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Abstract
We reconstruct the physiological parameters that control an avian vocal organ during birdsong
production using recorded song. The procedure involves fitting the time dependent parameters of
an avian vocal organ model. Computationally, the model is implemented as a dynamical system
ruling the behavior of the oscillating labia that modulate the air flow during sound production,
together with the equations describing the dynamics of pressure fluctuations in the vocal tract. We
tested our procedure for Zebra finch song with, simultaneously recorded physiological parameters:
air sac pressure and the electromyographic activity of the left and right ventral syringeal muscles.
A comparison of the reconstructed instructions with measured physiological parameters during
song shows a high degree of correlation. Integrating the model with reconstructed parameters
leads to the synthesis of highly realistic songs.

I. INTRODUCTION
Songbirds, like humans, use learned signals to communicate. These songs are acquired from
tutors during a specific time window through a process of vocal imitation. Song starts as a
series of highly variable vocalizations and gradually develops into a stereotyped and
individualized version of the species’ song [1]. These parallels to human speech learning
have made birdsong a suitable animal model for the study of learned vocal behavior. In this
model system a major focus of study has been the neural control of song learning and motor
production. Yet, behavior emerges from the interaction between the nervous system,
morphological structures, and the environment [2], and a thorough understanding therefore
must include the interplay between central mechanisms of motor control and the peripheral
systems. These interactions are particularly important in birdsong, where neural instructions
drive a highly nonlinear physical system.

An interesting example is the song of the Zebra finch (Taeniopygia guttata), probably the
most widely studied songbird species. The typical vocalizations of Zebra finches include
spectrally rich sounds of low fundamental frequency, high frequency spectrally poor notes,
as well as noisy components. Whereas details of central neural control mechanisms have
been explored, [3,4] we still lack a fully operational model that allows us to advance from
neural architecture to song. Seen at the level of the peripheral effector organs, the neural
instructions ultimately drive the vocal organ into a regime where the labia oscillate,
modulating the airflow so that sound is produced. It has been proposed that many of the
acoustic features of the vocalizations found in this species are determined by the bifurcations
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that lead from quiet to oscillatory labial dynamics as physiological parameters are changed
[5,6].

In previous work it has been shown that canaries can produce a large repertoire of sounds by
controlling air sac pressure and the activity of ventral muscles in the syrinx, which is the
avian phonating device [7]. The model explored in [7] was designed to produce mostly tonal
sounds, and was adequate for synthesizing canary song. In fact, juvenile canaries imitated
tutor syllables synthesized with this model [8]. Further tests of these simplified vocal models
were presented in [9]. Time dependent parameters proportional to muscle activities and air
sac pressure recordings were used to drive the models in order to synthesize recognizable
songs of another species with tonal sound characteristics, the northern cardinal (Cardinalis
cardinalis). Other studies suggest that a hierarchy of description of vocal control is
plausible, where a few physiological instructions are enough to code several acoustic
features. In [10], for instance, a model of the Zebra finch vocal organ is presented, in which
parameters determining acoustic features of vocalizations are related to physiological motor
gestures.

Here we present a physical model designed to synthesize Zebra finch song, with its broad
range of spectral characteristics of song syllables. It includes a model for the sound source
dynamics (labial oscillations), as well as a model of the upper vocal tract. It assumes
simplifications that allow reduction of the number of physiologically inspired parameters
needed to synthesize song. The systematic study of the dynamics presented by the model
allows us to reconstruct, from a song, the time dependent parameters that are expected to
drive the vocal organ during song. We test the underlying hypothesis of our model with
measured physiological parameters from a singing bird.

II. MODEL
Many descriptions of voiced sound production are based on seminal work by Titze [11].
Originally proposed as a model to account for the motion of the vocal folds in humans, the
description of flow induced oscillations in opposite labia is also adequate for birdsong
production. Goller and Larsen [12] showed that phonation is initiated in the songbird syrinx
when two soft tissue masses, the medial and lateral labia, are pushed into the bronchial
lumen. Direct observation showed that sound production is always accompanied by
vibratory motions of both labia, indicating that these vibrations may be the sound source.

The model assumes that for sufficiently high values of airflow, the labia start to oscillate
with a wavelike motion. In order to describe this wave, it is assumed that two basic modes
are active: a lateral displacement of the tissues, and a flappinglike motion resulting in an
out-of-phase oscillation of the top and bottom portion of the tissue. If x is the medial
position of a labium, its dynamics will be ruled by [5]

(1)

where the first term in the second equation is the restitution force in the labium, proposed to
be nonlinear [k(x) = k + knl x2], the second term accounts for the dissipation, and the last
term for the interlabial pressure (with pav standing for the average pressure between the
labia). In order to express this force in terms of the dynamical variables, a kinematic
description of these modes is necessary.

The half separation between the lower and upper edges of the labia (a1 and a2) are written as
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(2)

where a01, a02 are the half separations at the resting state, and τ stands for the time it takes
the wave propagating along the labium to go through half the labial vertical size. Now the
average pressure between the labia pav can be written as

(3)

These equations allow computation of the labial dynamics as a function of time. The
parameter ps stands for the subsyringeal pressure, and the strength of the linear part of the
restitution force k is assumed to be proportional to the activity of the ventral syringeal
muscles [10]. Different dynamical regimes are found for different regions in parameter
space, as illustrated in Fig. 1.

Sound is generated as the airflow is modulated by the labial oscillations. The pressure
fluctuations are filtered by the trachea and the oropharyngeal-esophageal cavity (OEC) [13].
Previous work represented the passive tract as a series of tubes [7,14]. Recently [13] a more
realistic model was presented which included the oropharyngeal cavity, and it was shown
that this cavity was dynamically adjusted in order to emphasize the time dependent
fundamental frequency [15,16].

We treat the filter as a dynamical system. We approximate the tract by a tube, followed by a
Helmholtz resonator representing the OEC, and a beak (see Fig. 2). The pressure at the input
of the tract Pi is written as

(4)

where α is proportional to the mean velocity of the flow, T is the time for the sound wave to
reach the end of the tube and return, while r stands for the reflection coefficient. The
transmitted pressure fluctuation, Pt (t) = (1 − r)Pi (t − 0.5T), forces the air at the glottis,
which is approximated by the neck of the Helmholtz resonator representing the OEC.
Assuming that the air in the glottis can be treated as a mass element mg, whose motion is
quantified by a displacement variable z, we can write

(5)

where s stands for the stiffness of the system, R represents the dissipation coefficient of the
resonator, and S stands for the glottal surface. If L′ is the effective length of the neck of the
Helmholtz resonator, the fluid in it has a total mass mg = ρ0SL′. The stiffness of the
resonator can be computed as follows. Consider the resonator’s neck to be fitted by a piston.
Pushing this piston a distance z, the volume in the cavity is changed ΔV = −Sz, leading to a
condensation Δρ/ρ = −ΔV/V = Sz/V. In this way, the pressure increase is

(6)
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Computing the force of the piston as f = pS, we get the stiffness s = ρ0c2S2/V. In acoustics it
is customary to inspect the dynamics of an equivalent electrical circuit. A resonator
connected through a narrow neck is modeled as an impedance Lg in series with a capacitor
Ch and a resistance Rh representing the losses in the cavity. The analog of the driving
pressure Pt is a voltage, and the equivalent of the flow is the current (i) through the
impedance. If the Helmholtz resonator is opened to the atmosphere (through the beak), the
analog circuit is represented by an additional impedance (Lb) in series with a resistance (Rb),
both elements in parallel to the capacitance [13]. This represents the driving of a mass
element in the beak by the pressure of the resonator, with an impedance accounting for the
inertia of this mass, and a resistance for the radiation losses. The equivalent circuit is
illustrated in Fig. 2, and the equations ruling the dynamics of its variables read

(7)

where the relationships between the components of the electric analog and the acoustic
elements are displayed in Table I [17], with Ω1 defined as the time derivative of i1, where ρ0
is the air density and c is the sound velocity. The length and area of the element a are la and
Sa, respectively, which in our model stand for the beak (b) or the glottis (g). The volume of
the cavity h is Vh, which stands for the volume of the Helmholtz resonator representing the
OEC. The gape parameter is G. It accounts for the constriction made by the beak and the
tongue combined, in such a way that the inertive term for the beak is  [13]. Using the
equivalence given in Table I and the physiological values estimated in [13] we derived
plausible values for the parameters used in our numerical simulations (see captions of Fig.
3).

Approximating the trachea by a closed-open tube, we can explain the ubiquitous presence of
frequencies at about f1 = 2.5 kHz and f2 = 7.5 kHz in Zebra finch vocalizations. Remarkably,
in the final output, the first resonance of the OEC is the dominant frequency. The value of
this frequency strongly depends on the volume of the OEC and the glottal area. In Fig. 3 we
display four panels with the spectra characterizing the filters, corresponding to different
combinations of the parameters. The frequency between f1 and f2 in each panel of the figure
corresponds to the fundamental frequency of the Helmholtz resonator. Notice that for a
given value of the OEC size, increasing the glottal impedance (i.e., decreasing the glottal
aperture) decreases its characteristic frequency [Figs. 3(a) and 3(b)]. On the other hand, for a
given value of glottal impedance, increasing the OEC volume decreases its associated
frequency. Also, the value of Rh controls the amplitude of the Helmholtz resonator’s
fundamental frequency.

III. NORMAL FORMS
The song of the Zebra finch presents a wide range of spectral properties, from tonal to
spectrally rich and even noisy sounds. It was reported that these spectral features are not
independent of the fundamental frequency of the generated sound: low frequency sounds
were systematically found to be spectrally richer than high frequency ones [6,10]. In these
references, the spectral content of a segment of song was quantified via the Spectral Content
Index (SCI), defined to reflect how spectral energy is distributed related to the energy
content of the fundamental frequency, being its absolute minimum (SCI = 1) for pure tones.
Numerical simulations of synthetic sounds generated by the model described in the previous
section indicated that the fundamental frequency and spectral content of a synthesized sound
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were correlated. Moreover, the correlation was characteristic of the bifurcation leading to
the oscillatory onset of the labia [5,10]. The need to minimize the number of parameters
involved in our description suggests the reduction of the model to a normal form [18,19]: a
minimal mathematical description of the dynamics capable of presenting the same
bifurcation diagram as the original model [6,10,20].

We derived a standard equation which presents the bifurcation diagram of the physical
model. It is a two dimensional dynamical system presenting a cusp and a Hopf bifurcation,
obtained as a third order expansion around a Takens Bogdanov linear singularity [18], which
reads

(8)

Comparing the bifurcation diagram of the model defined by Eqs. (1) (see Fig. 1) with that of
the normal form defined by Eqs. (8) (see Fig. 4), we find that a proper mapping of air sac
pressure and tension into the unfolding parameters allows us to recover the qualitative
dynamics. In [6] the relationship was explicitly computed; the basic operations involved are
(1) a translation of the values of (ps,k) where a Takens Bogdanov bifurcation takes place in
the physical model to (α,β) = (0,0), (2) a multiplicative scaling, and (3) a rotation of π.

In Fig. 1 we find, in region 1 of the parameter space, only one fixed point, which is an
attractor. In region 2 we find that the fixed point is unstable against a limit cycle. Regions 3,
4, and 5, which are bounded by the saddle node curves that converge to the cusp bifurcation
point, have three fixed points. From region 5 to region 2, a saddle node in a limit cycle
bifurcation (SNILC) takes place, giving rise to oscillations that are born with zero
frequency. From region 1 to region 2, the fixed point undergoes a Hopf bifurcation at which
an oscillation is born with well defined frequency and zero amplitude. This is the dynamical
scenario that we find both in Eqs. (1) and in Eqs. (8). Figures 4 and 1 display equivalent
dynamics in regions labeled with equal numbers.

Two acoustically important features that we seek to fit with our models are the spectral
richness and the fundamental frequency of the vocalizations. In Fig. 5 we display two
panels, where the basic bifurcations of the normal form (saddle node curves and Hopf
bifurcation curve) are displayed together with isolevel lines of the spectral content index
(SCI), at the top panel, and the fundamental frequency (bottom). The isolevel curves were
numerically computed, for a given value of γ. In the top panel, the isolevel curves decrease
from c to d (notice that close to the saddle node in the limit cycle bifurcation line, the SCI is
large). The same argument explains why the fundamental frequencies increase from e to f; at
the saddle node in limit cycle bifurcation, oscillations are born with zero frequency.

Parameter γ in the normal form stands for a time scale factor. In order to choose its value,
we selected 28 segments of songs, from 28 different syllables from three different birds,
which covered a wide range of frequencies. For each sound segment, we computed the
fundamental frequency and the SCI. Then, for different values of γ we synthesized sounds
for a large grid in the (α,β) space (100 times 100), spanning the ranges of fundamental
frequencies and SCI found in the experimental data. Then, for each of the 28 experimental
sound segments, we found the simulation segment of the closest fundamental frequency and
computed the difference between the values of the SCI.

Adding the accumulated squared difference between experimental and synthetic SCI values
over the 28 segments, we computed a number quantifying the goodness of the best fit for the
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given value of γ. [χ2(γ) = Σ (ISCI,exp − ISCI,syn)2, where ISCI,exp, ISCI,syn are the values of the
SCI for the experimental and synthetic data segments, respectively. The sum extends over
the 28 synthesized segments.]

In Fig. 6 we display these numbers for different values of γ. For γ = 24 000 we found a
minimum of χ2(γ). The same calculation was performed with the sound segments of each
bird separately, and for the four birds the same value of optimal γ was obtained. This
optimal γ value is used in the simulations carried out in the rest of this work. The signal
generated by the normal form was filtered before carrying out the computations described
above. The filter consisted of a tube of 3.5 cm, followed by a Helmholtz resonator with a
fundamental frequency of 4 kHz, which was the average value of the intermediate frequency
between the first resonances of the tube for the 28 experimental sound segments.

IV. RECONSTRUCTION OF THE PARAMETERS FROM DATA
Once a time constant is chosen for the normal form, it is possible to reconstruct the α and β
parameters that are needed in order to synthesize sound segments of given acoustic features
(fundamental frequency and spectral content SCI). Carrying out this procedure for
sequential sound segments, we are able to estimate the time dependent values of the
physiological parameters used during the production of the song. If then we are able to
measure the physiological parameters, we can compare the estimations with the
measurements and use it as a test for our model.

Just as it was done in order to select the best value of γ, a song (sampled at 44.1 kHz) was
decomposed into a sequence of sound segments. These segments were approximately 20 ms
long, which was sufficiently short to avoid large variation in the physiological instructions
but long enough to compute the observable quantities used in our description. For each
segment, two acoustic features were computed: the SCI and fundamental frequency. A
search in the parameter space (α,β) was performed until values were found which allow us
to synthesize sounds with the most similar acoustic features plausible for the available
parameter range. To do so, the fundamental frequency was computed for a grid in the (α,β)
space and the set of pairs (α,β) producing synthetic sounds that match the fundamental
frequency of the experimental sound was chosen (i.e., the set corresponding to the
isofundamental frequency curve matching the experimental value). Within that set, the value
of (α,β) that minimizes the distance in the SCI value was chosen.

The reconstructed values of α and β were used to estimate the values of air sac pressure and
activity of the ventral syringeal muscle (vS), through a change of sign [6] and multiplication
by a scaling factor. The reconstructed α and β are displayed in the top and bottom parts of
Fig. 7. Each of the displayed disjoint fragments consists of a continuous time trace. In order
to generate each of them, first we reconstructed a discrete set of points, one each 20 ms,
following the procedure described in the previous paragraph. Since physiological parameters
are expected to change smoothly in time, we generated a continuous time trace from the
discrete set of reconstructed points for each of the disjoint fragments. In order to obtain the
continuous time trace displayed in the figure, we performed an integration of the system,

(9)

where f (t) stands either for α or β, taking a constant value in each 20 ms time interval used
for the reconstruction. The chosen time scale was τ = 150 ms. The absent gestures between
the reconstructed fragments correspond to either silences that occur during an expiration, or
to isolated sound segments lasting less than 20 ms.

Perl et al. Page 6

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In Fig. 7 we also display the direct measurements of muscle activity and air sac pressure. In
order to record the activity of the ventral syringeal muscle (vS), wire electrodes were
implanted. The electrodes were prepared from insulated stainless-steel wire and secured to
the tissue with a microdrop of tissue adhesive. Before closing the air sac, the wires were led
out and routed to the back [21]. Simultaneously, the air sac pressure was measured by
inserting a cannula into a thoracic air sac, with the other end connected to a pressure
transducer [22]. The recorded values are displayed in Fig. 7, right above their respective
reconstructed estimations. Although the activity of the left and right vS was recorded, we
only display the activity of the right side since it is more highly correlated with the
reconstructed activity.

In order to quantify the agreement between the reconstructed time series and the recorded
physiological parameters we computed the correlation C(exp,syn) between the experimental
and synthetic signals, which gave C = 0.72 for the muscle activity and C = 0.91 for the air
sac pressure. Notice that only the activity of the right vS is illustrated. Although the
activities in both right and left muscles are correlated, our reconstructed β presented a higher
correlation with the activity displayed in Fig. 7[C(β,vSrigth) = 0.72 > C(β,vSleft) = 0.56,
where vSrigth and vSleft are the activities of the right and left vS muscles]. In this work we
aim at reconstructing the parameters that would control one sound source to produce
utterances of given spectral features. The high correlation between β and the activity of the
right vS is likely to be due to the fact that the right side is involved both during the
production of high frequency sounds (for which only the right side is used), as well as
during the production of low frequency sounds (where both sides can be active). It is worth
noting that the left side is never active alone [23].

We went beyond the reconstruction of the parameters. We repeated the procedure described
above and used the reconstructed parameters to drive the model of the syrinx in order to
generate a synthetic song. Both the original, recorded song and the synthesis carried out are
displayed in Fig. 8, and the sound files are available as Supplemental Material [24].

These simulations were performed with white noise added to the parameter representing the
activity of the ventral muscle. This improved the timbric quality of the synthesized song.
The rationale behind this inclusion can be traced to Fig. 7. In order to obtain a measure of
muscle activity from EMG data, the envelope of the rectified signal is reconstructed. This is
usually performed by solving Eq. (9), with f (t) the rectified time trace [25,26]. Choosing τ
as the larger real such that the envelope and the frequency are positively correlated for all
the syllables (in this case, τ = 150 ms), we end up with an envelope that still has some small
amplitude, rapid fluctuations. These are modeled as noise in the parameter β of our model.

V. DISCUSSION
It is not obvious that a complex behavior like birdsong can be reconstructed using a
reductionist approach typical in physics. We model the physical song production system by
means of a normal form representing the dynamics of the sound source, a tube, and a box.
This simple model allows realistic synthesis of a complex song as it is found in Zebra
finches. Moreover, the successful reconstruction of the parameters and the realistic
synthesized song generated with reconstructed parameters suggests that for this species’
song, the chosen number of parameters is sensible [14,22].

It is interesting that the reconstruction of the parameters in our model lead to a nontrivial
time dependence of the parameter corresponding to the air sac pressure, with fluctuations
that can be clearly identified in the recorded data. This suggests that air sac pressure does
play a role beyond turning the oscillations on. According to the model, the pressure is an
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important parameter associated to frequency control, particularly for low frequency sounds.
Dynamically, this is the result of operating close to a saddle node bifurcation in a limit
cycle. Our results are consistent with this interpretation, although no direct evidence has yet
been provided for this mechanism in oscine birds. On the other hand, in suboscine birds, an
example of frequency modulation due to the air sac pressure has been reported [27].

The best correlation between the reconstructed parameter representing syringeal tension and
the experimental data was obtained with the activity of the right vS. The correlation
coefficient for vS were generally lower than the values obtained for the air sac pressure.
Perhaps this is not surprising, because the details of all acoustic features are most likely
controlled by the synergistic action of syringeal muscles and not only the vS. Yet, the high
value of the correlation indicates that even with this simplification, the vS is largely
responsible for controlling the tension of the oscillating labia, as has been hypothesized in
the construction of our model [23]. Other phenomena, such as source-source interaction
[28], or the interaction between the sound source and the upper vocal tract [20,29,30], were
not included in our model. This simplification proved not to be an obstacle for successful
reconstruction of parameters. This indicates that these effects might not play a major role in
determining the main acoustic features of Zebra finch song. Because we fit sounds using the
dynamics of just one source, it is reasonable that we obtained the best fit with the muscle
instruction of the side which is active during most of the song (the right side in this species)
[23].

Beyond time dependent physiological parameters, we included some important anatomical
features in our description, allowing us to improve the timbric quality of the synthesized
sound. We included a tract and a Helmholtz resonator representing the trachea and the OEC,
respectively. This allowed us to account for the ubiquitous dominant frequencies at 2.5 and
7.5 kHz found in Zebra finch song, as well as an additional spectral peak frequency between
these two, often at around 4 kHz.

In summary, we found that it is possible to build a simple model that can reproduce the large
variation in spectral features of Zebra finch song. The model, which is capable of
synthesizing realistic song, contains both parameters that were assumed to be fixed for the
species and computed from the data of many birds, as well as others which were assumed to
change depending on the syntax used by the individual. These were successfully compared
with physiological measurements, building confidence in the general applicability of the
model and its underlying hypotheses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
(Color online). Bifurcation diagram and phase portraits of the physical model. The
parameters are the subsyringeal pressure ps and the linear restitution coefficient k, assumed
to be proportional to the activity of the syringeal muscles vS. If the parameters’ values are in
region 1, only one attracting fixed point exists. In region 2 the system displays oscillations
while in regions 3, 4, and 5 the system presents three fixed points, coexisting with a limit
cycle for region 4. Between regions 5 and 2, a saddle node in a limit cycle bifurcation takes
place, giving rise to oscillations born with infinite period (arrow A in the diagram). The
dashed black line indicates a homoclinic bifurcation, the dotted blue line a saddle-node
bifurcation, and the full red line a Hopf bifurcation. Figure adapted from [5].
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FIG. 2.
The model includes a valve, whose dynamics is described in Fig. 1, and the passive tract
illustrated in this figure, which filters the sound generated at the valve. The model of the
vocal tract consists of a tube representing the trachea, a cavity which stands for the
oropharyngeal cavity (approximated in this work by a Helmholtz resonator), the glottis, and
a beak. The circuit illustrated at the bottom of the figure is the electric analog of the filter,
describing the dynamics of a Helmholtz resonator in parallel with those that represent the
aperture to the atmosphere (beak).
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FIG. 3.
(Color online). In our model, the tract consists of a tube of 3.5 cm (closed at one end,
opened at the other), followed by a Helmholtz resonator. In a 10-kHz range, the tube
displays two resonances at f1 = 2.5 kHz and f2 = 7.5 kHz. The third frequency in each panel
corresponds to the fundamental frequency of the Helmholtz resonator, dependent on the

cavity parameters. For panel (a)  and ; for panel (b)

 and ; for panel (c)  and

; for panel (d)  and . Physically, increasing the
cavity decreases the resonating frequency. Other parameters were fixed in the four panels:

. The parameters have units of their acoustic
equivalent element.
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FIG. 4.
(Color online). Bifurcation diagram of the standard system described by Eqs. (8). The
dynamical regimes that are necessary in our description are present in these equations. The
numbers in the diagram represent the different dynamical regimes and are equivalent to the
ones described in Fig. 1. The dashed black line indicates a homoclinic bifurcation, the dotted
blue line a saddle-node bifurcation, and the full red line a Hopf bifurcation. The parameters
in this problem are α and β, the unfolding parameters of a cubic Takens Bogdanov
bifurcation. Increasing ps (k) in the diagram of Fig. 1 corresponds to decreasing α (β) in this
figure.
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FIG. 5.
(Color online). The level curves for SCI (a) and fundamental frequency (b) for the
dynamical system defined by Eqs. (8). For each pair of values of α and β, numerical
integrations of the dynamical model were computed, and the SCI and fundamental
frequency of the solutions were found. In (a) we display a discrete set of curves. Along each
one, the SCI is constant. The same is shown in (b), but the computed acoustic feature
extracted from the numerical simulation is its fundamental frequency. The arrows from c to
d in (a), and from e to f in (b) denote the directions along which the numerical values
increase. In (a), the SCI goes from SCI = 3.5 to SCI = 1.1 for the curves displayed. In (b),
the fundamental frequencies of the isofundamental frequency curves take values from 750 to
1900 Hz. The full lines in (a) and (b) represent the bifurcation diagram of the normal form.
The thicker full lines stand for the lines where the SNILC bifurcations take place.
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FIG. 6.
(Color online). Adjusting the parameter γ in Eqs. (8). Twenty-eight sound segments, taken
from the songs of four birds, were selected. The SCI and the fundamental frequency of each
one were computed. Then, for a given value of γ, we searched for the best approximation of
the original set of sounds, minimizing the distance between the SCI indexes and
fundamental frequencies of synthetic and original sounds. For each γ, the smallest distance
(measured as a χ2) is plotted. In our simulations, we fixed the time constant as γ = 24 000
since it is for this value that Zebra finch song acoustic features are best approximated by
those of the synthetic sounds of our model. For each γ, and each sound segment, a matrix of
100 × 100 parameter values of α and β were explored.
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FIG. 7.
(Color online). Reconstruction of the parameters from the recorded song and comparison
with measured data. In (a) we display the measured activity of the ventral muscle (top) and
the reconstructed values of the parameter |β| (bottom). In (b) we show the measured air sac
pressure (top) and the reconstructed values of |α| (bottom).
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FIG. 8.
Recorded and synthetic song. After reconstructing the parameters as indicated in the text,
those were used to drive the model in order to synthesize a song. The panels display a
sonogram of the recorded sound (top) and synthetic sound (bottom). See Supplemental
Material for the audio files [24].
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TABLE I

Acoustic and electrical analogs.

Impedance Inertance

L

Resistance Resistance

R

Capacitance Compliance

C
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