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Abstract

In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes
like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various
environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2.
However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional
upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The
essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second
PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins
within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-
596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the
CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth
mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1
drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the
intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared
to similar routes from other simple eukaryotic organisms.

Citation: Sánchez-Mir L, Soto T, Franco A, Madrid M, Viana RA, et al. (2014) Rho1 GTPase and PKC Ortholog Pck1 Are Upstream Activators of the Cell Integrity
MAPK Pathway in Fission Yeast. PLoS ONE 9(1): e88020. doi:10.1371/journal.pone.0088020

Editor: Robert Alan Arkowitz, Institute of Biology Valrose, France

Received September 30, 2013; Accepted January 2, 2014; Published January 31, 2014

Copyright: � 2014 Sánchez-Mir et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants BFU2011-22517 (Ministerio de Economı́a y Competitividad) and 15280/PI/10 (Fundación Séneca, Región de Murcia),
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Introduction

Studies on molecular clues involved in the regulation MAPK

signaling pathways are essential to understand how eukaryotic cells

are able to adapt and survive against suboptimal environmental

conditions. The rod-shaped, fission yeast Schizosaccharomyces pombe is

an excellent model organism to study mechanisms and cellular

events linked to MAPK activation, given the significant functional

homology between their regulatory circuits and those of higher

cells [1,2]. The cell integrity pathway (CIP), one of the three

MAPK pathways present in fission yeast, regulates multiple

processes like cell wall construction and maintenance during

stress, vacuole fusion, cytokinesis, morphogenesis, and ionic

homeostasis through its central element, MAPK Pmk1 [3–8].

Pmk1 is ortholog to human ERK1/2 and associates in vivo with

MAPKKK Mkh1and MAPKK Pek1 to form a ternary complex

[9–12], becoming activated in response to multiple adverse

conditions such as hyper- and hypo-osmotic stress, glucose

withdrawal, cell wall damage, and oxidative stress induced by

hydroperoxides or pro-oxidants [12]. Importantly, S. pombe

mutants lacking Mkh1, Pek1, or Pmk1 display strong sensitivity

to the above stresses [12], indicating that a functional MAPK

module is required for cell adaptation and survival under such

conditions.

Previous work demonstrated that Rho2 GTPase, one of the six

Rho GTPases found in S. pombe proteome (Rho1 to Rho5, and

Cdc42) which controls cell polarity and cell wall biosynthesis, is a

positive regulator operating upstream of the CIP [13,14]. Rho2-

dependent regulation of Pmk1 activity is mediated through Pck2,

one of the two orthologs of protein kinase C (PKC) present in this

organism [13,14]. On the contrary, Pck1, the second PKC

ortholog, appears to negatively regulate the activity of the CIP by

an unknown mechanism, since Pck1-less mutants display a

moderate increase in basal Pmk1 phosphorylation [14]. Notably,

simultaneous deletion of Pck1 and Pck2 is lethal, suggesting that

both kinases share a functional role that is essential during fission

yeast growth [15]. Importantly, we demonstrated that Pmk1 can

still be activated in the absence of either Rho2 or Pck2, supporting

the existence of a complex scenario where several routes involving

various (known and unknown) elements regulate Pmk1 activation

depending on the nature of the activating stimulus [14]. This

model is in striking contrast to the situation in budding yeast

Saccharomyces cerevisiae, where RHO1 GTPase and PKC1 (ortholog
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to both Pck1 and Pck2) are absolutely needed for the activation of

MAPK SLT2/MPK1 [16].

While Cdc42 GTPase does not appear to be involved in Pmk1

activation [12], Rho1, another essential GTPase, has emerged as a

strong candidate to participate as an alternative/additional

upstream activator of the CIP, since some of the phenotypes

associated to lack of Rho2 are partially rescued by Rho1 [17].

Moreover, both GTP-bound Rho1 and Rho2 interact in vivo with

either Pck1 or Pck2 [18,19], and target Pck2 to coordinately

regulate the biosynthesis of (1,3) b-D-glucan (Rho1) and a-glucan

(Rho2), the two main cell wall polymers in fission yeast [20].

Additionally, results obtained after the characterization of mutants

lacking Rgf1, which is the main Guanine Nucleotide Exchange

Factor (GEF) involved in Rho1 activation in vivo, has led to the

hypothesis that this GTPase regulates Pmk1 activation via Pck2

[21]. The evidences obtained included the observation that Pmk1

activation in response to stress is fully (hyper- and hypo-osmotic

treatment) or partially (cell wall damage) abrogated in Rgf1-less

cells, and that overexpression of a hyperactive version of Rho1

induced a clear increase in MAPK phosphorylation which was

suppressed in the absence of Pck2 [21]. Nevertheless, the

promiscuous nature of GEFs together with the fact that Rho1

deletion is lethal has complicated the elucidation of the specific

roles of this GTPase as an upstream activator of the CIP. In this

context, we have recently described the isolation of a fission yeast

mutant expressing a genomic hypoactive version of Rho1 with

reduced GTPase activity in vivo (rho1-596 allele) [22]. rho1-596 cells

are viable but show severe cell wall defects and a thermosensitive

phenotype when incubated above 34uC [22]. Importantly, Pmk1

basal activity is increased in this mutant, and deletion of either

Rho2 or Pmk1 partially rescued rho1-596 thermosensitivity [22],

supporting the existence of a complex functional relationship

between Rho1 and Rho2 during downstream signalling to the

CIP. In this study we show for the first time that Rho1 and Pck1

are true activators of this signalling cascade in addition to Rho2

and Pck2 under specific environmental contexts.

Materials and Methods

Strains, plasmids and growth conditions
The S. pombe strains (Table 1) were grown with shaking at 28uC

in either YES or EMM2 medium with 2% of glucose, and

supplemented with adenine, leucine, histidine or uracil (100 mg/

liter, Sigma Chemical) [23]. Mutant strains were obtained by

standard transformation procedures or by mating and selecting

diploids in EMM2 medium without supplements. Spores were

obtained in MEL medium, purified by glusulase treatment and

allowed to germinate in EMM2 plus the appropriate requirements

[24]. Transformation of yeast strains was performed by the lithium

acetate method [19]. Plasmids pREP41X-rho1+(G15V) and

pREP3X-rho2+ express, respectively, hyperactive and wild type

alleles of Rho1 and Rho2 GTPases [15,20] under the control of

the attenuated (41X) and strong (3X) versions of the thiamine-

repressible promoter nmt1 [25]. Plasmid pREP41X-pck1+ was used

to express a wild type version of PKC-type kinase Pck1 [15]. To

construct strains expressing C-terminal 13myc-tagged versions of

mkh1+ we employed plasmid pFA6a-13myc-kanMX6 [26].

Stress treatments and detection of activated Pmk1
Experiments to investigate Pmk1 activation under stress were

made using log-phase cell cultures (OD600 = 0.7) growing at 28uC
in YES, and supplemented with either Caspofungin (Merck),

Calcofluor (Sigma Chemical), potassium chloride (Sigma Chem-

ical), or hydrogen peroxide (Sigma Chemical). In glucose

deprivation studies, cells were grown in YES medium with 7%

glucose to an OD600 = 0.5, recovered by filtration, and resus-

pended in the same medium without glucose but osmotically

equilibrated with 3% glycerol [12]. At different times, cells from

50 ml of culture were harvested by centrifugation at 4uC, washed

with cold PBS buffer, and the yeast pellets immediately frozen in

liquid nitrogen for analysis. Cell homogenates were prepared

under native conditions employing chilled acid-washed glass beads

and lysis buffer (10% glycerol, 50 mM Tris-HCl pH 7.5, 150 mM

NaCl, 0.1% Nonidet NP-40, plus specific protease and phospha-

tase inhibitor, Sigma Chemical). The lysates were cleared by

centrifugation at 13000 rpm for 15 min, and the proteins were

resolved in 10% SDS-PAGE gels, transferred to nitrocellulose

filters, and incubated with rabbit anti-phospho-p42/44 antibodies

(Cell Signalling) [12]. The immunoreactive bands were revealed

with anti-rabbit HRP-conjugated secondary antibodies (Sigma

Chemical) and the ECL detection kit (GE Healthcare). Densito-

metric quantification of Western blot signals was performed using

ImageJ software [27].

Immunoprecipitation
Cell extracts (4 mg total protein) were obtained using lysis buffer

(50 mM Tris/HCl pH 7.5, 0.5% sodium deoxicholate, 150 mM

NaCl, 1% NP-40 and protease inhibitor (Sigma Chemical), and

incubated with anti-HA monoclonal antibody and protein A-

sepharose beads for 4 h at 4uC. The beads were washed two times

with lysis buffer, two times with washing buffer 2 (50 mM Tris/

HCl pH 7.5, 0.05% sodium deoxicholate, 500 mM NaCl, 0.1%

NP-40), one time with washing buffer 3 (50 mM Tris/HCl

pH 7.5, 0.05% sodium deoxicholate, 0.1% NP-40), and resus-

pended in sample buffer. Proteins were separated in 8% SDS-

PAGE gels, transferred to nitrocellulose filters (GE Healthcare),

and hybridized with either anti-HA or anti-c-myc (clone 9E10,

Roche Molecular Biochemicals) mouse monoclonal antibodies.

Plate assay of stress sensitivity for growth
Wild-type and mutant strains of S. pombe were grown in YES

liquid medium to OD600 = 0.6. Appropriate dilutions were spotted

per duplicate on YES solid medium or in the same medium

supplemented with different concentrations of MgCl2 and FK506

(VIC phenotype) [24], or Caspofungin. Plates were incubated at

28uC for 3–5 days, and then photographed.

Reproducibility of results
All experiments were repeated at least three times. Relative

Units (RU) for Pmk1 activation are estimated in each experiment

by determining the signal ratio (as a measurement of band

intensity) of the anti-phospho-P44/42 blot (activated Pmk1) with

respect to the anti-HA blot (total Pmk1) at each time point.

Depending on the experiment, mean relative units 6 SD and/or

representative results are shown. P-values were analyzed by

unpaired Student’s t test.

Results

Rho1 GTPase is a positive regulator of the CIP
Previous evidence has shown that Rho2 is a main positive

regulator operating upstream of the cell integrity pathway [13,14].

Rho2-dependent regulation of Pmk1 activity is mediated through

Pck2, since the low basal Pmk1 phosphorylation level in pck2D cells

is identical to that observed in the rho2D pck2D double mutant [14].

Also, Pmk1 hyperactivation triggered by rho2+ overexpression is

fully attenuated in mutants lacking Pck2 (Figure 1A). However,

Pmk1 can be activated in the absence of either Rho2 or Pck2,

Rho1 and Pck1 Activate Pmk1 MAPK in Fission Yeast
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suggesting the existence of additional regulatory elements [14].

Rho1 GTPase might modulate the activity Pmk1 by acting

upstream of Pck2 because it has been described that overexpres-

sion of wild type or a constitutively active allele of rho1+ (G15V

mutant) induced a marked hyperactivation of Pmk1 (Figure 1B)

[21]. While this increase was not affected by deletion of Rho2,

Pmk1 activation was strongly compromised in pck2D cells

(Figure 1B). Therefore, these results suggest that Rho1 is an

activator of the CIP acting upstream to Pck2 in a Rho2-

independent fashion. However, the existence of a low but

reproducible MAPK activation in pck2D cells (Figure 1B), indicates

that other elements might be targets for Rho1 during the control

of Pmk1 activity (see below).

Recently we have obtained a fission yeast mutant expressing a

genomic hypoactive version of Rho1 (rho1-596 allele) [22]. rho1-

596 cells display an evident increase in basal Pmk1 activity as

compared to control cells (Figure 1C) [22], suggesting that,

contrary to the above findings, Rho1 might be a negative regulator

of the Pmk1 pathway. We also found that Pmk1 hyperactivation in

rho1-596 cells is suppressed in a rho2D background (Figure 1C),

supporting that low GTPase activity in Rho1- cells induces a

cellular stress transduced to the MAPK cascade through Rho2

[22]. However, a careful examination of these experiments

revealed that Pmk1 basal phosphorylation in rho1-596 rho2D cells

was actually lower than in rho2D cells, and this difference was

statistically significant (P,0.04; Figure 1C). On the contrary, basal

Pmk1 activity was nearly identical in pck2D and rho1-596 pck2D
cells (Figure 1D), strongly suggesting that enhanced Pmk1

activation in rho1-596 cells is transmitted to the MAPK cascade

mainly through Pck2. Deletion of members of the cell integrity

pathway enables cells to grow in the presence of MgCl2 plus the

specific inhibitor of calcineurin FK506, a feature known as the VIC

phenotype [28]. Moreover, increasing the concentration of MgCl2
in the medium allows to distinguish between rho2D mutants, which

display moderate Pmk1 activity, and those with very low (pck2D) or

null (mkh1D, pek1D, pmk1D) MAPK activity [14]. As seen in

Figure 1E, rho2D cells showed a partial VIC phenotype in medium

supplemented with 0.2 M MgCl2 and became VIC negative in the

presence of 0.3 M MgCl2. As expected, both wild type and rho1-

596 cells were VIC negative under any condition (Figure 1D).

Importantly, the VIC phenotype in rho1-596 rho2D double mutant

was markedly enhanced as compared to that shown by rho2D cells

(Figure 1E), which is in good agreement with basal Pmk1

phosphorylation data (Figure 1C). As a whole, these results sustain

that Rho1 GTPase is a true positive regulator of the cell integrity

pathway which operates during vegetative growth in an alternative

fashion to Rho2 and using Pck2 as a main target.

Role of Rho1 during Pmk1 activation and cell survival in
response to cell wall stress

Pmk1 activation induced by hypo- and hyper-osmotic stress

totally depends upon the signaling mediated by Rho2 (Figure 2A)

[14]. On the contrary, MAPK activation triggered by oxidative

(hydrogen peroxide) and cell wall (Caspofungin) stresses is only

partially dependent on this GTPase (Figure 2B and C) [14]. The

recognition of Rho1 as a member of the cell integrity pathway

prompted us to test its role during signal transduction in response

to stresses transmitted to Pmk1 in a Rho2-independent fashion. As

shown in Figure 2B, Pmk1 activation in rho2D cells subjected to

oxidative stress was not affected by simultaneous expression of the

rho1-596 hypoactive allele. However, in comparison to either

control or rho2D and rho1-596 single mutant cells, MAPK

activation was severely compromised in cells from the rho2D
rho1-596 double mutant treated with Caspofungin (Figure 2C).

Table 1. S. pombe strains.

Straina Genotype Source/Reference

MI200 h+ pmk1-HA6H::ura4+ Madrid et al (2006)

MI102 h+ pmk1::kanMX6 Madrid e tal (2006)

YFG35 h2 pck1::ura4+ Lab stock

MI700 h+ rho2:: kanMX6 pmk1-HA6H:: ura4+ Barba et al. (2008)

GB3 h+ pck2:: kanMX6 pmk1 HA6H:: ura4+ Barba et al. (2008)

GB29 h2 rho2:: kanMX6 pck2:: kanMX6 pmk1- HA6H:: ura4+ Barba et al. (2008)

GB35 h+ pck1::ura4+ pmk-HA6H::ura4+ Barba et al. (2008)

LS201 h2 rho1-596::NatMX6 pmk1-HA6H:: ura4+ Viana et al. (2013)

LS209 h+ rho1-596::NatMX6 pmk1::kanMX6 This work

LS202 h+ rho1-596::NatMX6 rho2:: kanMX6 pmk1-HA6H:: ura4+ Viana et al. (2013)

LS203 h+ rho1-596::NatMX6 pck2:: kanMX6 pmk1-HA6H:: ura4+ Viana et al. (2013)

LS204 h+ rho1-596::NatMX6 pck1:: ura4+ pmk1-HA6H:: ura4+ Viana et al. (2013)

LS206 h+ rho2:: kanMX6 pck1::ura4+ pmk1- HA6H:: ura4+ This work

LS207 h+ rho1-596::NatMX6 rho2:: kanMX6 pck2:: kanMX6 pmk1-HA6H:: ura4+ This work

LS208 h+ rho1-596::NatMX6 rho2:: kanMX6 pck1:: ura4+ pmk1-HA6H:: ura4+ This work

PPG541 h2 nmt41:HA-pck1::ura4+ Lab stock

LS210 h+ mkh1-13myc:: kanMX6 This work

LS211 h2 nmt41:HA-pck1::ura4+ mkh1-13myc:: kanMX6 This work

LS212 h2 nmt41:HA-pck1::ura4+ pck2:: kanMX6 mkh1-13myc:: kanMX6 This work

LS213 h2 nmt41:HA-pck1::ura4+ pck2:: kanMX6 This work

aAll strains are ade- ura4D-18 leu1-32.
doi:10.1371/journal.pone.0088020.t001
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Figure 1. Rho1 GTPase is a positive regulator of the cell integrity MAPK pathway. (A) Strains MI200 (WT) and GB3 (pck2D) were separately
transformed with pREP3X-rho2+ plasmid and grown for 18 h in the presence (+B1) or absence (2B1) of thiamine. Activated Pmk1 was detected by
immunoblotting with anti-phospho-p42/44 and total Pmk1 with anti-HA antibodies. (B) Strains MI200 (Control), MI700 (rho2D), and GB3 (pck2D) were
separately transformed with pREP3X-rho1+(G15V) plasmid, grown for 18 h with or without thiamine, and both total and activated Pmk1 were
detected as above. (C) Strains MI200 (WT), GB3 (pck2D), and LS203 (rho1-596 pck2D) were grown in YES medium to mid log-phase. Aliquots were
harvested and Pmk1-HA6H was purified by affinity chromatography. Pmk1-HA6H was purified and the activated and total Pmk1 was detected as
already indicated. *,P,0.05 in mutant strains as compared to the wild type. **,P,0.04 in rho1-596 rho2D cells as compared to the rho2D mutant. (D)
Strains MI200 (WT), LS201 (rho1-596), MI700 (rho2D), GB3 (pck2) and LS202 (rho1-596 rho2D) were grown in YES medium to mid log-phase. And both
activated and total Pmk1 was detected as above. (E) VIC assays for strains MI200 (WT), MI700 (rho2D), GB3 (pck2D), LS201 (rho1-596), GB29 (rho2D
pck2D), LS202 (rho1-596 rho2D), LS203 (rho1-596 pck2D), and LS207 (rho1-596 rho2D pck2D). After growth in YES medium, 104, 103 or 102 cells were
spotted onto YES plates supplemented with 0.5 mg/ml FK506 plus 0.1, 0.2, 0.3, 0.35 or 0.4 M MgCl2, and incubated for 4 days at 28uC before being
photographed.
doi:10.1371/journal.pone.0088020.g001
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Thus, the above results are congruent with the idea that Rho1

exerts an important role during signal transduction to the CIP in

response to cell wall stress in addition to Rho2. Fission yeast

mutants lacking members of the CIP pathway show a moderate

(rho2D) to strong (pck2D, pmk1D) sensitivity for growth in the

presence of Caspofungin [13]. In addition, the viability of rho1-596

cells is also compromised in the presence of this cell wall stressor

(Figure 2D) [22]. Interestingly, simultaneous expression of rho1-

596 aggravated the Caspofungin-sensitive phenotype in rho2D,

pck2D or pmk1D cells (Figure 2D). Altogether, the above results

strongly suggest that the role of Rho1 to promote cell survival

during cell wall stress involves both Pmk1-dependent and -

independent pathways.

Pck1 is a positive regulator of the CIP
We originally postulated that, contrary to Pck2, Pck1 might be a

negative regulator of the CIP, since Pmk1 phosphorylation and

activity result increased in pck1D cells [14]. However, the finding

that the enhanced Pmk1 phosphorylation in rho1-596 mutant cells

is the result of a stress signal transmitted to the MAPK cascade via

Rho2 suggested that a similar mechanism might operate for Pck1.

Figure 3A indicates that deletion of rho2+ gene alleviated the

increased Pmk1 basal phosphorylation present in pck1D cells.

However, the suppression was not complete, suggesting that the

cell stress arising from pck1+ deletion may be transduced to Pmk1

through additional element/s. An obvious candidate to perform

such a role is Rho1, since both Pck2 and Pck1 are in vivo targets for

this GTPase [15]. Indeed, basal Pmk1 phosphorylation in growing

cells from a rho1-596 rho2D pck1D triple mutant further decreased

as compared to rho2D pck1D cells (Figure 3A), and was

accompanied with a enhanced VIC phenotype (note in Figure 3B

the robust growth of rho1-596 rho2D pck1D cells in medium

supplemented with 0.2 M MgCl2 as compared to rho2D pck1D
cells). Also, we observed that Pmk1 hyperactivation induced by

overexpression of the Rho1-G15V allele was attenuated in pck1D
cells, although not as strongly as in pck2D cells (Figure 3C).

Moreover, overexpression of the wild type pck1+ allele under the

control of a medium strength thiamine-repressible promoter (41X;

24 h) induced a modest but reproducible increase in Pmk1

phosphorylation in wild type cells which remained unaffected by

the absence of Rho2, Pck2, or in rho1-596 rho2D cells (Figure 3D).

Pck1 overexpression suppressed only partially the VIC phenotype

of rho2D and pck2D cells (Figure 3E), suggesting that its putative

role during the regulation of ionic homeostasis is not critical.

Taken as a whole, these results support that Pck1 might act as a

Rho1 target during signal transmission to the CIP, although its

role within this pathway seems restricted to specific situations.

In spite of a previous report describing that, in contrast to Pck2,

Pck1 does not interact with Mkh1 (MAPKKK) [13], the above

findings allow to predict that, if Pck1 is a direct activator of the

CIP, it should then associate with Mkh1 in vivo. We explored this

possibility by performing co-inmunoprecipitation assays with

exponentially growing and Caspofungin-treated strains co-express-

ing a genomic version of Mkh1 tagged at its C-terminus with the

13myc epitope, and a N-terminal HA-tagged version of Pck1

expressed under the regulation of the medium strength thiamine

repressible promoter, both in the presence and absence of Pck2.

Notably, as shown Figure 3F, we detected the Mkh1-myc fusion

after Pck1 immunoprecipı̀tation only in Caspofungin-treated

pck2D cells, but not in growing cells or strains expressing Pck2.

These data suggest that the in vivo association between Mkh1 and

Pck1 is favored during cell wall stress, and that Pck2 is then the

main PKC-type kinase involved in signal transmission to the cell

integrity MAPK pathway.

Role of Pck1 during Pmk1 activation and cell survival in
response to cell wall stress

Since Pck1 appears to interact with the CIP during cell wall

stress, we studied its role during signal transduction in response to

this specific stimulus. Pmk1 activation in pck1D cells treated with

Caspofungin was slightly lower than in control cells, whereas Rho2

absence compromised signaling particularly at early times

(Figure 4A). This activation delay was similar to that observed

during glucose limitation [29].The key role of Pck2 during

Caspofungin-mediated response was evidenced by the minimum

Pmk1 activation observed in either pck2D or rho2D pck2D cells

(Figure 4B). However, the lower MAPK activation in rho2D cells

was also reduced by simultaneous deletion of pck1+, and showed

similar levels than in rho1-596 rho2D cells (Figure 4B and C).

Notably, Pmk1 activation in response to Caspofungin was

completely abolished in cells from a rho1-596 rho2D pck1D triple

mutant, thus confirming that Pck1 is a member of the CIP

involved in signaling during cell wall damage (Figure 4C). The

Pck1-less mutant showed a moderate sensitivity to growth in the

presence of Caspofungin, which was similar to that shown by the

rho1-596 mutant (Figure 4D). However, the marked growth defect

of rho1-596 rho2D cells in the presence of the drug was aggravated

in the rho1-596 rho2D pck1D triple mutant (Figure 4C). Hence, in

fission yeast both Rho1 and Pck1 may act in the same pathway

during the cellular defense against cell wall stress, although the

possibility that Pck1 exerts its function in a Rho1-independent

fashion cannot be discarded.

Discussion

In this work we present evidence showing that in fission yeast

both Rho1 GTPase and the PKC-ortholog Pck1 are members of

the cell integrity MAPK pathway which promote Pmk1 activation

during cell growth and cell wall stress. This signaling route

functions in addition to Rho2 and Pck2, the only previously known

regulators of this pathway [8,13,14]. Although earlier findings

suggested that Rho1 might perform such a role [21], recent results

pointed out into the opposite direction, since a strain expressing

the hypomorphic Rho1 allele rho1-596 displayed increased basal

Pmk1 phosphorylation in growing cells [22]. However, enhanced

MAPK activity likely results from a stress provoked by low Rho1

GTPase activity. Because Rho1 is an essential GTPase involved in

cell wall formation and biosynthesis in fission yeast [18], the

appearance of cell wall defects and the concomitant stress signaling

to the Pmk1 MAPK cascade should be expected when its function

results compromised. Moreover, this signal is channeled through

Rho2, since both the thermosensitive and Pmk1 hyperactivated

phenotypes of rho1-596 cells are fully suppressed in the rho1-596

rho2D double mutant [22]. Importantly, in absence of Rho2, the

true role of Rho1 as an alternative positive regulator of this MAPK

cascade becomes evident by the increased VIC phenotype and the

decreased basal Pmk1 phosphorylation observed in rho1-596 rho2D
cells as compared to the rho2D mutant.

The fact that Pmk1 activity is still detected in Rho2-less cells in

response to oxidative or cell wall stress [14] led us to hypothesize

that Rho1 might positively regulate the CIP in addition to Rho2

under these conditions. We found that, contrary to rho1-596 or

rho2D cells, Pmk1 activation induced by the cell wall stressor

Caspofungin became strongly limited in rho1-596 rho2D double

mutant. Therefore, in fission yeast both Rho1 and Rho2 GTPases

are general upstream activators of the CIP in response to cell wall

damage. However, Rho1 plays a role in cell wall construction and

maintenance which is different from its function as a member of

the Pmk1 cascade. This is proved by the increased growth
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Figure 2. Rho1 is involved in Pmk1 activation in response to cell wall stress. Strains MI200 (pmk1-HA6H, WT), LS201 (rho1-596), MI700
(rho2D), and LS202 (rho1-596 rho2D) were grown in YES medium to mid log-phase, and treated with (A) 0.6 M KCl, (B) 1 mM H2O2, or (C) 1 mg/ml
Caspofungin. At different times Pmk1-HA6H was purified and both activated and total Pmk1 were detected by immunoblotting with anti-phospho-
p42/44 and anti-HA antibodies, respectively. (D) Rho1 and Pmk1 play additive roles in cell survival during cell wall stress. Strains MI200 (WT), MI700
(rho2D), GB3 (pck2D), GB29 (rho2D pck2D), LS201 (rho1-596), LS202 (rho1-596 rho2D), LS203 (rho1-596 pck2D), MI102 (pmk1D) and LS209 (rho1-596
pmk1D) were grown in YES medium, and 104, 103, 102 and 10 cells were spotted onto YES plates supplemented with increased concentrations of
Caspofungin. The plates were incubated for 4 days at 28uC before being photographed.
doi:10.1371/journal.pone.0088020.g002
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Figure 3. Pck1 is a positive regulator of the cell integrity MAPK pathway. (A) Strains MI200 (WT), MI700 (rho2D), GB35 (pck1D), LS206 (rho2D
pck1D pmk1-HA6H), LS202 (rho1-596 rho2D pmk1-HA6H), and LS208 (rho1-596 rho2D pck1D pmk1-HA6H) were grown in YES medium to mid log-phase.
Pmk1-HA6H was purified and both activated and total Pmk1 were detected by immunoblotting with anti-phospho-p42/44 and anti-HA antibodies,
respectively. (B) VIC assays for strains MI200 (WT), MI700 (rho2D), LS201 (rho1-596), GB35 (pck1D), LS202 (rho1-596 rho2D), LS203 (rho1-596 pck2D), LS206
(rho2D pck1D), and LS208 (rho1-596 rho2D pck1D). After growth in YES medium, 104, 103 or 102 cells were spotted onto YES plates supplemented with
0.5 mg/ml FK506 plus 0.1 or 0.2 M MgCl2, and incubated for 3 days at 28uC before being photographed. (C) Strains MI200 (WT), GB3 (pck2D), GB29 (rho2D
pck2D), and GB35 (pck1D) were separately transformed with pREP3X-rho1+(G15V) plasmid and grown for 18 h in the presence (+B1) or absence (2B1) of
thiamine. Pmk1-HA6H was purified and the activated and total Pmk1 was detected as indicated above. (D) Strains MI200 (Control), MI700 (rho2D), GB3
(pck2D), and LS202 (Rho1-596 rho2D) were separately transformed with pREP3X-pck1+ plasmid, grown for 24 h with or without thiamine, and both total
and activated Pmk1 were detected as above. (E) Strains MI200 (WT), MI700 (rho2D), and GB3 (pck2D) transformed with pREP3X-pck1+ plasmid were
grown in minimal medium, and 104, 103, 102 or 101 cells were spotted onto EMM2 medium with or without 5 mg/ml thiamine in the presence/absence of
0.5 mg/ml FK506 plus 0.2 M MgCl2 (VIC). The plates were incubated for 3 days at 28uC before being photographed. (F) Strains LS210 (mkh1-13myc; lanes 1
and 2, negative controls), LS211 (nmt41:HA-pck1 mkh1-13myc; lanes 3 and 4), and LS212 (nmt41:Ha-pck1 mkh1-13myc pck2D; lanes 5 and 6) were grown
in EMM2 medium in the absence of thiamine for 24 h, and left untreated (uneven lanes), or supplemented with 1 mg/ml Caspofungin for 1 hour (even
lanes). Cell extracts were immunoprecipitated (IP) with anti-Ha antibody (12CA5) and the immunocomplexes adsorbed with protein A-Sepharose. The
complexes obtained were resolved by SDS-PAGE, and hybridized separately with anti-Ha and anti-myc antibodies.
doi:10.1371/journal.pone.0088020.g003
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Figure 4. Pck1 participates in Pmk1 activation in response to specific cell wall stresses. (A) Strains MI200 (WT), GB35 (pck1D), and MI700
(rho2D); (B) MI700 (rho2D), GB3 (pck2D), GB29 (rho2D pck2D), and LS206 (rho2D pck1D); and (C) MI700 (rho2D), LS202 (rho1-596 rho2D), LS206 (rho2D
pck1D), and LS208 (rho1-596 rho2D pck1D), were grown in YES medium to mid log-phase and treated with 1 mg/ml Caspofungin. At different times
Pmk1-HA6H was purified and both activated and total Pmk1 were detected by immunoblotting with anti-phospho-p42/44 and anti-HA antibodies,
respectively. (D) Strains described above were grown in YES medium, and 104, 103, 102 and 10 cells were spotted onto YES plates supplemented with
increased concentrations of Caspofungin. The plates were incubated for 4 days at 28uC before being photographed.
doi:10.1371/journal.pone.0088020.g004
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sensitivity of rho1-596 pmk1D cells to Caspofungin as compared

with corresponding single mutant counterparts. Such observation

is consistent with the previous demonstration that Rho1 can

directly regulate the biosynthesis of (1,3) b-D-glucan and also

indirectly through Pck2 and Pck1 [15]. On the other hand, our

findings additionally suggest that Rho1/Rho2 independent

pathways are responsible for Pmk1 activation in response to

hydrogen peroxide stress. This situation is similar to recent reports

showing that Pmk1 activation in the absence of glucose is

transduced to the CIP in a Rho1/Rho2 independent fashion

[29], and highlights the complex functional architecture for the

upstream elements participating in this signaling pathway.

Nevertheless, since the rho1-596 allele is not a complete lack-of-

function mutant, the possibility that residual Rho1 activity in rho1-

596 rho2D cells might preferentially limit Pmk1 activation in

response to some stimuli (oxidative stress, glucose absence) and not

to others (cell wall stress) can not be entirely ruled out. Recently,

Mtl2 and Wsc1, two plasma membrane-associated cell wall

sensors, have been shown to act by turning on Rho1 activity

[30]. However, Pmk1 signalling remained functional in mlt2D and

wsc1D mutants subjected to osmotic and cell wall stresses,

suggesting that they act independently of the CIP [30]. Thus,

the upstream regulatory network of the cell integrity MAPK

pathway in fission yeast is clearly more intricate than in budding

yeast, where RHO1 is the only GTPase involved in signal

transduction to PKC1 kinase, the sole PKC-type protein present in

this organism [16,31].

The role of Pck1 in the maintenance of cell wall integrity has

not yet been clearly defined. It is well known that Pck1 and Pck2

share overlapping roles in the maintenance of cell viability and

partially complement each other, with mutants lacking both

kinases showing synthetic lethality [15]. Pck2 is the target for Rho1

and Rho2 during the biosynthesis of the two the main cell wall

polymers in fission yeast, (1,3) b-D-glucan and a-glucan [15], and

also the premier upstream activator of the Pmk1 MAPK module

[14]. On the other hand, Pck1 is also targeted by Rho1 to regulate

the biosynthesis of (1,3) b-D-glucan, with no apparent role in a-

glucan synthesis [15], and it was considered to be either unrelated

or a negative regulator of Pmk1 activity [13,14]. Contrariwise,

several evidences obtained in this work strongly suggest that Pck1

actually regulates Pmk1 activity in a positive fashion. First, Pmk1

hyperactivation elicited by overexpression of a Rho1 hyperactive

allele results partially suppressed in a pck1D background. Second,

ectopic expression of pck1+ induces a moderate increase in Pmk1

phosphorylation; and third, deletion of pck1+ in rho1-596 rho2D
cells decreases basal Pmk1 phosphorylation and eliminates the

remaining Pmk1 activation in response to cell wall stress.

Altogether, these findings support that Pck1 participates in the

regulation of Pmk1 activity during growth and in response to cell

wall stress.

In agreement with previous work [13] we were unable to detect

in exponentially growing cultures an in vivo interaction between

Pck1 and Mkh1, which is the sole MAPKKK component of the

CIP. Intriguingly, we confirmed the existence of a Pck1-Mkh1

association in pck2D cells treated with Caspofungin, but not in

control cells expressing wild type levels of Pck2. The simplest

explanation for these observations is that, whereas Pck2 is the

main activator of Mkh1 under vegetative growth and in most

environmental contexts, the Pck1-Mhk1 in vivo association is

strongly limited during growth and restricted to very few situations

(i.e. cell wall damage). This prediction is in agreement with the

modest increase in Pmk1 phosphorylation and lack of lethality

observed upon pck1+ overexpression as compared to that induced

by either pck2+ or rho2+ [21]. However, although limited, the role

of Pck1 as a positive reinforce of the cell integrity pathway is

biologically relevant since Pmk1 activity becomes partially

abrogated in pck1D cells under the conditions described above.

Hence, the unstable nature of Pck1-Mkh1 association might be the

underlying reason for the impossibility to detect in vivo interaction

under conditions where Pck1 actually regulates the MAPK

cascade and in the presence of Pck2.

Another important question raised in this work refers to the

epistatic relationship between Rho1 and Pck1 during the

regulation of the CIP. The fact that Pck1 is an in vivo target of

Rho1 and that Pmk1 hyperactivation induced by Rho1 overex-

pression is partially suppressed in pck1D cells, suggests that Pck1

activity might be solely mediated by this GTPase. On the contrary,

the complete blockage of Pmk1 activity/activation in rho1-596

rho2D pck1D triple mutant cells as compared to what happens in

rho1-596 rho2D cells points to the existence of additional elements

regulating Pck1 activity in a Rho1-independent fashion. This is in

agreement with our observation that the growth sensitive

phenotype of rho1-596 rho2D cells in the presence of Caspofungin

was enhanced by simultaneous deletion of pck1+. Although none of

the above possibilities can be completely excluded, it appears likely

that the low GTPase activity in rho1-596 rho2D cells might be

sufficient to promote Pck1-dependent Pmk1 activation to a certain

degree. In this context, the role of Pck1 as a Rho1 target during

signaling to the CIP becomes evident in the absence of the kinase.

In summary, based on this work and previous studies, we propose

that Rho1 and Pck1 are bona fide functional members of the cell

integrity MAPK pathway in fission yeast in addition to Rho2 and

Pck2 (Figure 5). Rho1 and Rho2 support Pmk1 basal activity

during vegetative growth, primarily via Pck2, whereas the

contribution of Pck1 is then small. Under cell wall perturbations

Rho1 activates the MAPK cascade through either Pck2 or Pck1, in

addition to the major activating stimulus provided via Rho2-Pck2.

This model emphasizes the branched nature of the upstream

signal network that regulates the CIP and attempts to establish

functional relationships among the various members involved in

such intricate signaling pathway.

Figure 5. In fission yeast, Rho1 GTPase and PKC ortholog Pck1
are upstream activators of the cell integrity MAPK pathway in
addition to Rho2 and Pck2 under specific situations. Sizes of
protein names and line arrows intend to show the relative significance
of each component of the cascade during signaling to the MAPK
module in unstressed growing cells and in cell wall and osmotic
stressed cells (please see text for details).
doi:10.1371/journal.pone.0088020.g005
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