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Abstract

Beneficial systemic effects of regular physical exercise have been demonstrated to reduce risks of a number of age-related
disorders. Antioxidant capacity adaptations are amongst these fundamental changes in response to exercise training.
However, it has been claimed that acute physical exercise performed at high intensity (.60% of maximal oxygen uptake)
may result in oxidative stress, due to reactive oxygen species being generated excessively by enhanced oxygen
consumption. The aim of this study was to evaluate the effect of high-intensity discontinuous training (HIDT), characterized
by repeated variations of intensity and changes of redox potential, on oxidative damage. Twenty long-distance masters
runners (age 47.867.8 yr) on the basis of the individual values of gas exchange threshold were assigned to a different 8-
weeks training program: continuous moderate-intensity training (MOD, n = 10) or HIDT (n = 10). In both groups before (PRE)
and after (POST) training we examined the following oxidative damage markers: thiobarbituric acid reactive substances
(TBARS) as marker of lipid peroxidation; protein carbonyls (PC) as marker of protein oxidation; 8-hydroxy-2-deoxy-guanosine
(8-OH-dG) as a biomarker of DNA base modifications; and total antioxidant capacity (TAC) as indicator of the overall
antioxidant system. Training induced a significant (p,0.05) decrease in resting plasma TBARS concentration in both MOD
(7.5360.30 and 6.4660.27 mM, PRE and POST respectively) and HIDT (7.2160.32 and 5.8560.46 mM, PRE and POST
respectively). Resting urinary 8-OH-dG levels were significantly decreased in both MOD (5.5060.66 and 4.1660.40 ng
mg21creatinine, PRE and POST respectively) and HIDT (4.5260.50 and 3.1860.34 ng mg21creatinine, PRE and POST
respectively). Training both in MOD and HIDT did not significantly modify plasma levels of PC. Resting plasma TAC was
reduced in MOD while no significant changes were observed in HIDT. In conclusion, these results suggest that in masters
runners high-intensity discontinuous does not cause higher level of exercise-induced oxidative stress than continuous
moderate-intensity training, inducing similar beneficial effects on redox homeostasis.
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Introduction

During exercise, the high energy demand required by muscle

contraction causes an increase of oxygen (O2) delivery/uptake,

leading to an increase of O2 consumption up to 200-fold

compared to rest in the muscle fibres [1]. The high O2 flux along

the mitochondrial electron transport chain, in association with an

electron leakage [2–4], is correlated with an increased production

of free radicals and reactive oxygen and nitrogen species (ROS)

[2,5,6]. This phenomenon, usually defined as exercise-induced

oxidative stress, has been implicated in the damage of cellular

membranes, increased cellular swelling, decreased cell membrane

fluidity, and DNA damage [7–9]. In skeletal muscle fibres,

exercise-induced oxidative stress is also linked to fatigue, longer

recovery time and increased injury rate [10–12]. Indeed ROS can

modify sarcoplasmic reticulum calcium handling, acting on

calcium-release channels and SERCA, and alter structure and

function of myofilaments [13].

It has been demonstrated that exercise intensity plays an

important role in ROS production by modulating the level of

exercise-induced oxidative stress [14,15]. During aerobic exercise,

the generation of ROS increases according to a higher O2

consumption and, consequently, a higher electron leakage from

the electron transport chain [16]. If ROS generation exceeds

antioxidant defenses (i.e. when exercise intensity is greater than

60–70% of maximal oxygen uptake) oxidative damage is observed

[17].

Nevertheless, the association between exercise and oxidative

stress is not always negative. The chronic repetition of exercise, i.e.

exercise training, may have the capability to develop a compen-

sation to oxidative stress in skeletal muscle fibres [18] by means of

an adaptation of the antioxidant and repair systems. This might
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result in a decreased resting level of oxidative damage and an

increased resistance to oxidative stress [19–22]. Several studies

have demonstrated that antioxidant enzymes adaptation is one of

the fundamental changes in response to exercise training within

the skeletal muscle (for a review see [18]), as described for

mitochondrial oxidative enzymes [23]. Indeed, increased levels of

ROS and oxidative damage are initiators of specific adaptive

responses, such as the activation of antioxidant enzymes [24] and

enhanced oxidative damage repair [20]. The effects of training on

oxidative stress depend on training characteristics (i.e., intensity,

type, volume, duration) [25,26,27]. Several studies have demon-

strated that in humans continuous aerobic training, characterized

by a constant sub-maximal intensity, reduces ROS production and

increases antioxidant defences [18,28,29]. Recently, focus has

shifted toward training modalities different from the traditional

continuous aerobic training, such as high-intensity discontinuous

training (HIDT). This training method is characterized by brief

intermittent bouts of vigorous activity interspersed by periods of

rest or low intensity exercise [30]. HIDT causes repeated O2

consumption fluctuations related to changes of exercise intensity as

opposed to continuous endurance training where O2 consumption

is nearly constant during the exercise.

HIDT, traditionally used by athletes, it is now increasingly

employed in young healthy sedentary individuals as an effective

time-efficient alternative to moderate intensity continuous endur-

ance training, inducing similar or even superior changes in a range

of physiological parameters, performance and health-related

markers [30]. Indeed, the benefits of HIDT extend to health

promotion and are currently proposed for improving health and

reducing fatigue also in middle-aged subjects and in many diseases

(COPD and cardiac patients) [31]

Aging is associated with increased free radical generation in the

skeletal muscle that can cause oxidative modification of protein,

lipid, and DNA [32]. Research evidence indicates that senescent

organisms are more susceptible to oxidative stress during exercise

because of the age-related ultrastructural and biochemical changes

that facilitate formation of reactive oxygen species (ROS) [33].

Aging also increases the incidence of muscle injury, and the

inflammatory response can subject senescent muscle to further

oxidative stress [2]. Furthermore, muscle repair and regeneration

capacity is reduced at old age that could potentially enhance the

accrual of cellular oxidative damage [34]. Nevertheless, the elderly

who are physically active benefit from exercise-induced adaptation

in cellular antioxidant defense systems [35]. Improved muscle

mechanics, strength, and endurance make them less vulnerable to

acute injury and chronic inflammation. Indeed, moderate levels of

oxidative stress are essential for the organisms to adapt and reach a

new level of hormesis even if the balance of oxidants and

antioxidants becomes more fragile in advance age [36].

Up to date no study has investigated the effects of prolonged

(.1 week) high-intensity discontinuous training on ROS produc-

tion and exercise-induced oxidative stress in middle-age subjects.

These data could be particularly relevant to older subject since it

has been reported that both resting and exercise-induced free

radical-mediated lipid peroxidation is more pronounced in

senescent compared with young human skeletal muscle [37].

The aim of this study was to evaluate the effects of 8-week high-

intensity discontinuous training (HIDT) on resting level and time-

course changes of several indexes of oxidative stress in masters

runners. Since HIDT is characterized by repeated variations of

intensity associated with changes of redox potential, ATP/ADP

ratio and, consequently, disturbances of cellular homeostasis [38],

we hypothesised that HIDT might cause a higher level of exercise-

induced oxidative stress compared to a workload-matched,

moderate-intensity continuous training (MOD).

Methods

Participants
Twenty healthy masters runners volunteered to participate in

this study. The physical and physiological characteristics of the

participants are shown in Table 1. They were all male athletes,

competing at national level, with several years (2164 years) of

training experience and training habits of about 45 km wk21.

Participants were matched on PRE gas exchange (GET) value (see

above for further details) before being stratified into two groups

completing 8 weeks (3 times non consecutively per week) of

moderate-intensity continuous (MOD, n = 10) or high-intensity

discontinuous training (HIDT, n = 10) (see training intervention

for further details). All participants signed a written consent after

being informed of all risks, discomforts and benefits associated with

the study. All tests were conducted in the laboratories of the

Institute of Bioimaging and Molecular Physiology of the National

Research Council under close medical supervision and subjects

were continuously monitored by 12-lead electrocardiography

(ECG). Procedures were in accordance with the Declaration of

Helsinki, and institutional review board (Comitato Etico Indipen-

dente ASL Milano Due) approval was received for this study.

Experimental design
Participants underwent medical examination and were carefully

instructed about the experimental procedures in a preliminary

session. In the same occasion, anthropometric measures were

collected and familiarisation with the testing procedures and

equipment was requested. After that, subjects visited the labora-

tory twice (DAY1 and DAY2) both before (PRE) and at the end

(POST) of training. In DAY1, participants performed an

incremental test up to voluntary exhaustion (IE). In DAY2, at

least 48 hours after, participants underwent two constant-load

submaximal exercises (CLE). Blood and urine samples were

collected: at rest (REST) in DAY1 and DAY2; and, in DAY2,

immediately at the end (END), after 1 (1H) and 2 (2H) hours of

CLE. Blood samples at rest were also collected after 4 weeks

(4WK). During all the experimental period was recommended to

keep unchanged dietary habits, in particular oxidant and

antioxidant food (diet reports were administered throughout the

study).

Table 1. Physical and physiological characteristics of the
participants.

MOD HIDT

(n = 10) (n = 10)

Age (years) 50.666.3 45.168.5

Body mass (kg) 69.6610.1 72.269.1

Height (m) 1.7460.07 1.7660.06

BSA 1.8260.16 1.8660.14

Body mass index (kg m22) 22.861.95 23.162.3

VO2 peak (l min21) 3.2560.33 3.5060.39

GET 2.8760.23 3.0460.31

BSA, body surface area; VO2peak, maximal oxygen consumption; GET, Gas
exchange threshold.
doi:10.1371/journal.pone.0087506.t001

Oxidative Stress Response to HIDT
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Inclusion criteria
Subjects were included in the study if they: 1) were free of

musculoskeletal problems and potentially orthopaedic/neuromus-

cular limitations; 2) had a resting blood pressure below 140/

90 mm Hg (subjects on antihypertensive medications (n = 6)

maintained their medication throughout the study); 3) had no

signs of cardiovascular/respiratory complications (at rest and

during testing); 4) reported no tobacco use in the 6 months before

the study or during the study; 5) did not assume aspirin, as cyclo-

oxygenase can affect oxidant/antioxidant status, at least 1 week

before exercise testing, and 6) were not consuming antioxidant

compounds including vitamins, minerals, and medications (i.e.,

probucol, nebivolol, and anti-inflammatory agents).

Exercise testing procedures
The following exercises were performed on a motorized

treadmill (Laufergotest, Jaeger, Germany): a) An incremental

exercise (IE) up to voluntary exhaustion (after 6 min warm-up at

10 km h21 at 1% grade the speed of the belt was increased by

1 km h21 every minute). Voluntary exhaustion was defined as

maximal levels of self-perceived exertion using the validated Borg

scale [39]. Peak oxygen uptake (V’O2peak) was determined as the

average of the last 20 s values; b) Two 6-min constant-load

exercises (CLE) of moderate (, gas exchange threshold, GET) and

heavy (.GET) intensity respectively, separated by a 20-min

recovery period. Pulmonary ventilation (V’E, expressed in BTPS -

body temperature, pressure, and saturated), O2 uptake (V’O2), and

CO2 output (V’CO2), both expressed in STPD (standard

temperature, pressure, and dry), were determined breath-by-

breath by a computerized metabolic cart (SensorMedics

Vmax29c, Bilthoven, The Netherlands). Expiratory flow measure-

ments were performed by a mass flow sensor (hot wire

anemometer), calibrated before each experiment by a 3 litres

syringe at three different flow rates. Tidal volume and V’E were

calculated by integration of the flow tracings recorded at the

mouth. V’O2 and V’CO2 were determined by continuously

monitoring PO2 and PCO2 at the mouth throughout the

respiratory cycle and from established mass balance equations,

after alignment of the expiratory volume and expiratory gases

tracings and A/D conversion. Calibration of O2 and CO2

analyzers was performed before each experiment by utilizing gas

mixtures of known composition. Digital data were transmitted to a

personal computer and stored on disk. Gas exchange ratio (R) was

calculated as V’CO2/V’O2. Heart rate (HR) was determined by

ECG. Blood pressure (BP) was measured using a standard cuff

sphygmomanometer. Severe hypertension (systolic BP value

.250 mmHg) or falling BP during exercise were considered

criteria for the termination of the test.

Blood sampling and analyses
Each subject reported to the laboratory at 9:00 a.m. after an

overnight fast for blood sampling. Subjects abstained from alcohol

and caffeine consumption for at least 24 h, and did not perform

physical exercise for the 48 h before testing. Approximately 3 mL

of blood was drawn from an antecubital vein, with subjects

remaining supine. The blood samples were collected in heparin-

ised VacutainerH tubes, and plasma was separated by centrifuge

(5702R, Eppendorf, Germany) at 1000 g for 10 min at 4uC. The

plasma samples were then stored in multiple aliquots at 280uC
until assayed. Samples were thawed only once before analyses,

which were performed within two weeks from collection.

Thiobarbituric acid-reactive substances (TBARS). A

TBARS assay kit (Cayman Chemical, U.S.), which allows a rapid

photometric detection of the thiobarbituric acid malondialdehyde

(TBAMDA) adduct at 532 nm, was used. Samples were read by a

microplate reader spectrophotometer (Infinite M200, Tecam,

Austria). A linear calibration curve was computed from pure

MDA-containing reactions.

Protein Carbonyls (PC). Reactive species produced directly

or indirectly through lipid peroxidation intermediates also may

oxidatively modify proteins. The accumulation of oxidized

proteins was measured by content of reactive carbonyls. A Protein

Carbonyl assay kit (Cayman Chemical, U.S.) was used to evaluate

colorimetrically-oxidized proteins. The samples were read at

370 nm, by a microplate reader spectrophotometer (Infinite

M200, Tecam, Austria), as described in detail by the manufac-

turer. Oxidized proteins values obtained were normalized to the

total protein concentration in the final pellet (absorbance reading

at 280 nm), in order to consider protein loss during the washing

steps, as suggested in the kit’s user manual.

Total antioxidant capacity (TAC). Plasma TAC was

measured by an enzymatic assay kit (Cayman Chemical, U.S.)

using a microplate reader spectrophotometer (Infinite M200,

Tecam, Austria). This assay is based on the ability of antioxidants

in the plasma to inhibit the oxidation of 2, 29-azinobis (3-

ethylbenzithiazoline) sulfonic acid (ABTS, Sigma) to the radical

cation ABTS+ by a peroxidase. The amount of the produced

ABTS+ has been assessed by measuring the absorbance signals at

705 nm. The antioxidants concentration is proportional to the

suppression of the absorbance signal. TAC was evaluated by a

trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid,

Aldrich) standard curve, and was expressed as trolox-equivalent

antioxidant capacity concentration (mM).

Urine sampling and analysis
Each subject reported to the laboratory at 9:00 a.m. after an

overnight fast for urine sampling. All samples were collected by

voluntary voiding in a sterile container provided to the subject.

Aliquots of the urine were stored at 280uC until the analyses were

performed.

8-hydroxy-2-deoxy Guanosine (8-OH-dG). 8- hydroxy -2-

deoxy guanosine (8-OH-dG) has been established as a marker of

oxidative DNA damage. A commercially-available enzyme

immunoassay EIA kit (Cayman Chemical, U.S.) was utilized.

The EIA employs an anti-mouse IgG-coated plate and a tracer

consisting of an 8-OH-dG-enzyme conjugate. This format has the

advantage of providing low variability and increased sensitivity

compared to assays that use antigen-coated plates. This assay is

based on the competition between 8-hydroxy-2-deoxy guanosine

and a 8-OH-dG acetylcholinesterase (AChE) conjugate (8-OH-dG

Tracer) for a limited amount of 8-OH-dG. Because the

concentration of the 8-OH-dG Tracer is held constant while the

sample concentration of 8-OH-dG varies, the amount of 8-OH-

dG Tracer that is able to bind to the 8-OH-dG monoclonal

antibody will be inversely proportional to the concentration of 8-

OH-dG in the sample. This antibody-8-OH-dG complex binds to

goat polyclonal anti-mouse IgG that has been previously attached

to the well. The plate is washed to remove any unbound reagents

and then Ellman’s Reagent (which contains the substrate to AChE)

is added to the well. The product of this enzymatic reaction

absorbs at 412 nm. The sample 8-OH-dG concentration is

determined using a 8-OH-dG standard curve. Urinary concen-

trations of 8-OH-dG, as any urinary marker, vary considerably,

therefore the urinary parameters are usually standardized based

on the amount of creatinine excreted in the urine when the

collection of the 24 h urine is not possible.

Creatinine. In the absence of renal disease, the excretion rate

of creatinine in an individual is relatively constant. Thus, urinary

Oxidative Stress Response to HIDT
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creatinine levels may be used as an index of standardization for 8-

OH-dG. A creatinine assay kit (Cayman Chemical, U.S.) was used

to measure creatinine levels in urine samples. Samples were read

by a microplate reader spectrophotometer (Infinite M200, Tecam,

Austria). Creatinine concentration was determined using a

creatinine standard curve.

Training intervention
On the basis of the individual values of GET (expressed as % of

the V’O2peak) obtained at PRE, participants were matched and

assigned to either moderate-intensity continuous training group

(MOD, n = 10) or high-intensity discontinuous training group

(HIDT, n = 10). Each group undertook 8 weeks of training, three

times a week. Three different types of training sessions were

scheduled, with the total distance covered in each session being

matched between the groups, in order to control for the training

volume performed. For MOD, the sessions were as follows: a)

64.5 min at 70% GET, b) 58.5 min at 80% GET, and c) 54 min

at 90% GET. For HIDT, the work-matched sessions were: a)

186(1 min at 120% GET, 2 min at 65%), b) 186 (1 min at 130%

GET, 2 min at 65%), and c) 186 (1 min at 140% GET, 2 min at

65%). In week 1 and 4, the participants performed only the session

type ‘‘a’’ and ‘‘b’’, while in week 8, the volume of session type ‘‘c’’

was reduced by decreasing the exercise duration (for MOD,

27 min at 90% GET; for HIDT, 961 min at 140% GET, 2 min

at 65%).

Statistical analysis
Data are expressed as Mean 6 Standard Deviation. All results

were tested for normal distribution using a Shapiro-Wilk test, and

when the assumption of normality was not met, a natural log

transformation was applied to reduce the bias due to non-

uniformity of the error. Data from the resting oxidative stress

measurements were analysed using a Two-Way ANOVA with

repeated measures (group x training). Data from the oxidative

stress kinetics were analysed using a Three-Way ANOVA with

repeated measures (group x training x time). When statistical

significance (p,0.05) was obtained for a main factor, a Bonferroni

post hoc test was performed. The test-retest variability of the

oxidative stress measures was analysed on the resting data in PRE

and POST. In our hands the inter- and intra-assay coefficients of

variation of the above-mentioned analyses were as follows:

TBARS, 5.4% and 7.6%; PC, 4.8% and 11.8%; TAC, 8.5%

and 7.7%, respectively.

Results

Resting values
The resting plasma TBARS and PC concentrations are shown

in Fig. 1. The upper panels show TBARS values before (PRE),

after four weeks (4WK) and at the end (POST) of training in both

MOD and HIDT group. In MOD, TBARS concentration

declined significantly from PRE (7.5360.30 mM) to 4WK

(6.5060.25 mM) and remained low in POST (6.4660.27 mM).

Also in HIDT, TBARS concentration declined from PRE

(7.2160.32 mM) to 4WK (6.7860.25 mM), reaching a statistical

significance at POST (5.8560.46 mM). No significant differences

were observed in TBARS concentration between MOD and

HIDT in all conditions. The lower panels show PC values in PRE,

4WK and POST for both MOD and HIDT. Training did not

significantly modify the PC concentration both in MOD

(0.7460.04, 0.7360.04 and 0.7360.05 nmol mg21 protein in

PRE, 4WK and POST respectively) and HIDT (0.7860.08,

0.7860.04 and 0.7660.06 nmol mg21 in PRE, 4WK and POST

respectively). No significant differences were observed in the

resting concentrations of PC between MOD e HIDT. In Fig. 2,

resting plasma TAC values are shown. In MOD, TAC values

resulted significantly reduced in 4WK (1.8460.12 mM) respect to

PRE (2.4060.20 mM), without any other significant change in the

last four weeks of training (1.8760.11 mM, POST). In HIDT,

TAC values were unaffected by training (1.9560.15, 1.7960.12

and 1.9860.13 mM in PRE, 4WK and POST, respectively). No

significant differences were observed in TAC between MOD e

HIDT. In fig. 3 individual TAC values are shown. A large

individual difference in resting TAC values among the subjects

was observed at PRE both for MOD and HIDT. At POST, TAC

values distribution was less scattered both for MOD and HIDT.

The urinary levels of 8-OH-dG, biomarker of in vivo oxidative

DNA base modifications, are shown in Fig. 4. The 8-OH-dG

concentration significantly decreased from PRE (5.5060.66 and

4.5260.50 ng mg21 creatinine in both MOD and HIDT,

respectively) to POST (4.1660.40 and 3.1860.34 ng mg21

creatinine in both MOD and HIDT, respectively). No significant

differences in 8-OH-dG concentration were observed between

HIDT and MOD.

Kinetics of adjustment
The time course of TBARS and PC concentration changes

obtained before, immediately after and at 1 and 2 hours of

recovery from CLE carried out PRE and POST are shown in

Fig. 5. In both groups and in all conditions TBARS concentration

significantly increased immediately after exercise and returned

Figure 1. Effect of continuous moderate-intensity training
(MOD) and high-intensity discontinuous training (HIDT) on
thiobarbituric acid-reactive substances (TBARS) and protein
carbonyls (PC). White bars represent pre-training (PRE) values, grey
bars 4 weeks (4W) of training values and black bars post-training (POST)
values. Values are expressed as means 6 SD. * Significantly different
from PRE (P,0.05). 1 Significantly different from 4WK (P,0.05).
doi:10.1371/journal.pone.0087506.g001

Oxidative Stress Response to HIDT
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toward resting levels thereafter. In MOD (Fig. 5a), as for PRE,

TBARS concentration increased significantly in END

(9.9060.68 mM) and returned toward resting levels thereafter

(8.2860.57 mM and 7.6260.63 mM in 1H and 2H respectively).

As for POST, time course of TBARS concentration was similar

but TBARS values were always significantly lower than PRE. In

HIDT (Fig. 5b), the time course changes of TBARS were similar

to those described for MOD. No significant differences were

observed between MOD and HIDT.

The time course changes of PC concentration are shown in

Fig. 6. In PRE, PC increased progressively after CLE, reaching the

significantly highest value at 1H (1.3360.22 and 1.3260.30 nmol

mg21 protein in both MOD and HIDT, respectively), and

returning to resting values at 2H (0.8760.07 and 0.9060.09 nmol

mg21 protein in both MOD and HIDT, respectively). In POST,

the time course of PC concentration was very similar but, as for

MOD (Fig. 6a), the peak value reached at 1H (1.0460.07 nmol

mg21 protein) was significantly lower than in PRE.

Discussion

This study was designed to evaluate the oxidative stress response

to high-intensity discontinuous training versus moderate-intensity

continuous training in masters runners. The main findings are

listed hereafter.

TBARS resting values were significantly reduced after
training both in MOD and HIDT

It is known that moderate intensity aerobic training such as

those adopted by Fatouros et al. [28], i.e. 50–80% of HRmax for 16

weeks, or by Leeuwenburgh et al. [36] i.e. 75% of V’O2max for 6

weeks, decreases resting lipid peroxidation levels. Our data are in

agreement with these results since we observed in MOD a

reduction of TBARS resting values. As for HIDT, the effects on

lipid peroxidation levels are not well understood. A trend towards

a reduction of resting plasma TBARS levels was shown in young

subjects performing three sessions of HIDT within 1 week [40].

Our data confirm and extend these findings. We observed in

masters runners a significant reduction in TBARS resting values

only after 8 weeks of HIDT, but not after 4 weeks. Thus, the

training duration seems to be an important variable affecting this

adaptation. It is plausible that free radicals production and,

consequently, lipid peroxidation induced by every single session of

HIDT could be progressively reduced as observed within 1 week

by Fisher et al. [40]. Moreover, it has been suggested that exercise

training lowers resting lipid peroxidation by up-regulating

Figure 2. Effect of continuous moderate-intensity training
(MOD) and high-intensity discontinuous training (HIDT) on
total antioxidant capacity (TAC). White bars represent pre-training
(PRE) values, grey bars 4 weeks (4W) of training values and black bars
post-training (POST) values. Values are expressed as means 6 SD.
* Significantly different from PRE (P,0.05).
doi:10.1371/journal.pone.0087506.g002

Figure 3. Individual changes in TAC value in MOD and HIDT.
White squares represent pre-training (PRE) values and black squares
represent post-training (POST) values.
doi:10.1371/journal.pone.0087506.g003

Figure 4. Effect of continuous moderate-intensity training
(MOD) and high-intensity discontinuous training (HIDT) on
oxidative damage of DNA measured by 8- hydroxy -2-deoxy
guanosine (8-OH-dG). White bars represent pre-training (PRE) values
and black bars are post-training (POST) values. Values are expressed as
means 6 SD. * Significantly different from PRE (P,0.05).
doi:10.1371/journal.pone.0087506.g004

Oxidative Stress Response to HIDT
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antioxidant enzyme levels in tissues engaged in systematic exercise

[41]. So, the 8 weeks of training could have allowed enough time

for the antioxidant systems to reduce the acute damage of each

single session of high-intensity training.

No significant change in PC resting values was observed
in both MOD and HIDT

It is know that aging is associated with increased free radical

generation in the skeletal muscle and increased oxidative

modification of protein, lipid, and DNA [32]. Moreover, some

studies show that long-term training increases the macromolecular

oxidative damage in elderly men. For example, Gonzalo-Calvo et

al. [42] recently demonstrated that the level of carbonyl protein

content in plasma and erythrocytes, are higher in a group of older

men (.65 years) undergoing long-term training than in one group

of sedentary subjects. Our data showed no significant changes in

PC resting values after training in both MOD and HIDT,

confirming previous reports on sedentary individuals undergoing

12 weeks of resistance training [43]. Now, oxidative modifications

of protein (as accumulation of reactive carbonyl derivates) can

serve as a tag to indicate which proteins need to be replaced [21].

Proteins are usually replaced by proteasome complex and an

increased activity of proteasome could be an important factor that

affects the rate of protein turnover and the remodeling of skeletal

muscle [44]. Since it is known that exercise can induce the activity

of proteasome complex and increase the rate of protein turnover,

it is plausible that MOD and HIDT induced both the

accumulation of reactive carbonyl derivates and the increase of

damaged proteins proteolysis, leading to no significant changes in

PC resting values. Therefore the unchanged PC resting values

recorded in our study may be seen as a positive effect of both

training protocols adopted.

The accumulation of 8-OH-dG in urine was significantly
reduced in MOD and HIDT

Several studies conducted submaximal aerobic exercise proto-

cols under laboratory conditions to investigate DNA effects. DNA

damage was neither seen after intense treadmill running in male

subjects of different training status [45] nor in well-trained

endurance athletes [46]. However, conflicting findings were

reported when maximal exercise protocols, i.e. tests until

exhaustion, were conducted under laboratory conditions. In-

creased levels of DNA strand breaks were observed after

exhaustive treadmill running in subjects of different training status

[26]. Moller et al. [47] demonstrated DNA strand breaks and

oxidative DNA damage after an maximal cycle ergometer test

under high altitude hypoxia, but not normal (normoxic) condi-

tions. Furthermore, there were no differences in urinary 8-OHdG

concentrations before and after supplementation with b-carotene

within the 3 d following a cycle ergometer test to exhaustion [48].

As for training, a few studies have examined whether periods of

intensified training affect genome stability. Increased urinary 8-

Figure 5. Time course changes of TBARS concentration
recorded before (REST) and after (END, 1H and 2H) constant-
load submaximal exercise trials (CLE). White squares indicate pre
training (PRE) values and black squares post-training (POST) values.
Values are expressed as means 6 SD. *P,0.05 compared to REST.
#P,0.05 compared to PRE.
doi:10.1371/journal.pone.0087506.g005

Figure 6. Time course changes of PC concentration recorded
before (REST) and after (END, 1H and 2H) constant-load
submaximal exercise trials (CLE). White squares indicate pre
training (PRE) values and black squares post-training (POST) values.
Values are expressed as means 6 SD. *P,0.05 compared to basal value.
#P,0.05 compared to PRE.
doi:10.1371/journal.pone.0087506.g006
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OHdG levels were observed in 23 healthy males in response to a

vigorous physical training programme (about 10 h of exercise for

30 d) [49] and in male long-distance runners throughout a

training period for 8 d compared to a sedentary period [50].

However, in a longitudinal study no differences in urinary

excretion of 8-OHdG between a group of long-distance runners

and a sedentary control group were observed [51]. Our data

showed a decrease (,25%) in urinary 8-OH-dG excretion in both

MOD and HIDT groups. These results could be explained by less

DNA damage but also by activation of DNA repair processes. In

fact, the activities of DNA damage-repairing enzymes are up-

regulated by training [52]. To our knowledge this is the first study

to evaluate oxidative DNA damage in humans following high

intensity training. Contrary to our hypothesis the disturbances of

cellular homeostasis caused by repeated variations of intensity in

HIDT did not determine DNA damage significantly different from

MOD. Therefore the beneficial adaptation observed may be

independent from the intensity of training.

The defences against oxidative damage were lowered
only in MOD, not in HIDT

Skeletal muscle is a remarkably adaptive tissue that is capable of

changing its morphological, physiological, and biochemical

properties in response to various perturbations. The adaptations

are accomplished by various signal transduction pathways that

relay external stimuli to changes in intracellular enzyme activity

and/or gene expression. Exercise-induced oxidative stress serves as

an important signal to stimulate muscle adaptation of antioxidant

systems via activation of the redox-sensitive signalling pathways

[53]. While an acute bout of muscular contraction is sufficient to

activate these pathways, up-regulation of enzyme protein synthesis

requires cumulative effects from repeated bouts of exercise, that is,

exercise training.

The effect of chronic exercise on redox status and antioxidant

defence is a much-debated question. Chronic exercise training has

been suggested to induce an increase of the activity of the

antioxidant defence systems by animals [54] and humans studies

[55,28]. However, other studies have shown no change in

sedentary individuals [53–56,], or even a decrease in antioxidant

capacity with training [6,36,57,58]. Results of the present study

showed a significant decrease of the resting TAC values in MOD

but not in the HIDT group. Even though it cannot be excluded

that the different intensity of the training programmes could be

responsible for this finding, an alternative explanation could be

proposed.

TAC value can be considered a reliable biomarker of

antioxidant defence, although it should be interpreted with some

caution. It is well known that oxidative stress biomarkers are

influenced by sex, age, lifestyle (i.e. smoking), dietary intake,

previous strenuous exercise and/or training status. To overcome

this inconvenience a ‘‘theoretically’’ homogeneous experimental

group (males, no smokers, masters athletes) was chosen in present

study. Nevertheless, large individual differences in resting TAC

values among the subjects were observed at PRE (Fig. 3), resulting

in a higher starting antioxidant defence level in MOD than in

HIDT. Therefore, we believe that the significant training-induced

decrease of TAC value observed in MOD might be attributed to a

higher baseline. If we compare the participants’ individual data

before, during and after training it is easy to notice that training

has induced a converging of TAC values towards an optimal level,

especially in MOD (Fig. 3). In fact, participants who were

characterized by low pre-training TAC values showed an increase

of these, while subjects with high pre-training values showed a

decrease. It is becoming increasingly clear that reactive species act

in a hormetic manner [59] since an optimal ROS level is beneficial

for the cell survival, whereas too little or too much ROS result in

impaired physiological function. Therefore, excessive attenuation

of ROS production, caused by high total antioxidant capacity

values, if on one hand reduces oxidative damage on the other

might be considered detrimental for cellular functionality.

Kinetics of adjustment of oxidative stress biomarkers to
acute exercise

There is an abundance of literature indicating that exercise

increases the production of reactive oxygen species to a point that

can exceed antioxidant defenses and thus cause oxidative stress

[2,5,6,60]. Few studies, however, have investigated with an

adequate sampling time, the kinetics of adjustment of oxidative

stress biomarkers after exercise. Michailidis et al. [61] after a

specific aerobic exercise protocol have observed the highest value

of TBARS and PC at 1 h and 4 h after exercise, respectively. In

the present study the highest value of TBARS and PC was

measured immediately at the end and 1 h after exercise,

respectively. This shorter-lived response of PC and TBARS could

be attributed, at least in part, to the lower intensity and shorter

duration of the exercise protocol used in our study. More

generally, the findings of the present study provide further

evidence to the notion that non-muscle-damaging exercise induces

alterations in redox homeostasis that last only few hours post

exercise [62].

Moreover, our study also evaluated the effect of training

protocols to the exercise-induced oxidative damage kinetics.

According to Nikolaidis et al. [62], it becomes clear that the

resting levels of many redox biomarkers return limited information

compared to the ones modified by an acute exercise session. In

other words, it may be easier to find an existing effect of a redox

agent on body fluids redox status after exercise than at rest, simply

because the stimulus of exercise may extend the magnitude and

the duration of change in redox homeostasis. Both MOD and

HIDT did not affect the time-course of plasma oxidative stress

biomarkers. However, TBARS values at any time resulted

significantly lower after training and PC peak value decreased

after both HIDT and MOD resulting statistically different only for

the latter. The decrease in the peak PC value observed might be a

consequence of the activation of mechanisms induced by training

procedures that more efficiently remove the oxidatively modified

proteins from circulation.

Limitations of the Study

This manuscript attempts to evaluate the effects of high-

intensity discontinuous training on oxidative damage. Many

approaches allow evaluation and demonstration of the participa-

tion of ROS in biochemical events. Indeed, the literature is replete

with descriptions of different methodologies and approaches for

these purposes. The only technique for direct detection of radicals

is electron spin resonance, which allows the detection of relatively

stable radicals. The indirect detection of ROS intervention is

based on the dosage of specific end products resulting from the

interaction of the ROS with biological macromolecules, such as

DNA, proteins and lipid. The appearance of these end products

serves as proof of the prior existence of ROS that left their

footprints in the cell. The authors are aware that neither

thiobarbituric acid ractive substances nor protein carbonyls or 8-

hydroxy-2deoxy guanosine represent specific biomarkers of lipid

peroxidation, protein oxidation or DNA base modifications.

Nevertheless, we believe that our array of biomarkers is well able

to characterize the oxidative status during the post-exercise period

Oxidative Stress Response to HIDT
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(and clearly equals or exceeds that of many similar investigations

see for example [3] and [20]). It is possible that oxidative stress

may have occurred in tissues aside from blood, such as skeletal

muscle, which may be the ideal tissue when studying exercise

stress. Of course, biopsies are required for obtaining samples for

analyses, which is likely the reason why so few human

investigations include the analysis of oxidative stress biomarkers

in skeletal muscle.

Conclusion

In conclusion, high-intensity discontinuous and continuous

moderate-intensity training induced similar beneficial effects in

masters runners, reducing the resting levels of oxidative stress

biomarkers in plasma and urine. In addition, we provide further

evidence that aerobic exercise induces alterations in redox

homeostasis that last only few hours post exercise and are

attenuated by training.

Therefore our hypothesis that HIDT might cause a higher level

of exercise-induced oxidative stress compared to a workload-

matched, moderate-intensity continuous training appears to be

incorrect. It is also important to underline that these training

adaptive responses appear effective even in middle-aged subjects.
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