
Incorporating Network Structure in Integrative Analysis of
Cancer Prognosis Data

Jin Liu1, Jian Huang2, and Shuangge Ma1,*

1Department of Biostatistics, School of Public Health, Yale University
2Departments of Statistics & Actuarial Science, and Biostatistics, University of Iowa

Abstract
In high-throughput cancer genomic studies, markers identified from the analysis of single datasets
may have unsatisfactory properties because of low sample sizes. Integrative analysis pools and
analyzes raw data from multiple studies, and can effectively increase sample size and lead to
improved marker identification results. In this study, we consider the integrative analysis of
multiple high-throughput cancer prognosis studies. In the existing integrative analysis studies, the
interplay among genes, which can be described using the network structure, has not been
effectively accounted for. In network analysis, tightly-connected nodes (genes) are more likely to
have related biological functions and similar regression coefficients. The goal of this study is to
develop an analysis approach that can incorporate the gene network structure in integrative
analysis. To this end, we adopt an AFT (accelerated failure time) model to describe survival. A
weighted least squares approach, which has low computational cost, is adopted for estimation. For
marker selection, we propose a new penalization approach. The proposed penalty is composed of
two parts. The first part is a group MCP penalty, and conducts gene selection. The second part is a
Laplacian penalty, and smoothes the differences of coefficients for tightly-connected genes. A
group coordinate descent approach is developed to compute the proposed estimate. Simulation
study shows satisfactory performance of the proposed approach when there exist moderate to
strong correlations among genes. We analyze three lung cancer prognosis datasets, and
demonstrate that incorporating the network structure can lead to the identification of important
genes and improved prediction performance.
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Introduction
In high-throughput cancer studies, it has been noted that results from the analysis of single
datasets can be unsatisfactory. For example, the identified markers may have low
reproducibility. Multiple factors may contribute to the unsatisfactory performance, including
for example the highly noisy nature of cancer genomic data, technical variations of profiling
techniques and, more importantly, small sample sizes of individual studies. Recent studies
have shown that pooling and analyzing multiple studies may effectively increase sample size
and improve properties of the identified markers [Guerra and Goldsterin 2009; Liu et al.
2012; Ma et al. 2011]. Multi-dataset methods include meta-analysis and integrative analysis
methods. Integrative analysis pools and analyzes raw data from multiple studies and can be
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more informative than meta-analysis, which analyzes multiple studies separately and then
pools summary statistics (lists of identified genes, p-values, effect sizes, etc). In this article,
we analyze cancer prognosis studies with survival outcomes and gene expression
measurements, but note that other types of outcomes and genomic measurements may be
studied in a similar manner.

In the existing integrative analysis studies, it has been assumed that gene effects are
interchangeable. Biomedical studies have suggested that there exists inherent interplay
among genes. For example, genes belonging to the same pathways tend to have similar
biological functions and correlated expressions. Transcription factors and their downstream
regulated target genes can be highly correlated. Since transcription factors can up-regulate
(promote) or down-regulate (suppress) the expressions of their downstream target genes, the
correlations among them can be both positive and negative. Other examples involve tumor
suppressor genes and genes that code enzyme. There are multiple ways of describing the
interplay among genes, one of which is the network structure. In network analysis, a node
represents a gene. Two nodes are connected if the corresponding genes are biologically or
statistically “correlated”. The strength of connection depends on the strength of correlation.
In the analysis of single datasets, network analysis has been conducted. For example, Li and
Li [2008] proposed a network-constrained regularization approach to analyze genomic data.
Huang et al. [2011] proposed a sparse Laplacian shrinkage method for variable selection and
estimation. A two-step sparse boosting approach was developed in Ma et al. [2012].
Bayesian approaches have also been developed [Edwards et al. 2012]. However, to the best
of our knowledge, network-based analysis has not been pursued in the context of integrative
analysis.

In this article, we conduct integrative analysis of multiple cancer prognosis datasets with
gene expression measurements. Our goal is to incorporate the gene network structure in the
selection of cancer-associated genes. To this end, we describe cancer survival using an AFT
(accelerated failure time) model. Compared with alternatives such as the Cox model, the
AFT model has a significantly simpler objective function and hence lower computational
cost, which is especially desirable with high-throughput data. In addition, its regression
coefficients may have more lucid interpretations. For gene selection, we adopt penalization,
which has been extensively used in cancer genomic studies. The proposed penalty is built
upon the MCP (minimax concave penalty) [Zhang 2010], which, in single-dataset analysis,
has been shown to have performance better than or comparable to Lasso, adaptive Lasso,
elastic net, SCAD and others [Huang et al. 2012; Breheny and Huang 2011]. In the
integrative analysis of multiple datasets, the effects of a gene are represented with a vector
of regression coefficients. Thus, a group MCP approach is adopted for gene selection. To
incorporate the network structure, a second, Laplacian penalty is added. The goal of the
Laplacian penalty is to smooth the differences between regression coefficients of tightly-
connected genes. The overall penalty and proposed approach are hence referred to as sparse
group Laplacian shrinkage or SGLS. A group coordinate descent (GCD) algorithm is
developed for implementing the SGLS.

Integrative Analysis of Cancer Prognosis Studies
Data and model settings

Assume that there are M independent studies, and there are nm iid observations in study m(=
1, . . . , M). The total sample size is n = ∑m nm. In study m, denote Tm as the logarithm (or
another known monotone transformation) of the failure time. Denote Xm as the length-p
vector of gene expressions. For simplicity of notation, assume that the same set of genes are
measured in all M studies. For the ith subject, the AFT model assumes that
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(1)

where  is the intercept,  is the length-p vector of regression coefficients, and 
is the error term. When  is subject to right censoring, we observe ( , , ), where

,  is the logarithm of the censoring time, and  is
the event indicator.

When the distribution of  is known, the parametric likelihood function can be easily
constructed. Here we consider the more flexible case where this distribution is unknown. In
the literature, multiple estimation approaches have been developed, including for example
the Buckley-James and rank-based approaches. In this study, we adopt the weighted least
squares estimation approach [Stute 1996], which has the lowest computational cost. This
property is especially desirable with high-throughput data.

Let F̂m be the Kaplan-Meier estimator of the distribution function Fm of Tm. F̂m can be

written as , where  are the jumps in the Kaplan-Meier
estimator and can be expressed as

 are also referred to as the Kaplan-Meier weights. Here  are the order

statistics of , and  are the associated censoring indicators. Similarly, let

 be the associated gene expressions of the ordered . Stute [1996]

proposed the weighted least squares estimator ( , ) that minimizes

(2)

We center  and  using their -weighted means, respectively. Define

Let  and . With the weighted centered
values, the intercept is zero. The weighted least squares objective function can be written as

(3)

Denote  and . Further denote Y =
(Y1′, . . . , YM′)′, X = diag(X1, . . . , XM) and β = (β1′, . . . , βM′)′.
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With M independent studies, consider the overall objective function

. Note that with this objective function, larger datasets have more
contributions. When desirable, normalization by sample size can be applied.

Construction of network adjacency measure
In network analysis, a node corresponds to a gene. The most important characteristic of a
network is perhaps the adjacency measure, which quantifies how closely two nodes are
connected. The adjacency measure is often defined based on the notion of similarity
(between nodes). In this section, we describe several adjacency measures used in our
numerical study. These measures have been motivated by their counterparts in single-dataset
analysis [Zhang and Horvath 2005; Huang et al. 2011]. The main difference between this
study and published ones is that here we conduct the integrative analysis of multiple
independent datasets, and so the similarity measure needs to be computed using multiple
datasets. For the similarity measure between two nodes, the simplest possibility is to use the
absolute value of the Pearson's correlation coefficient. Here the underlying assumption is
that the correlation structures among genes are similar across datasets. Denote r̂jk as the
Pearson's correlation coefficient between gene j and gene k computed using the M datasets.
Other correlation measures such as the Spearman's correlation can also be used. A drawback
of this approach is that it cannot directly accommodate missingness of gene expressions. An
alternative is to use the canonical correlation, which can easily accommodate missingness.
Denote  as the canonical correlation between gene j and gene k computed using the M
datasets.

Consider ajk, which measures the strength of connection between nodes (genes) j and k.
Here we focus on undirected network where ajk = akj for j, k = 1, . . . , p. Based on the
similarity measure defined above, we construct the adjacency matrix, whose (j, k)th element
is ajk, as follows. (N.1) ajk = I{|r̂jk| > r}, where r is the cutoff calculated from the Fisher

transformation [Huang et al. 2011]; (N.2) , where π is the cutoff calculated
from permutation which corresponds to the null that all genes are not associated with cancer

survival; (N.3) , where α > 0 can be determined by the scale-free topology

criterion [Zhang and Horvath 2005] and π is defined in N.2; (N.4) , where α is

defined in N.3; (N.5) , with α and π defined in N.3 and N.2, respectively;

(N.6) ajk = |r̂jk|I{|r̂jk| > r} with r defined in N.1; (N.7)  with π defined in
N.2. Among the above definitions, N.1 and N.2 are unweighted and only measure whether
two nodes are connected or not, whereas the rest are weighted and also measure the strength
of connection. N.1, N.2, N.5, N.6 and N.7 are sparse in that some components may be
exactly zero. N.3 and N.4 are two “soft” adjacency measures [Zhang and Horvath 2005]. N.
5 is the sparse version of N.4. N.6 and N.7 are closely related to N.1 and N.2, respectively,
defined based on similar measures.

With undirected network, there are other ways of defining the similarity measure and so
adjacency matrix. The above options have been motivated by published single-dataset
studies. Undirected network and adjacency matrix may not provide a complete description
of the interplay among genes. We conjecture that it is possible to extend the proposed
approach and accommodate information beyond the above adjacency matrix. Such an
extension is nontrivial and not pursued in this article.
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Sparse Group Laplacian Shrinkage

Denote  as the jth component of βm. Then  represents the effects of
gene j across M datasets. Consider the penalized estimate

where

(4)

Here λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters, ρ is the MCP with tuning
parameter λ1 and regularization parameter γ, ∥ · ∥ is the L2 norm, and Mj is the “size” of βj.
When the M datasets have matched gene sets, Mj ≡ M. We keep Mj so that the formulation
can directly accommodate partially matched gene sets. In numerical study, when gene j is

not measured in dataset k, we take the convention . d ≡ maxj Mj.

Denote . We express the nonnegative quadratic form
in the second penalty term in (4) using a positive semi-definite matrix L, which satisfies

(5)

Let A = (ajk, 1 ≤ j, k ≤ p) and G = diag(g1, . . . , gp), where . In a network
where ajk is the weight of edge (j, k), gj is the degree of vertex j. We then have
∑1≤j<k≤p ajk(θj – θk)2 = θ′(G – A)θ . Thus, L = G – A.

With the matrix notation, the SGLS penalty (4) can be written as

(6)

Here the Laplacian matrix is not normalized, meaning that the weight gj is not standardized
to 1. In problems where predictors should be treated without preference with respect to
network connectivity, we can first normalize the Laplacian such that L* = Ip – A* with A* =
G–1/2AG–1/2 and use the following penalty function

A normalized Laplacian L* can be viewed as a special case of the general L. In this study,
we focus on formulation (6). In network analysis of gene expression data, it has been
suggested that genes with higher connectivity tend to have more important biological
implications [Zhang and Horvath 2005; Ma et al. 2012]. It is therefore sensible to consider
the unnormalized Laplacian.
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Rationale
Formulation (4) has been motivated by the following considerations. In our analysis, genes
are the functional units for selection. Thus the first penalty imposes p individual penalties,
with one for each gene. For gene j, its effects in the M datasets are represented by a group of
regression coefficients, where the group size is Mj. Thus, the penalty is imposed on the
group norm of regression coefficients. For gene selection, we adopt the MCP defined as

(7)

where for any a ∈ R, a+ = aI{a ≥ 0}. The rationale of the MCP has been well discussed in
Zhang [2010], Huang et al. [2012], Liu et al. [2012] and others, and will not be repeated
here. The second penalty accommodates the network structure. In particular, tightly-
connected genes (with large ajks) are expected to have closely related biological functions
and similar regression coefficients [Zhang and Horvath 2005]. We impose penalty on the
difference between ∥βj∥ and ∥βk∥ to promote smoothness of estimated regression
coefficients of connected genes. We note that there exist other ways of promoting
smoothness. We have experimented with a few other formulations and found that the
proposed one has the best performance.

In single-dataset analysis, adopting the sum of two penalties (with the first for selection, and
the second to accommodate finer structure) has been proposed. Examples may include the
fused Lasso, elastic net, sparse group Lasso [Friedman et al. 2010], and the approach in
Huang et al. [2011]. The main difference between SGLS and these approaches is that it is
developed for the integrative analysis of multiple datasets. In addition, censored survival
data is analyzed, which can be more complicated than simple continuous data in the
published studies. Another difference is that fused Lasso only smoothes between adjacent
covariates. In this study, there is no spatial structure, and SGLS smoothes over all pairs of
genes. The network adjacency measure is accounted for, which also differs from fused Lasso
and elastic net.

Computation
Prior to analysis, for each dataset, we standardize each gene expression to have marginal
mean zero and variance one. For computation, we consider a group coordinate descent
(GCD) algorithm. This algorithm optimizes the objective function with respect to one gene
at a time, and iteratively cycles through all genes. The overall cycling is repeated multiple
times until convergence.

Denote Xj as the submatrix of X that corresponds to βj. Consider the overall objective
function

(8)

For j = 1, . . . , p, given the group parameter vectors βk (k ≠ j) fixed at their current estimates

, we seek to minimize L̃(β, λ, γ) with respect to the jth group parameter βj. Here only
terms involving βj in L̃(β, λ, γ) matter. This is equivalent to minimizing
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(9)

where C is a term free of βj, and a, b and c are defined as follows.

• For ,

(10)

where r is the working residual evaluated at the current estimate (to be defined below).

• For ,

while b remains the same as under the previous situation.

It can be shown that the minimizer of R(βj) in (9) is

(11)

This explicit solution facilitates implementation of the GCD algorithm described below.

Let  be the initial value. A convenient choice for the initial value is
zero (component wise). With fixed γ, λ1 and λ2, the GCD algorithm proceeds as follows:

1.
Set s = 0. Initialize the vector of residuals .

2. For j = 1, . . . , p,

a. Calculate a, b and c as in expression (9);

b.
Update  using expression (11);

c.
Update ;

3. Update s ← s + 1;

4. Repeat Steps 2 and 3 until convergence.

Convergence of this algorithm follows from Theorem 4.1(c) of Tseng [2001]. It is achieved
with all simulated data and the lung cancer data. The objective function can be rewritten as

 where
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and . Since f0 is regular in the sense of Tseng [2001] and

 is separable (group-wise), the GCD solution converges to a coordinatewise
minimum point of f, which is also a stationary point. Research code written in R is available
at http://works.bepress.com/shuangge/43/.

Tuning parameter selection
The SGLS approach involves three tuning parameters: λ1, λ2 and γ. In our numerical study,
we search for optimal tunings using V-fold cross validation (V = 5). More specifically, we
apply two-dimensional search for λ1 and λ2, with λ2 ∈ (0, 0.001, 0.01, 0.1, 1, 10). λ1 and λ2
control the shrinkage and smoothness of group predictors, respectively. Let λ1max be the
smallest λ1 for which all regression coefficients are shrunk to zero. From the update step 2a,

. For preset ∊(= 0.01), we are able to generate a sequence of
λ1 values from λ1max to ∊λ1max. For a fixed number of steps, we can have a sequence that is
equal-spaced in logarithm, since the difference of summarized prediction error in V-fold
cross-validation is small at large λ1. It is expected that λ1 cannot go down to very small
values which correspond to regions not locally convex. The cross validation criteria over
non-locally convex regions may not be monotone. Generally speaking, smaller values of γ
are better at retaining the unbiasedness of the MCP penalty for large coefficients, but they
also have the risk of creating objective functions with a nonconvexity problem that are
difficult to optimize and yield solutions that are discontinuous with respect to λ. It is
therefore advisable to choose a γ value that is big enough to avoid this problem but not too
big. In our numerical study, we consider values including 1.8, 3, 6 and 10, as in published
studies. In practice, to reduce computational cost, one may fix the value of γ (for example, γ
= 6 as suggested by published studies). However searching over λ1 and λ2 has to be
conducted. As the GCD algorithm only involves simple calculations, cross validation is
computationally affordable. For example, the analysis of one simulated dataset (details
described below), including tuning parameter selection and estimation, takes less than ten
minutes on a desktop PC.

Numerical Study
Simulation

We conduct simulation to better gauge performance of the proposed approach. We simulate
three datasets, each with 100 subjects. For each subject, we simulate the expressions of 500
genes. The gene expressions are jointly normally distributed, with marginal means equal to
zero and variances equal to one. The 500 genes belong to 100 clusters, with 5 genes per
cluster. We consider the following correlation scenarios. Scenario 1: genes in different
clusters have independent expressions, and expressions of genes i and j within the same
cluster have correlation coefficient ρ|i–j|; Scenario 2: expressions of genes i and j have
correlation coefficient ρ|i–j|; Scenario 3: genes in different clusters have independent
expressions, and expressions of genes i and j within the same cluster have correlation
coefficient ρ. Scenarios 1 and 2 correspond to the auto-regressive correlation, whereas
scenario 3 corresponds to the compound symmetric correlation. Under scenarios 1 and 3,
important and noisy genes are independent, whereas under scenario 2, they are correlated.

Liu et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://works.bepress.com/shuangge/43/


We consider three levels of correlation with ρ = 0.1, 0.5, 0.9, standing for weak, moderate
and strong correlation, respectively. Among the 500 genes, the first 20 (4 clusters) have
nonzero regression coefficients. The nonzero coefficients are randomly generated from the
uniform distribution on [0.25, 0.75]. The log event times are generated from the AFT
models with zero intercept and N(0, 1) random errors. The log censoring times are
independently generated from normal distributions. The average censoring rate is about
50%.

We first explore the solution paths – estimates as a function of tuning parameters. We
simulate one set of data under scenario 1 with ρ = 0.5. Multiple parameters are involved in
SGLS. Here, we fix γ = 3 and λ2 = 0.1, and show the estimates as a function of λ1 under
adjacency measure N.6 in Figure 1. For comparison, we also consider the approach with λ2
= 0. Under this approach, there is no smoothness over connected genes, and gene selection is
achieved using the group MCP (gMCP) approach [Ma et al. 2011]. Figure 1 shows that the
SGLS solution paths are similar to those of other penalization methods. It may be able to
select more true positives than gMCP. It shows the merit of adding the Laplacian penalty
and smoothing over connected genes. More definitive results are generated below using
large scale simulations.

In our simulation, we are interested in evaluating gene identification accuracy, which can be
measured using the number of true positives and number of false positives. In addition,
prediction performance is also of interest. For this purpose, for each set of simulated data,
we simulate a set of independent testing data under the same settings. We conduct cross
validation (for tuning parameter selection) and estimation using the training set only, and
then make prediction for subjects in the testing set and compute the PMSE (prediction mean
squared error). Summary statistics (means and standard deviations) based on 200 replicates
are shown in Table 1.

Table 1 suggests that the SGLS approach can effectively identify the majority or all of the
true positives. When the correlations are weak, the gMCP approach can also identify the
majority of true positives. However, its performance can be significantly less unsatisfactory
when the correlations are strong. When looking at the false positives, the differences
between gMCP and SGLS and between different adjacency measures are more dramatic.
Here we observe that the performance of different approaches is data-dependent. For
example, under scenario 1 with ρ = 0.9, gMCP on average identifies 7.5 false positives,
SGLS with N.3 identifies 21.1, and SGLS with N.7 identifies 2.5. Under scenario 3 with ρ =
0.9, gMCP on average identifies 10.6 false positives, SGLS with N.3 identifies 18.8, and
SGLS with N.5 identifies 1.5. Table 1 suggests that there is no dominating approach. In
practice, researchers may need to experiment with multiple approaches. This finding has
also been made in single-dataset studies. When the correlation is moderate to strong, the
prediction performance of SGLS is better than that of gMCP, although the difference is not
significant. We have experimented with a few other simulation settings and reached similar
conclusions.

Analysis of lung cancer prognosis studies
Lung cancer is the leading cause of death from cancer for both men and women in the
United States and in most other parts of the world. Non-small-cell lung cancer (NSCLC) is
the most common cause of lung cancer death, accounting for up to 85% of such deaths.
Gene profiling studies have been extensively conducted on lung cancer, searching for
markers associated with prognosis. Xie et al. [2011] described three lung cancer prognosis
studies. The UM (University of Michigan Cancer Center) study has a total of 175 patients,
among whom 102 died during follow-up. The median follow-up is 53 months. The HLM
(Moffitt Cancer Center) study has a total of 79 subjects, among whom 60 died during
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follow-up. The median follow-up is 39 months. The CAN/DF (Dana-Farber Cancer
Institute) study has a total of 82 patients, among whom 35 died during follow-up. The
median follow-up is 51 months. We refer to Xie et al. [2011] and references therein for more
details on study design, subjects’ characteristics and profiling protocols. 22,283 probe sets
were profiled in all the three studies. To reduce computational cost and remove noisy genes,
we rank the probe sets using their variations and select the top 1,000 probes for downstream
analysis.

In some previous analyses, it has been assumed that gene effects are interchangeable [Xie et
al. 2011]. Genes belong to different functional pathways. In addition, there exist strong
correlations among some genes. The frequency of canonical correlations among all genes
from multiple studies is given in Figure 2(a), and that of one randomly selected gene is
given in Figure 2(b). In our analysis, we accommodate such correlations using the network
structure and SGLS.

Genes identified using SGLS under adjacency measures N.1-N.7 are presented in Tables 3-9
(Appendix). For comparison, we also employ gMCP (results presented in Table 10,
Appendix). The numbers of identified genes and overlaps using different approaches are
shown in Table 2. We can see that by accommodating the interplay among genes, SGLS
identifies more genes. Such an observation is reasonable, considering that there are a
considerable number of weak correlations and what is observed in simulation. Although
there exist considerable overlaps, SGLS identifies different sets of genes.

Unlike in simulation, with real data, it is difficult to objectively compare gene identification
accuracy. We conduct evaluation of prediction performance using a random sampling
approach [Ma et al. 2009]. Prediction evaluation may provide a partial evaluation of
identification performance. Specifically, we generate training sets and corresponding testing
sets with sizes 2:1 by random splitting. Estimates are generated using the training sets only.
We then make prediction for subjects in the testing sets. For each split, with the predicted

linear risk scores , we dichotomize at the median, create two risk groups, and compute
the logrank statistic, which measures the difference in survival between the two groups. The
average logrank statistics over 100 splits are calculated as 4.47 (N.1), 4.30 (N.2), 4.77 (N.3),
4.93 (N.4), 4.23 (N.5), 5.13 (N.6) and 4.03 (N.7) for SGLS and 3.77 for gMCP. Under all
adjacency measures, SGLS has improved prediction performance, as has been observed in
simulation. The adjacency measure N.6 leads to the best prediction performance.

We now more closely examine genes identified by SGLS under N.6 but not by gMCP.
Among the fifteen probes, fourteen belong to genes, and one is out from “gene desert”.
These fourteen genes are SCGB1A1 (secretoglobin, family 1A, member 1 (uteroglobin)),
GPX2 (glutathione peroxidase 2 (gastrointestinal)), ABP1 (amiloride binding protein 1
(amine oxidase (copper-containing))), CST1 (cystatin SN), TSPYL5 (testis-specific Y-
encoded-like protein 5), ID1 (inhibitor of DNA binding 1, dominant negative helix-loop-
helix protein), TUBB2A (tubulin, beta 2A class IIa), GEM (GTP binding protein
overexpressed in skeletal muscle), KAL1 (Kallmann syndrome 1 sequence), PAH
(phenylalanine hydroxylase), LYZ (lysozyme), PNMAL1(paraneoplastic Ma antigen family-
like), ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)) and C4BPB
(complement component 4 binding protein, beta). Searching published literature suggests
that these genes may have important implications. Gene SCGB1A1, also known as CCSP or
CC10, encodes a member of the secretoglobin family of small secreted proteins. Previous
studies have shown that Clara cells are discriminated in rodent lung epithelia by their
expression of the secretoglobin. Sullivan et al. [2010] suggested that while variant Clara
cells and PNECs possess the ability to expand and self-renew, only variant Clara cells have
the capacity for multi-potent differentiation. Gene GPX2 is a member of the glutathione
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peroxidase family and encodes a selenium-dependent glutathione peroxidase that is one of
two isoenzymes responsible for the majority of the glutathione-dependent hydrogen
peroxide-reducing activity in the epithelium of the gastrointestinal tract. Hann et al. [2008]
found up-regulation of GPX2 in small cell lung cancer. Gene ABP1 encodes a membrane
glycoprotein that is expressed in many epithelium-rich and/or hematopoietic tissues and
oxidatively deaminates putrescine and histamine. Bonner et al. [2003] found that ABP1 is on
the list of genes associated with the embryonicpseudoglandular transition transcription
factors. Gene CST1 is located in the cystatin locus and encodes a cysteine proteinase
inhibitor found in saliva, tears, urine, and seminal fluid. Moreb et al. [2008] found that
CST1 is down-regulated in non-small cell lung cancer. Gene TSPYL5 is involved in
modulation of cell growth and cellular response to gamma radiation probably via regulation
of the Akt signaling pathway and also involved in regulation of p53/TP53. It suppresses p53/
TP53 protein levels and promotes its ubiquitination. Vachani et al. [2007] identified that
TSPYL5 was among a panel of genes that accurately distinguished head and neck squamous
cell carcinoma and lung squamous cell carcinoma. The protein encoded by gene ID1 is a
helix-loop-helix (HLH) protein that can form heterodimers with members of the basic HLH
family of transcription factors. Cheng et al. [2011] found an elevated ID1 expression level in
lung cancer cell lines as well as lung cancer tissues. Tubulin (TUBB2A) is the major
constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the
beta chain and one at a non-exchangeable site on the alpha-chain. Previous studies suggest
that β-tubulin isotype protein levels could be useful as indicators of NSCLC aggressiveness,
and Cucchiarelli et al. [2008] found significantly higher fractions of β-tubulin classes II and
V mRNA compared to the other isotypes in all lung tumor samples. The protein encoded by
gene GEM belongs to the RAD/GEM family of GTP-binding proteins. It is associated with
the inner face of the plasma membrane and can play a role as a regulatory protein in
receptor-mediated signal transduction. Recent evidence indicates that Gemcitabine may
modulate ERCC1 nucleotide excision repair activity and down-regulation of DNA repair
activity. Mutations in gene KAL1 cause the X-linked Kallmann syndrome. Gene KAL1 is
among the list of genes that are associated with NSCLC [Lacroix et al. 2008]. Gene PAH
encodes the enzyme phenylalanine hydroxylase that is the rate-limiting step in phenylalanine
catabolism. Armstrong et al. [2004] conducted meta-analysis and discussed lung cancer risk
after exposure to PAH. Gene LYZ encodes human lysozyme, whose natural substrate is the
bacterial cell wall peptidoglycan. Chiba et al. [2008] showed that LYZ was overexpressed in
PA-MPCs. Gene ETS2 encodes a transcription factor which regulates genes involved in
development and apoptosis. In Agathanggelou et al. [2003], protein analysis of six genes
(ETS2, Cyclin D3, CDH2, DAPK1, TXN, and CTSL) showed that the changes induced by
RASSF1A at the RNA level correlated with changes in protein expression in both NSCLC
and neuroblastoma cell lines. Gene C4BPB encodes a member of a superfamily of proteins
composed predominantly of tandemly arrayed short consensus repeats of approximately 60
amino acids. Chang et al. [2010] identified that C4BPB with other seven genes are down-
regulated in at least three cisplatin-resistant cell lines, indicating that down-regulation of
these genes is frequent across cancer cell lines from different tissue types.

Discussion
In cancer genomic research, integrative analysis of multiple datasets has been conducted and
shown to outperform single-dataset analyses. In this study, we develop a Laplacian-
penalization integrative analysis approach, which can accommodate the gene network
structure in marker selection. The proposed approach is intuitively reasonable and
computationally feasible. Simulation and the analysis of three lung cancer prognosis studies
show that the proposed approach may have improved performance when there exist
moderate to strong correlations among genes.
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In single-dataset analysis, multiple ways of accounting for the interplay among genes have
been developed. Data analysis shows that performance of different methods is data-
dependent. In this study, we experiment with seven ways of constructing the adjacency
matrices, which is by no mean complete. In practical data analysis, it may be of interest to
follow similar strategies and extend the proposed approach under other network construction
methods. Our simulation study suggests that performance of different adjacency matrices is
data-dependent, which re-confirms findings in single-dataset analysis. With practical data, it
has been conjectured that there is no optimal adjacency matrix and researchers may have to
experiment with multiple choices. In this study, we focus on methodological development.
Theoretical development is expected to be highly nontrivial and postponed to future
research. In the analysis of lung cancer data, for genes identified by SGLS (under N.6 which
has the best prediction performance) but missed by gMCP, our preliminary search suggests
that they may have important implications, which partly support the validity of the proposed
approach. Some genes identified under other adjacency matrices may also be meaningful
(results omitted). More bioinformatics research is needed to fully comprehend implications
of those genes. We note that multiple approaches can be employed to analyze the simulated
and lung cancer data. We focus on the gMCP for comparison as it can directly establish the
merit of adding the Laplacian penalty, and as the comparison of gMCP versus single-dataset
and other integrative analysis approaches has been conducted in published studies [Huang et
al. 2012; Liu et al. 2012; Ma et al. 2011]. We expect that it is possible to replace the gMCP
penalty (first term in the proposed penalty) with, for example, group elastic net or group
SCAD. As gMCP has comparable performance with those approaches, such an extension is
not pursued.
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Appendix
Table 3

Analysis of lung cancer data using SGLS (N.1): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.001 0.001 −4.2E-04

206754_s_at CYP2B6 0.004 0.001 0.005

AFFX-CreX-5_at 0.001 4.7E-04 −9.4E-05

205048_s_at PSPH 8.4E-05 −4.8E-04 −2.6E-04

209921_at SLC7A11 −1.6E-04 −0.003 0.001

205776_at FMO5 0.002 0.003 0.004

203559_s_at ABP1 −0.003 0.007 0.004

206224_at CST1 0.001 −0.002 −2.5E-04

215867_x_at CA12 −0.001 −0.004 −4.4E-04

208937_s_at ID1 −0.002 −0.003 −0.001

208025_s_at HMGA2 −0.009 0.004 −0.009

204141_at TUBB2A 0.002 0.004 −0.001

207850_at CXCL3 −0.002 −0.020 0.005

219764_at FZD10 −0.003 −0.007 −0.003

201242_s_at ATP1B1 0.001 −0.002 0.001
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Probe Set Gene UM HLM CAN/DF

208451_s_at C4A −4.0E-04 0.006 0.002

208078_s_at SIK1 −3.2E-04 −0.001 −6.0E-05

213975_s_at LYZ −2.6E-04 0.001 0.001

218824_at PNMAL1 0.001 4.5E-04 −4.0E-05

200965_s_at ABLIM1 −4.9E-04 −3.8E-04 0.001

222303_at ETS2 −0.001 −0.001 0.001

208209_s_at C4BPB 4.9E-04 0.003 −2.4E-04

Table 4

Analysis of lung cancer data using SGLS (N.2): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.001 0.001 −0.001

206754_s_at CYP2B6 0.005 0.001 0.006

205048_s_at PSPH 7.8E-05 −4.1E-04 −2.1E-04

AFFX-r2-Ec-bioD-3_at 0.001 3.0E-04 −1.8E-04

209921_at SLC7A11 −1.1E-04 −0.003 4.8E-04

205776_at FMO5 0.002 0.003 0.003

203559_s_at ABP1 −0.004 0.008 0.004

206224_at CST1 0.001 −0.003 −2.9E-04

215867_x_at CA12 −0.001 −0.004 −4.6E-04

208937_s_at ID1 −0.003 −0.004 −0.001

208025_s_at HMGA2 −0.011 0.006 −0.011

204141_at TUBB2A 0.002 0.004 −0.001

207850_at CXCL3 −0.002 −0.022 0.006

219764_at FZD10 −0.003 −0.007 −0.003

201242_s_at ATP1B1 0.001 −0.002 0.001

208451_s_at C4A −4.7E-04 0.006 0.002

213975_s_at LYZ −3.6E-04 0.001 0.001

218824_at PNMAL1 0.001 0.001 −2.5E-05

222303_at ETS2 −0.001 −0.002 0.001

208209_s_at C4BPB 0.001 0.005 −4.3E-04

Table 5

Analysis of lung cancer data using SGLS (N.3): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.002 0.002 −0.001

206754_s_at CYP2B6 0.005 0.001 0.006

AFFX-CreX-5_at 0.001 0.001 −2.5E-04

202831_at GPX2 −1.3E-06 −3.0E-05 −1.1E-05
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Probe Set Gene UM HLM CAN/DF

205048_s_at PSPH 3.2E-04 −0.002 −0.001

209921_at SLC7A11 −1.8E-04 −0.003 0.001

205776_at FMO5 0.002 0.004 0.004

203559_s_at ABP1 −0.004 0.008 0.004

206224_at CST1 0.001 −0.003 −3.7E-04

215867_x_at CA12 −0.001 −0.004 −0.001

208937_s_at ID1 −0.003 −0.003 −0.001

209031_at CADM1 2.3E-04 −4.8E-05 1.6E-04

208025_s_at HMGA2 −0.009 0.004 −0.009

204141_at TUBB2A 0.001 0.003 −4.6E-04

207850_at CXCL3 −0.001 −0.018 0.005

219764_at FZD10 −0.003 −0.007 −0.003

201242_s_at ATP1B1 0.002 −0.003 0.001

208451_s_at C4A −3.9E-04 0.006 0.002

208078_s_at SIK1 −1.2E-04 −2.6E-04 −3.0E-05

212814_at AHCYL2 2.9E-04 −0.001 −1.0E-04

213975_s_at LYZ −4.8E-04 0.001 0.001

218824_at PNMAL1 0.002 0.001 −4.9E-05

200965_s_at ABLIM1 −0.001 −4.8E-04 0.001

222303_at ETS2 −0.002 −0.003 0.001

208209_s_at C4BPB 0.001 0.004 −3.8E-04

Table 6

Analysis of lung cancer data using SGLS (N.4): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.001 0.001 −3.6E-04

206754_s_at CYP2B6 0.007 0.001 0.009

202831_at GPX2 −7.5E-05 −0.004 −0.001

AFFX-r2-Ec-bioD-3_at 0.001 2.0E-04 −1.4E-04

203559_s_at ABP1 −0.004 0.008 0.005

206224_at CST1 0.001 −0.002 −1.9E-04

208937_s_at ID1 −0.004 −0.005 −0.001

208025_s_at HMGA2 −0.012 0.007 −0.012

204141_at TUBB2A 0.002 0.007 −0.001

207850_at CXCL3 −0.002 −0.031 0.007

219764_at FZD10 −0.003 −0.006 −0.003

208451_s_at C4A −3.4E-04 0.004 0.001

213975_s_at LYZ −0.001 0.002 0.001

222303_at ETS2 −0.001 −0.001 0.001

208209_s_at C4BPB 0.001 0.006 −2.5E-04
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Table 7

Analysis of lung cancer data using SGLS (N.5): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

206754_s_at CYP2B6 0.007 0.001 0.009

202831_at GPX2 −3.1E-05 −0.004 −0.001

AFFX-r2-Ec-bioD-3_at 0.002 0.001 −3.6E-04

203559_s_at ABP1 −0.005 0.010 0.006

206224_at CST1 0.001 −0.004 −3.9E-04

208937_s_at ID1 −0.005 −0.007 −0.002

208025_s_at HMGA2 −0.013 0.008 −0.013

204141_at TUBB2A 0.003 0.007 −0.001

207850_at CXCL3 −0.002 −0.032 0.007

219764_at FZD10 −0.003 −0.006 −0.003

208451_s_at C4A −2.2E-04 0.002 0.001

213975_s_at LYZ −0.001 0.002 0.001

218824_at PNMAL1 1.7E-04 4.6E-05 8.4E-06

222303_at ETS2 −0.002 −0.004 0.002

208209_s_at C4BPB 0.001 0.008 −0.001

Table 8

Analysis of lung cancer data using SGLS (N.6): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.001 0.001 −4.1E-04

206754_s_at CYP2B6 0.006 2.5E-04 0.009

202831_at GPX2 6.7E-05 −0.002 −0.001

AFFX-r2-Ec-bioD-3_at 0.004 0.001 −0.001

203559_s_at ABP1 −0.005 0.010 0.007

206224_at CST1 0.002 −0.006 −5.0E-04

213122_at TSPYL5 0.002 −0.001 0.001

208937_s_at ID1 −0.004 −0.006 −0.002

208025_s_at HMGA2 −0.014 0.009 −0.013

204141_at TUBB2A 0.004 0.009 −0.001

207850_at CXCL3 −0.003 −0.043 0.008

219764_at FZD10 −0.002 −0.005 −0.003

204472_at GEM −0.001 −0.004 0.001

205206_at KAL1 0.001 0.001 0.001

205719_s_at PAH 2.0E-04 −0.001 −0.001

213975_s_at LYZ −0.001 0.002 0.001

218824_at PNMAL1 3.7E-04 7.5E-05 2.7E-05

222303_at ETS2 −0.001 −0.001 0.001

208209_s_at C4BPB 0.002 0.013 −0.001
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Table 9

Analysis of lung cancer data using SGLS (N.7): identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

205725_at SCGB1A1 −0.001 0.001 −0.001

206754_s_at CYP2B6 0.007 1.6E-04 0.009

202831_at GPX2 8.7E-05 −0.003 −0.001

AFFX-r2-Ec-bioD-3_at 0.004 0.001 −0.001

205267_at 1.3E-04 1.6E-04 1.6E-04

203559_s_at ABP1 −0.006 0.011 0.008

206224_at CST1 0.002 −0.006 −0.001

213122_at TSPYL5 0.002 −0.001 0.001

208937_s_at ID1 −0.005 −0.007 −0.002

208025_s_at HMGA2 −0.014 0.009 −0.014

204141_at TUBB2A 0.004 0.009 −0.001

207850_at CXCL3 −0.002 −0.042 0.008

219764_at FZD10 −0.002 −0.005 −0.003

204472_at GEM −0.001 −0.003 0.001

205206_at KAL1 4.5E-04 4.6E-04 3.4E-04

205719_s_at PAH 2.3E-04 −0.001 −0.002

213975_s_at LYZ −0.001 0.003 0.001

218824_at PNMAL1 0.001 1.5E-04 6.2E-05

222303_at ETS2 −0.002 −0.003 0.001

208209_s_at C4BPB 0.002 0.012 −0.001

Table 10

Analysis of lung cancer data using gMCP: identified genes and their estimates.

Probe Set Gene UM HLM CAN/DF

206754_s_at CYP2B6 0.001 4.E-04 0.002

209921_at SLC7A11 −2.E-05 −2.E-04 4.E-05

205776_at FMO5 0.003 0.007 0.007

215867_x_at CA12 −0.001 −0.003 −2.E-04

208025_s_at HMGA2 −0.004 0.002 −0.005

207850_at CXCL3 −0.002 −0.017 0.004

219764_at FZD10 −0.001 −0.002 −0.001

208451_s_at C4A −1.E-04 0.004 0.001

208078_s_at SIK1 −0.001 −0.002 5.E-08
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Figure 1.
Solution paths for a simulated dataset under scenario 1. Solid lines are for nonzero gene
effects, and dotted lines are for zero effects. Solid lines with the same symbols are for the
same gene.
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Figure 2.
Data analysis: frequency of canonical correlations.

Liu et al. Page 20

Genet Epidemiol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 21

Table 1

Simulation study: the first row is number of true positives (standard deviation), the second row is number of
false positives (standard deviation), and the third row is PMSE (standard deviation).

SGLS

ρ gMCP N.1 N.2 N.3 N.4 N.5 N.6 N.7

Scenario 1 0.1 19.5(0.7) 19.5(0.9) 19.3(1.1) 19.7(0.6) 19.4(1.1) 19.4(1.5) 19.4(1.6) 19.5(0.9)

11.8(3.9) 13.3(4.2) 13.3(4.8) 16.8(4.5) 16.2(5.2) 12.9(3.7) 13.5(4.5) 14.1(3.9)

4.5(0.9) 4.6(1.1) 4.6(1.1) 4.4(0.9) 4.5(1.2) 4.5(1.4) 4.7(2.0) 4.6(1.3)

0.5 18.9(1.2) 19.9(0.4) 20.0(0.1) 19.1(1.1) 19.9(0.4) 19.9(0.5) 20.0(0.2) 20.0(0.2)

11.3(4.0) 18.4(8.6) 11.0(7.6) 16.0(3.4) 16.7(5.6) 9.9(7.8) 17.8(8.3) 12.3(9.4)

4.5(1.2) 3.7(0.5) 3.7(0.5) 4.1(0.6) 3.7(0.5) 3.8(0.6) 3.7(0.6) 3.7(0.5)

0.9 11.1(1.5) 19.6(1.2) 20.0(0.0) 19.3(2.0) 19.9(0.7) 19.8(1.2) 20.0(0.2) 20.0(0.1)

7.5(4.1) 7.8(8.9) 3.5(8.8) 21.1(8.8) 5.1(9.6) 2.5(7.7) 7.1(10.6) 2.5(5.4)

4.9(0.8) 3.9(0.7) 3.8(0.5) 4.2(0.7) 3.7(0.6) 3.9(0.6) 3.7(0.5) 3.8(0.6)

Scenario 2 0.1 19.2(1.4) 19.6(0.8) 19.2(1.4) 19.8(0.5) 19.7(0.7) 19.7(0.6) 19.4(1.1) 19.7(0.5)

12.4(3.5) 13.3(4.5) 13.2(3.7) 15.7(4.6) 15.4(5.6) 12.7(3.9) 14.4(5.4) 13.5(4.3)

4.5(1.1) 4.3(1.1) 4.6(1.3) 4.3(0.9) 4.3(1.0) 4.3(0.8) 4.4(1.1) 4.6(1.1)

0.5 18.0(1.9) 20.0(0.1) 19.9(0.2) 19.2(1.1) 19.7(0.8) 19.9(0.4) 20.0(0.4) 20.0(0.1)

11.7(3.9) 16.7(9.5) 12.0(9.5) 16.1(5.9) 16.8(7.2) 13.4(9.3) 19.1(10.0) 13.5(9.0)

4.5(0.8) 3.6(0.5) 3.8(0.7) 4.2(0.6) 3.9(0.7) 3.6(0.4) 3.7(0.5) 3.7(0.4)

0.9 12.2(2.3) 19.2(1.8) 19.2(1.8) 20.0(0.1) 19.6(1.3) 19.8(0.5) 19.8(1.1) 20.0(0.3)

4.3(2.9) 13.0(9.7) 10.6(9.8) 16.1(9.5) 9.3(10.2) 4.2(4.0) 9.5(8.2) 6.7(5.9)

4.9(1.0) 4.1(0.9) 4.1(0.7) 4.0(0.8) 4.1(1.0) 4.4(1.1) 3.9(0.7) 3.9(0.7)

Scenario 3 0.1 19.7(0.6) 19.7(0.6) 19.6(0.6) 19.9(0.4) 19.9(0.5) 19.7(0.9) 19.7(0.7) 19.6(0.6)

12.0(4.1) 13.7(4.1) 11.9(5.2) 15.2(5.3) 15.2(6.6) 12.7(3.6) 12.5(4.3) 11.0(3.5)

4.6(1.0) 4.5(0.9) 4.4(1.0) 4.3(1.1) 4.4(1.0) 4.2(0.8) 4.4(1.0) 4.2(0.9)

0.5 17.2(1.6) 20.0(0.0) 20.0(0.0) 19.7(0.7) 19.9(0.2) 20.0(0.3) 20.0(0.0) 20.0(0.1)

8.7(4.1) 11.8(9.8) 8.0(11.0) 22.1(11.4) 15.7(9.1) 5.5(8.6) 11.6(8.3) 11.6(11.5)

5.1(1.0) 3.6(0.4) 3.7(0.4) 4.2(0.8) 3.6(0.6) 3.6(0.5) 3.7(0.6) 3.7(0.5)

0.9 6.7(1.3) 20.0(0.0) 19.6(1.3) 19.9(0.3) 19.7(1.0) 19.2(1.5) 20.0(0.0) 20.0(0.0)

10.6(6.0) 4.9(7.1) 3.6(7.0) 18.8(7.9) 8.7(11.2) 1.5(5.4) 2.5(6.0) 2.2(6.5)

6.8(1.1) 3.9(0.7) 3.8(0.6) 4.1(0.8) 3.9(0.6) 3.9(0.5) 3.9(0.7) 4.0(0.7)
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Table 2

Data analysis: numbers of genes and overlaps identified by SGLS (N.1–N.7) and gMCP.

N.1 N.2 N.3 N.4 N.5 N.6 N.7 gMCP

N.1 22 19 22 13 14 13 13 9

N.2 20 19 14 15 14 14 8

N.3 25 14 15 14 14 9

N.4 15 15 14 14 5

N.5 16 15 15 5

N.6 19 19 4

N.7 20 4

gMCP 9
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