Table 1. The result of multiple regression: |r| = MI*b1+Z*B.
Window size of local Moran’s I (W) | ||||||||||
3×3 | 9×9 | 15×15 | 21×21 | 27×27 | 33×33 | 39×39 | 45×45 | 51×51 | 57×57 | |
b1 | 0.764 | 0.125 | 0.245 | 0.318 | 0.395 | 0.474 | 0.543 | 0.608 | 0.679 | 0.757 |
se | 1.421 | 0.342 | 0.205 | 0.158 | 0.136 | 0.125 | 0.122 | 0.125 | 0.135 | 0.151 |
t | 0.538 | 0.365 | 1.199 | 2.014 | 2.907 | 3.778 | 4.443 | 4.851 | 5.044 | 5.028 |
p | 0.591 | 0.716 | 0.231 | 0.044 | 0.004 | 1.64E-04 | 9.54E-06 | 1.36E-06 | 5.13E-07 | 5.55E-07 |
AIC | −5661.9 | −5661.4 | −5659.8 | −5659.7 | −5662.2 | −5666.2 | −5670.2 | −5672.9 | −5673.8* | −5673.1 |
The lowest AIC value.
r: topographical correlation (Pearson’s correlation of the voxel weights of the two simulated patterns; MI: global Moran’s I; b1: coefficient of multiple regression of avgMI; Z: random effects dummy variables for 300 volume-pairs; B: coefficient for random effects; se: standard error of b1; AIC: Akaike Information Criteria for the whole model fit.