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Summary
This paper reports an analysis that aims to quantify the effect of fingolimod, an oral treatment for
relapsing remitting multiple sclerosis (MS), on disability progression. The standard approach
utilizes survival analysis methods, which may be problematic for MS studies that assess disability
at only a few time points and include as a cardinal feature both relapses and remissions. Instead, a
Markov transition model, originally developed in the framework of longitudinal data, is fit, and its
special probabilistic properties are used to estimate survival curves for time to disability
progression. The transition approach models the whole disability process and uses all available
transition data for inference, while survival methods concentrate on a single event of interest and
use only time to event data. This paper compares the transition model approach to survival
analysis methods, and discusses the differences in the interpretations of the estimated parameters.
It applies both models to data obtained from two phase 3 clinical trials and finds that both yield
positive effects for the new treatment compared to placebo, and provide similar estimates for the
probability of disability progression over time. The transition model enables calculation of
covariate-specific transition matrices that describe the short-term effect of treatment and other
covariates on the disability process.
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1. Introduction
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
whose clinical neurological symptoms include weakness, gait disturbance, ataxia, sensory
loss, visual symptoms, and sphincter dysfunction. The Relapsing Remitting (RR) form of
MS is characterized by periods (usually days or weeks) of neurologic symptoms (relapses)
after which partial or complete resolution takes place, followed by periods (usually months
or years) of clinical stability (remissions). Many treatments for MS aim at reducing the
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frequency of relapses, which is the main endpoint of many clinical trials. However, an
equally important endpoint is the accumulation of disability. The latter is measured by the
ordinal expanded disability status scale (EDSS) that ranges from 0, a normal neurological
examination, to 10, death due to MS (Kurtzke, 1983). A key endpoint in many clinical trials
is sustained or confirmed progression defined as an increase of at least one point in EDSS
that lasts for at least 3 months.

In 2010, the U.S. Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) approved the first oral treatment for RRMS patients. The approval was
based on the findings of two multi-national parallel-group phase 3 trials evaluating oral
fingolimod, a sphingosine-1-phosphate receptor modulator that prevents the egress of
lymphocytes from lymph nodes (Kappos et al., 2010; Cohen et al., 2010). These studies
included a total of approximately 2500 patients randomized to placebo, fingolimod 0.5mg
once daily, fingolimod 1.25mg once daily or interferon beta-1a 30µg (Avonex), a standard
approved once weekly treatment administered by intramuscular route. The protocols
required patients to visit the clinic every 3 months for one year in the active-controlled study
(Cohen et al., 2010) and for two years in the placebo-controlled study (Kappos et al., 2010)
for clinical evaluation and independent EDSS rating by a blinded assessor. In addition, all
relapses occurring during the study period were confirmed and recorded. The studies
concluded that fingolimod significantly reduces the annual relapse rate (the primary
endpoint) in RRMS patients compared with either placebo or intramuscular interferon
beta-1a.

The original analysis of fingolimod effect on EDSS (a secondary endpoint) followed the
standard approach and utilized survival analysis methods, which may be inefficient for
several reasons. First, confirmed progression requires a period of 3 months, which shortens
the effective study periods of 12 and 24 months to 9 and 21 months, respectively. This,
together with an often observed slow progression rate of MS, results in a small number of
events over a period of two years (the duration of clinical studies in RRMS), potentially
leading to low power for assessing the treatment effect. Second, the EDSS is an ordinal
measure for which an increase of one point has different meanings at different EDSS levels.
An increase from EDSS of 1 to EDSS of 2, for instance, does not carry the same clinical
implication as an increase from EDSS 4 to 5. This requires stratified analysis which further
reduces the effective sample size. Third, not all patients experience sustained progression
before the end of study and by considering such individuals as censored important
information is lost (Mandel et al., 2007). Fourth, although quantifying disability progression
(i.e. worsening of the patient status) is of primary interest to patients and clinical
community, some functional disability might be reversible, especially in a relapsing-
remitting MS population. Studying the improvement in patient disability status may also
provide some hints on the effect of a medicinal treatment. This possibility for EDSS to
worsen (increase) and improve (decrease) complicates the definition of the endpoint and the
corresponding analysis, but is disregarded in standard survival methods.

These difficulties, together with the study design of collecting EDSS data at pre-specified
time points (3 month intervals) rather than continuously, suggest the use of methods tailored
for longitudinal data analysis. In particular, methods based on transition models (Diggle et
al., 2004) are natural alternatives for survival methods that circumvent the above-mentioned
difficulties through modeling of the repeated categorical EDSS values, that is, the transition
data from one state to another. In the context of MS, this approach was suggested and
applied by several authors (Albert, 1994; Mandel et al., 2007; Gauthier et al., 2007; Mandel
and Betensky, 2008). Essentially, the models adopt the Markov assumption of conditional
independence that enables relatively simple estimation and interpretation of model
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parameters, and flexible ways to derive clinically relevant quantities, such as the distribution
function of time to a certain EDSS level.

The aims of the current paper are to demonstrate the utility of transition models in analyzing
disease progression in RRMS patients, and to assess the effect of fingolimod on EDSS using
this method. Specifically, we aim to: (I) Assess how strongly fingolimod influence the
probability to switch from one disability state to higher states, as compared to Avonex or
placebo. (II) Assess the influence of baseline characteristics on the probabilities of
transitioning from one state to another, which may help in identifying patients more likely to
stay in low disability state vs. those more prone to disability progression. (III) Compare the
results and clinical value of EDSS analysis performed using transition models and Cox
proportional hazard models.

2. Methods
2.1 Modeling the EDSS Process

EDSS data were collected every 3 months for up to two years on n independent subjects. Let
Yit, denote the ordinal outcome (EDSS category) for patient i (i = 1,…, n) at time t (t = 0, …,
Ti), where Yit can take one of the values {1, …, J}, and let xi, denote an m-dimensional
baseline covariate vector measured for patient i. We use the modeling approach of Mandel et
al. (2007), and Mandel and Betensky (2008) assuming a first order Markov dependency
structure, that is, given all the history, the response Yit depends on the vector of covariates xi
and on the response in the previous visit, Yit−1, only. The following partial proportional odds
model (PPOM) is used:

(1)

where αkJ = ∞. The EDSS value at the previous visit (lag-EDSS) is introduced as a
covariate whose effect depends on both j and k, so that the model contains one intercept per
pair of [EDSS, lag-EDSS]. However, the model maintains the proportional odds property for
the m covariates, so that the total number of parameters is J(J − 1) + m. Note that the model
is defined on the cumulative probability, hence enforces αk1 ≤ αk2 ≤ … ≤ αkJ; the transition
probability from state k to state j is given by:

(2)

for k, j = 1, …, J, where we define αk0 = −∞. If no covariates are used, the model imposes
no restrictions on the transition probabilities from one state to another. Later on we will
restrict some of the αkJ values in order to reduce the number of parameters.

The model can be easily extended to handle time-dependent covariates or time-varying
effects (Mandel et al., 2007). Such extensions are useful for long-term studies and less so for
short ones where the covariates and their effects are not expected to change much.

A different path of extension is suitable when important subject-specific covariates are
either not known or not measured. In such cases, the fixed-effects model (1) explains only
part of the true heterogeneity in the data and can be extended by incorporating random
effects into the transition matrix. Specifically, we assume that a latent random variable ui
having a density g satisfies the same proportional odds property as the observed covariates,
so that
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(3)

where yis is the EDSS of subject i as measured in her s’th visit. Conditionally on the
covariate vector xi and the EDSS at baseline, Yi0, the likelihood of subject i with observed
data (yi0, …, yiTi; xi) is given by

(4)

As discussed by Aitkin and Alfó (1998), the latent variable u is shared by all subject i’th
responses Yit, including the baseline state, and therefore is dependent of Yi0. Moreover, as
can be seen in (4), the random effect distribution may depend on the covariate vector xi as
well. Following Aitkin and Alfó (1998), we consider the natural location shift model

 with ζ0,1 = 0 and g0 being the standard normal

distribution, that is, , where zi ~ N(0, 1). Using this in (3), the model
reduces to

(5)

Equation (5) clarifies an identification problem with the model, which was noted by Mandel
and Betensky (2008); β itself is not identifiable, while β + γση is. However, the following
two important observations enable effective inference: First, for a given zi, the linear

predictor  is identifiable, and this suffices for valid inference
regarding transition probabilities and progression, as discussed below. Second, when
assignment of treatments to patients is independent of the random effect u, given the vector
of covariates and the initial EDSS value, then the effect of treatment is identifiable and can
be estimated and tested consistently. The latter independence requirement clearly holds in
double blinded clinical trials. Thus, in our phase 3 data, testing for treatment effect and
predicting time to sustained progression are both possible.

We will fit the model

(6)

where the treatment effect and the baseline EDSS value are contained in the vector xi.
Possible extensions of model (6) include dependence between the random effects and some
of the covariates. Perhaps the most interesting extension in our framework takes the form

 with ui = (u1i, …, uJi)T ~ N(0, Σ), in
which a separate random effect is associated with each state of the process. Fitting such a
model requires long sequences of EDSS in order to estimate Σ reasonably well. Since our
data contain sequences of at most 9 observations, we consider an extension of model (6)
with σ replaced by σk:

(7)

In this model, heterogeneity of the population depends on the current state, where the larger

, the larger the heterogeneity.
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Maximum likelihood estimates and standard errors for parameters in Models (1), (6) and
their extensions can be calculated using SAS procedure nlmixed; a sample code is given in
Web Appendix A.

2.2 Prediction
Estimated transition probabilities for a typical patient can be obtained from equation (2) by
using the patient’s covariates and the parameter estimates from model (1). Moreover,
properties of Markov chains enable calculations of various derived quantities, and
especially, the probability of transition from one state to another and the probability of
progression over time. For example, let pkj(x) = P(Yit = j | x, Yit−1 = k) be the transition
probability from state k to state j for a typical patient with a covariate vector x, as described
in (2), and let P(x) = (pkj(x)) be the corresponding transition matrix whose k’th row contains
the transitions from state k to the other states, then the probability of a patient who is now in
state k to be in state j after 3 × s months is given by the (k, j) entry of Ps(x), the s’th power of
P(x). Such matrix manipulations and operations can be easily performed using programming
languages such as R or Matlab.

Similarly, for model (6), let pkj(x, u) = P(Yit = j | x, Yit−1 = k, u) be the transition probability
from state k to state j for a patient with a covariate vector x and a latent random effect u, and
let P(x, u) = (pkj(x, u)) be the corresponding transition matrix, then the s-step transition
probabilities are given by ∫ Ps(x, u)σ−1ϕ(u/σ), where ϕ is the standard normal density and
the integration is conducted for each term of the matrix separately (for more details see
Mandel and Betensky, 2008).

To estimate the probability of confirmed progression before time t, the technique described
above can be used with the transition matrix being replaced by a ‘working matrix’. The
working matrix is characterized by having an absorbing ‘artificial’ state to which the patient
enters in case of a sustained progression at two consecutive visits. Construction of the
working transition matrix is done by defining a new absorbing state, J + 1, and shifting all
the probability between states larger than k to state J +1. For example, for k = 4 and J = 6,
we define a new state ‘7’ and let p57 = p55 + p56, p67 = p65 + p66, and p55 = p56 = p65 = p66 =
0. It is easy to see that the entry in the 4’th row and 7’th column of the s’th power of this
working matrix (or its integral if the random effects model is used) is the probability of a
confirmed progression occurring at 3 × s months or before.

2.3 Choice of the Transition Probability Matrix
The large numbers of patients and transitions contained in the phase 3 fingolimod data
enable a much more flexible modeling of the EDSS than in previous studies (Mandel et al.,
2007; Gauthier et al., 2007; Mandel and Betensky, 2008). In particular, these earlier studies
combined EDSS values of 3 and higher in one group and focused on transitions between the
EDSS categories 0–1.5, 2–2.5 and 3+, whereas the current study has the opportunity to
model and examine the transition rate between a larger range of EDSS values. We therefore
partitioned the 3+ group to four groups: 3–3.5, 4–4.5, 5–5.5, and 6+. From knowledge on the
natural history of MS and the definition of the EDSS categories, it was expected that
transitions between distant states would be rare. Estimating the extremes of transition from
states 1 to (4, 5, 6), or 2 to (5, 6), or 3 to (6), and vice versa, would therefore be challenging
and in case of convergence, the estimates would probably be associated with relative large
uncertainty. Therefore, it was decided to fix these estimates at 0 in the regression models
and to use a 5-band transition matrix (18 constants instead of 30), that is, a 6 × 6 matrix with
pkj = 0 for |k − j| > 2.
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It is worth noting that considering this simplified transition matrix is equivalent to removing
extreme transitions in a data-driven manner. This approach could be criticized as the “0
entries” under-estimate the corresponding transition rates, which are rare but exist
nonetheless. However, the bias is very small and it is of the order of the proportion of these
“rare” events.

2.4 Model Evaluation
The transition model approach is very flexible and enables estimation of many derived
quantities of interest as discussed briefly at the end of Section 2.1 and in more detail by
Mandel et al. (2007). However, it involves matrix operations and numerical integration
(when incorporating random effects), which complicates the calculation of standard errors
and the construction of confidence intervals. Further, as quite strong parametric assumptions
underpin the model, goodness-of-fit methods are essential to evaluate the quality of the
inferences drawn from it.

Considering for simplicity model (1) and assuming the estimators satisfy the standard large

sample property , it is possible to derive confidence
intervals for the probability of progression over time or any other derived quantity of
interest, h(α, β), by:

1. Sampling B (e.g. B = 10,000) realizations (α1, β1), …, (αB, βB) from the N ((α̂n, β̂n),
Σ̂/n) distribution.

2. Deriving h(α1, β1), …, h(αB, βB), the quantities of interest.

3. Calculating the variance of the realized h values and constructing normal based
confidence intervals, or extracting the corresponding 2.5th and 97.5th percentiles.

For example, h(α, β) = h(α, β; x) could be either the 3-month transition probability from
state k to state j, the 2-year transition probability, or the probability of confirmed progression
before time t. All these quantities are functions of the estimated parameter vector (α̂n, β̂n), as
discussed at the end of Section 2.2.

Note that α̂n, β̂n and Σ̂ are obtained in the maximization of the likelihood and are included in
the output of the SAS procedure. The other steps are quite easy to perform in any language
that supports matrix manipulations.

For goodness-of-fit purposes, it is natural to compare the ability of the model to predict the
observed data. For this, the expected proportion of transitions from each type is compared
graphically to the observed probabilities. This is done by comparing the one- and two-year
transition proportions to the estimated probabilities based on the 3-month data. To describe
uncertainty around observed probabilities of transition, binomial confidence intervals are
also calculated.

3. Data
As aforementioned, we analyze data from two multi-center, randomized, double-blind phase
3 clinical trials. The TRANSFORMS trial (Cohen, 2010) was a 12-month study that
compared two doses of fingolimod (p.o. 0.5mg and 1.25mg / day) to Avonex (i.m. 30µg /
week), an approved MS therapy. The FREEDOMS trial (Kappos, 2010) was a 24-month
study that compared the same two fingolimod doses to placebo. The entry criteria in both
studies were similar: male and female patients, between 18 and 55 years of age, with active
RRMS. The analysis includes all patients with EDSS data at two or more time points.
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Baseline characteristics were similar in both studies and in all arms: average age of 37 years
(SD=9), male to female ratio of 1:2, an average baseline EDSS of 2.3 (SD=1.4), and on
average 2.2 (SD=1.2) documented relapses within two years prior to study start. In both
studies, EDSS scores were determined every 3 months, but actual visits were allowed to
deviate slightly from the schedule for logistical purposes. In order to address the problem of
informative deviations from scheduled visit times, we removed EDSS data collected at a
date deviating from schedule by more than 30 days.

Section B of the web appendix presents the distribution of baseline EDSS in the different
treatment groups, which is a key measure of disease severity at the start of study. Table 1
presents the 3-month transition data for the four arms. Each row corresponds to transitions
from one EDSS state to another and shows the percentages of transitions to the different
states. In addition, the total number of transitions from each state is given (column entitled
‘No. row’). The table provides a crude estimate of the transition matrix for each arm without
accounting for covariate effects. To estimate the 5-band matrix, we assign zeroes to cells as
described in Section 2.3.

Most patients have low EDSS values (i.e., EDSS<3) at baseline (see web appendix B) and as
a consequence, the number of transitions from low EDSS levels are much larger than from
higher levels (Table 1). Conclusions from an analysis ignoring these facts may be biased
toward the lower scale of the EDSS. The high rate of staying in the same state (the main
diagonals in Table 1) reflects the relatively slow progression of disease in RRMS patients.
Also of note is the small number of 3-month transitions from low to high EDSS values, and
vice versa, that supports the choice of the 5-band matrix. Such extreme transitions comprise
less than 0.5% of our data.

4. Analysis
4.1 Transition Models

Table 1 gives crude estimates of the 3-month transition matrices for the different treatments.
The worsening direction (entries above the diagonal) looks less severe in the treatment
groups compared to placebo. For example, the crude probability of a patient having EDSS in
the range 2–2.5 to experience worsening in the next three months is 0.103 in the placebo
group and 0.096 in the fingolimod 0.5mg group (sum of entries to the right of the diagonal),
while the corresponding probabilities of improvement are 0.125 and 0.177 (entries to the left
of the diagonal). These transition matrices can be used to construct crude prediction curves
for time to worsening or confirmed progression over time (see Section 2.2); Figure 1
presents such curves for patients with different baseline EDSS levels. The Figure shows that
placebo patients tend to progress faster compared to patients treated with either fingolimod
or Avonex. When comparing baseline EDSS levels, patients in the 0–1.5 group progress
faster compared to the other EDSS groups; the group with the longest time to progression is
4–4.5.

To account for observed and unobserved risk factors, we fit partial proportional odds models
(1), (6),and (7) assuming the 5-band transition matrix described in Section 2.3. The
following covariates were included in the model: Treatment group (4 groups), EDSS at
baseline (5 categories), volume of brain T2 lesions at baseline (binary, cutoff=median), and
duration of MS disease since first symptoms (binary, cutoff=5 years). Covariates that were
excluded were: sex, which was considered as non relevant by the clinical advisors prior to
the analysis; and age, which was found strongly correlated with MS duration. The number of
relapses in the past two years and the number of Gadolinium-enhanced lesions at baseline
were excluded in the model-building stage, using the Akaike information criterion.
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Because of the small number of transitions from state 6 and the difficulty of estimating the
corresponding constants α6j reliably, we excluded these parameters from the analysis; hence,
only transitions to state 6 were calculated, but not transitions from 6 to other states. The
estimated odds ratios (OR=exp(β)) of the fixed and random effects models are given in
Figure 2 accompanied by the respective 95% confidence intervals. The fixed and random
effects models show similar results, with the random effects estimates being slightly larger
and having larger confidence intervals. The most important covariate in both models is
baseline EDSS with a large negative effect, suggesting that patients with a more severe
disease at baseline have a stronger tendency to deteriorate (conditional on the current EDSS
level).

The results for baseline EDSS are seemingly inconsistent with those of Figure 1. However,
care should be taken when interpreting the effect of baseline EDSS: The transition model
controls for current disability status (effect given by the constants αkJ), hence the β
coefficients should be interpreted conditionally on the current status, while Figure 1 shows
the marginal effect of baseline EDSS. Thus, the transition model compares patients having
the same current EDSS level and hence the higher the baseline EDSS the larger the
probability of progression, whereas the crude model (Figure 1) shows the marginal effect of
baseline EDSS which depends on the clinical definition of the disability scale. That is,
Figure 1 indicates that subjects are more likely to increase by one point on the EDSS scale if
they start at 0–1.5 than at a higher level. Figure 2 indicates that subjects are more likely to
increase by one point if they start at a high level of EDSS versus a low level, given their
current level.

Fingolimod treatment, short disease duration and low lesion volume are significantly
associated with slower rate of progression. Both fingolimod arms show a significant positive
effect, with the 1.2mg arm estimated to be better than the 0.5mg arm (though the difference
is not statistically significant). The Avonex effect is positive, but smaller than the
fingolimod effects and not significantly different from placebo.

Comparing the two random effects models (6) and (7), we found the results of the latter to

be quite similar to the fixed effects model. The variance terms,  are estimated to be 1.74,
0.92, 1.92, 0.05, and 2.24, for k = 1, …, 5, indicating a moderate difference in heterogeneity
for different disability status.

To examine the sensitivity of the results to the choice of the 5-band transition matrix, we fit
the fixed effects model (1) without any restriction on the transition matrix. The results are
very similar to those obtained for the 5-band model; see Section C of the web-appendix.

The estimated transition models are used to generate subject-specific transition matrices that
provide estimates for the probability of moving from one EDSS value to another in 3-month
intervals. Transition matrices for subjects having the same vector of covariates are similar
under the fixed-effects model, but are different under the mixed-effects model because
different individuals have different values of the latent variable u. In Section D of the web
appendix, we present transition matrices obtained by models (1) and (6) for several sets of
covariates and for different values of u: u = 0 representing the ‘median’ transition matrix,
and u = ± 1, representing matrices of ‘one standard deviation’ from the median. The
matrices illustrate the effect of covariates on transition probabilities, either to higher or
lower states, e.g., fingolimod 0.5mg reduces the rate of three month progression compared
to placebo. They also show the large effect of baseline EDSS, where the probability of
returning to the baseline level is always large. This is expected for our short term followup
data as MS is a relapsing remitting disease that progresses slowly, and recruitment criterions
required patients to have active disease and did not allow to enroll patients during a relapse.
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Finally, the three representative matrices calculated under the random effects model describe
the heterogeneity of the disease. If the data contained long EDSS sequences, then the
subject-specific random effect variables ui could be estimated reliably, providing subject-
specific transition matrices. However, for short EDSS data, this is not practical (see Mandel
and Betensky, 2008).

The model results are then used to calculate the probability of sustained progression as a
function of time. For given baseline EDSS level, lesion volume and disease duration, a
transition matrix is calculated using the estimated parameters, and probability curves are
obtained by selecting the appropriate cell from powers of a modified transition matrix as
discussed in Section 2.2. These estimated curves are comparable to covariate-specific
probabilities obtained in survival regression analysis. The right panel of Figure 3 compares
the estimated probabilities of sustained progression for the different arms for patients in the
lowest EDSS group at baseline, having a disease duration <5 years and a lesion volume
<median (this is the most frequent covariate profile in our data). The curves are based on the
random effects model (6) and were calculated by averaging the results of 5000 simulations
from the estimated distribution of the random effects. After 24 months, the model estimates
the average probability of sustained progression for patients treated by fingolimod 0.5mg
and fingolimod 1.25mg to be slightly less than 0.2 compared to placebo patients whose
probability is estimated to be 0.25. Theoretically, such graphs can be used to calculate the
probability for any time point and to calculate and compare the median time to progression
for the different treatment arms. However, estimation of long-term progression is not
recommended as the long-term performance of the model cannot be assessed from the data.

Goodness of fit of models (1) and (6) is examined as described at the end of Section 2.4.
Figure 1 in web appendix E displays the expected proportions of one- and two-year
transitions between pairs of states and compares them to the observed proportions. The
overall performance is satisfactory, though the figure shows some disagreement, especially
for transitions from state 5 to other states. This may be due to differential effects of
covariates in different phases of the disease. As the number of transitions from state 5 is
relatively small, we did not try to fit a model with covariates-lag EDSS interactions, though
this may be an important extension of our model when more data are available.

As model based P-values may be inaccurate when the underlying parametric assumptions do
not hold, we calculated exact p-values using a permutation test (Berger, 2000) by assigning
patients randomly to the four arms, keeping the group sizes fixed, and fitting the fixed
effects model to the generated data. We repeated this process 1000 times and calculated the
percentage of times the estimates of the treatment effects were larger than the one obtained
in the original data. We obtained one sided p-values of 0.023, 0.001 and 0.164 for the
fingolimod 0.5mg, fingolimod 1.25mg, and Avonex arms, respectively, which confirmed
our previous finding (see Figure 2).

4.2 Survival Analysis
We analyzed the data using standard survival analysis methods, similar to the ones
performed in the original phase 3 studies, with the difference being that data from the two
phase 3 studies are now pooled. As in the original studies, the endpoint is time to first
confirmed progression defined as the time to first increase of 1 point in EDSS relative to
baseline (0.5 point for baseline EDSS of 5.5) that lasts for two consecutive visits separated
by at least 3 months. Table 2 presents the Kaplan-Meier survival estimates and the
corresponding standard errors for the confirmed progression time. The survival curve for the
Avonex arm is estimated only up to 12 months as this treatment was included only in the
one-year study. The analysis suggests a significant reduction in the probability of
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progression from 0.24 for confirmed progression over two years in the placebo arm to 0.15–
0.16 in the fingolimod groups.

We also fit a proportional hazard (Cox) model to the data in order to control for covariate
effects. We considered the same covariates as in the transition models, using baseline EDSS
once as a categorical covariate and once as a strata. The results are summarized in Table 3.
The two models (stratified and not) give almost identical results, with both fingolimod arms
significantly reducing the risk of progression. As in the transition models, both short disease
duration and low lesion volume at baseline are protective factors, but not statistically
significant here while they were significant under the transition models. The results for
baseline EDSS differ from those of the transition model because the transition model
controls for current disability status (see the discussion in the previous section regarding the
marginal and conditional effect of baseline EDSS). In fact, the Cox model results are
consistent with Table 1 and Figure 1 that show that patients in the EDSS group 0–1.5 tend to
progress faster compared to patients in the other groups.

The left panel of Figure 3 compared the probability of confirmed progression over time
estimated by the Cox proportional hazard model for the four treatment groups in patients
with low baseline EDSS, disease duration <5 years and lesion volume <median. The results
are very similar to those shown in the right panel, which are based on the transition model.
The two fingolimod arms are hardly distinguished with estimated two-year probability of
progression of about 0.17. The respective estimated probabilities of progression in patients
treated with placebo and Avonex are 0.26 and 0.22, respectively.

5. Discussion
This paper analyzes the effect of fingolimod on clinical disability of RRMS patients using
transition models and compares the results to the more standard survival models. We found
that both fingolimod arms decrease the disability progression rate compared to placebo after
controlling for baseline covariates. This positive effect was found in the fixed and random
effects transition models as well as in the Cox proportional hazard model. The most
important covariate for short-term progression was baseline EDSS. Other important factors
influencing EDSS are short disease duration and low T2 lesion volume at baseline, which
were found to be protective. Avonex showed a smaller positive effect than the fingolimod
arms and the effect was not significantly different from placebo. However, Avonex was only
tested for one year and therefore there were low numbers of transitions (see Table 1). As a
consequence, the estimate of its effect size is most variable.

Estimators obtained by transition models and by survival analysis techniques should show
similar results when the Markov assumption holds (at least approximately) and when data
are complete and comprise long EDSS sequences. However, these requirements are rarely
satisfied. When considering which analysis to conduct, one point to keep in mind is the
different data used by the survival and transition model approaches. Survival analysis is
based on time to first confirmed progression data and the analysis ignores any changes in the
EDSS that are not sustained and cannot account for intermittent missingness, whereas the
transition model estimates the transition rate and does not distinguish between confirmed
and temporary progression. In the current study, the outcomes from the Cox proportional
hazard model and the transition model are highly concurrent as both approaches provide
similar results for the treatment effects. The similarity of the prediction curves constructed
by the two approaches and presented in Figure 3 illustrates this point. As transition models
use the whole EDSS sequence, they are deemed to be more appropriate than survival
methods to analyze longitudinal categorical data, especially when long-term follow-up is
limited and data are subject to intermittent missingness. In addition, such models provide

Mandel et al. Page 10

Biometrics. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



important information about the EDSS process by estimating short term probabilities for
both improvement and deterioration. However, they are based on parametric assumptions
that may fail to hold. Further study is needed in order to compare the methods in terms of
power and sample-size/patient-years under different designs and effect sizes and to identify
scenarios in which the transition model is substantially more powerful.

Three transition models were fit to the data, one fixed effects model and two models with a
random component. The latter models are more general, relax the Markov assumption on the
sequence of EDSS values and can be used to predict patient-specific transition matrices by
predicting the latent variable ui (but see Mandel and Betensky 2008 for the limitation of
prediction in this framework). They are especially attractive for heterogeneous populations,
e.g., MS patients, in which unobserved latent variables may explain part of the
heterogeneity. However, estimation of random effects models involves maximization of a
complicated function, and despite the existence of powerful procedures convergence
problems often arise. We have found that using estimates of a fixed effects model as initial
values for estimation of the random effects model often overcome convergence problems.

It is important to examine the sensitivity of the model to the underlying assumptions. We
therefore extended the transition models in different directions such as including different
sets of covariates, relaxing the proportional odds assumptions, and replacing the first-order
Markov assumption with a second-order model. In all of our models, the findings of a
positive effect of fingolimod on progression remain with only small changes in the size of
the effect. Furthermore, we calculated exact p-values using a robust permutation test that
confirmed our model based finding.

As part of checking the assumptions, a separate model has been fit to each arm. This
resulted in better fit according to a likelihood ratio test, and showed good graphical fit.
However, there are drawbacks for such an approach that limited its use. First, the number of
parameters is much larger as a separate set of coefficients has to be estimated for each arm.
This makes the estimates more variable and the goodness of fit test less reliable. More
important, there is no simple way of comparing treatments as there is no one coefficient
corresponding to treatments in this modeling approach. This is of main concern as
comparison of treatments is the primary goal of clinical trials. One way to compare
treatment groups is by comparing the estimated probabilities of progression after, say, two
years on treatment. However, these probabilities depend on the covariate vector and may
lead to different conclusions for different profiles. In fact, when trying this approach, we
found that for most covariate profiles, fingolimod reduced progression compared to placebo,
but for a few profiles, the probability of progression for the placebo patients was slightly
smaller than that of fingolimod; though the differences were not statistically significant.
More data and further explorations into these treatment-by-covariate interactions would be
required in order to identify and characterize differential effects of the new treatment in
various sub-populations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Probability of confirmed progression as a function of time stratified by treatment arm and
baseline EDSS.
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Figure 2.
Estimates and 95% confidence intervals for the fixed and random effects transition models.
Odds ratio>1 indicates a protective covariate. Mixed1 - results of model (6), Mixed2 -
results for model (7).
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Figure 3.
Probability of confirmed progression over time by treatment arm based on the random
effects transition model (right) and the Cox proportional hazard model (left). Covariates:
EDSS at baseline 0–1.5, disease duration <5 years and lesion volume <median.
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Table 3

Results of proportional hazard models.

Baseline EDSS as a covariate Baseline EDSS as strata

Hazard Ratio 95% CI Hazard Ratio 95% CI

MS duration < 5y 0.855 (0.669, 1.094) 0.856 (0.669, 1.095)

Low T2.vol base 0.910 (0.718, 1.152) 0.911 (0.719, 1.154)

FTY 0.5mg 0.639 (0.470, 0.868) 0.637 (0.469, 0.866)

FTY 1.25mg 0.636 (0.465, 0.870) 0.633 (0.462, 0.866)

Avonex 0.867 (0.587, 1.281) 0.859 (0.787, 1.721)

EDSS.base=[5, 5.5] 1.218 (0.752, 1.974)

EDSS.base=[4, 4.5] 0.636 (0.416, 0.973)

EDSS.base=[3, 3.5] 0.600 (0.422, 0.854)

EDSS.base=[2, 2.5] 0.636 (0.475, 0.852)
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