. For example, the accuracy is 63.4% by

using morphology features. While the accuracy increases to 74.9%

by using DWI feature of ADC,. The observation implies two

aspects: 1) characterization of the lesion through one-sided

methodology was not comprehensive enough. It might have good

sensitivity, yet the specificity was poor; 2) ADC is a nice diagnostic

factor for discriminating the status of breast mass. Our finding is

consistent with earlier results [8,11,14]. However, the specificity of

ADC was lower than what’s anticipated, making it an unreliable

factor in diagnostic practice as a result.

In comparison, when all the well selected features were

combined together, the averaged sensitivity, specificity, AUC

and accuracy of the classification model dramatically increased to

0.85, 0.89, 0.93 and 90.9%, respectively (Table 4). Among the

tested models, although SVM achieved superior performance to

other three models in terms of accuracy, the latter ones had

comparable results. Therefore, we may draw a conclusion that a

full characterization of breast lesion through multi-sided method-

ologies will produce a high discrimination power.

Table 3. Group mean, P values and diagnostic accuracy of selected parameters.

Parameters Mean±SD P1 value Diagnostic2 Accuracy Threshold Value

Benign Malignant

Age 48:38+11:13 39:09+8:11 [0:001 68:8% 43

Slope 1:82+0:93 2:65+0:88 [0:001 76:4% 1:98

Entropy 9:98+1:11 10:13+1:03 [0:001 74:2% 7:90

Inverse Difference 0:13+0:03 0:14+0:02 [0:001 69:1% 0:118

Information Correlation 1 {0:50+0:12 0:40+0:11 [0:001 71:6% {0:33

ADC 1:69+0:34 1:17+0:24 [0:001 86:6% 1:85

SER3 0:69+0:34 1:28+0:34 [0:001 87:6% 0:34

1Computed with paired-sample t-test.
2Computed with Receiving Operating Characteristic.
3Signal enhancement ratio.
doi:10.1371/journal.pone.0087387.t003
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Discussion

The results of our study demonstrate that diagnostic perfor-

mance can be dramatically improved by incorporating the multi-

sided characterizations of the breast lesions on MRI. In particular

to the parameter of ADC, it has been shown to be correlated to

lesion malignancy due to a high cell density, caused by an

increased fraction of signals coming from intracellular water. This

parameter, when combined with morphology and enhancement

kinetic features, will increase in both specificity and sensitivity in

discriminating types of lesions, thus it is promising in providing a

supplementary assessment on lesion status.

We carried out a systematical analysis to investigate the

potential power in discriminating a fully comprised pictorial

characterization of lesions. Our analysis pipeline includes image

segmentation, feature extraction, selection and classification model

building. The seven features obtained are all shown to be

statistically different between the malignant and benign lesions.

The combined features were tested extensively through four

popular classification models. The finding demonstrates that the

combination of the kinetic enhancement data, morphology

information and ADC in a systematic model is effective and

comprehensive to make an accurate diagnosis on breast masses.

We speculate that this could potentially impact clinical manage-

ment decisions and therapy selection.
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