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Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for
mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval
development by the Pax6 homolog Eyeless and a network of downstream transcription factors.
Expression of these factors is regulated by signaling molecules and also indirectly by growth of
the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the
posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog.
Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral
inhibition induce and refine the expression of the transcription factor Atonal, which specifies the
founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by
cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and
Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each
ommatidial cell its specific identity. During the pupal stages, Rhodopsins are expressed, and the
photoreceptors and accessory cells take on their final positions and morphologies to form the adult
retina. Over the past few decades, the genetic analysis of this small number of cell types arranged
in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms
controlling cell differentiation and morphological rearrangement.

Introduction
The adult Drosophila eye is a highly organized structure composed of approximately 800
ommatidial units arranged in a hexagonal lattice (Fig. 1A). Each ommatidium contains 8
photoreceptor cells, which extend their light-collecting rhabdomeres into the center of the
ommatidium in a trapezoidal pattern (Fig. 1B). The outer photoreceptors R1-R6 have large
rhabdomeres, express the rhodopsin Rh1, and project axons into the lamina, a region of the
brain specialized for motion detection. The inner photoreceptors R7 and R8 have centrally
located small rhabdomeres, with the R8 rhabdomere directly below R7, each express one of
four rhodopsins (Rh3-Rh6), and project their axons into the medulla, the brain region
responsible for color vision (Fig. 1C) 1. The photoreceptors are surrounded by four cone
cells, which secrete the lens, and by two primary pigment cells, which contribute to isolating
each ommatidial light-sensing unit. These ommatidial clusters are separated from each other
by a lattice of secondary and tertiary pigment cells and mechanosensory bristles (Fig. 1D) 2.
Because the eye has a highly repetitive structure and is not essential for survival of flies
raised in the laboratory, it is well suited for genetic screens. The isolation of numerous
mutations that affect the formation of the adult eye has led to a detailed mechanistic
understanding of its development.

The eye develops from the eye imaginal disc, a bilayered epithelial tissue that invaginates
from the embryonic epidermis, grows and differentiates inside the larva, and everts during
metamorphosis. Retinal differentiation initiates at the posterior margin of the eye disc in the
third larval instar and gradually progresses towards the anterior margin, reaching it after the
first day of pupal development. The first overt sign of differentiation is a transient
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invagination of the disc surface known as the morphogenetic furrow 3 (Fig. 2). Anterior to
this moving furrow, cells divide in an unpatterned manner. On the posterior side of the
furrow, their apical profiles become organized into evenly spaced arcs. These arcs close up
and finally transform into 5-cell preclusters (Fig. 2B, C), within which the photoreceptors
R8, R2 and R5, and R3 and R4 differentiate in sequence, as revealed by their expression of
neuronal markers 4–6. The cells that remain undifferentiated at this stage undergo a final
round of division, the second mitotic wave, before differentiating as R1 and R6, R7, cone
cells, and primary pigment cells 4, 5. During pupal development, some of the remaining cells
surrounding the ommatidial clusters die, and the rest reorganize to form a hexagonal lattice,
in which the sides are formed by secondary pigment cells and the vertices by tertiary
pigment cells alternating with bristles 7. This review will describe the genetic and molecular
mechanisms that underlie the process of retinal differentiation. Further information about all
the genes discussed is available in Flybase (http://flybase.org/).

The eye field is specified by a network of transcription factors
The compound eye-antennal imaginal disc gives rise not only to the eye, but also to much of
the head cuticle 8. A cascade of transcription factors specifies first the entire disc and
subsequently the eye field within it. During embryonic stages, the whole eye-antennal disc
expresses Eyeless (Ey) and Twin of eyeless (Toy), two homologues of the Paired domain/
homeodomain transcription factor Pax6 (Fig. 3A). Toy is also expressed earlier in a broad
region of the embryonic head 9, 10. Although ey and toy are required for head development,
some mutant alleles of these genes result in a specific loss of eye tissue 11, 12. Strikingly,
misexpression of these genes in other imaginal discs can drive the development of ectopic
eyes 9, 13, although this occurs only at positions where other factors necessary for eye
development are present 14–18. Interestingly, Pax6 appears to be at the top of a hierarchy of
factors that regulate eye development not only in Drosophila, but in almost every species
that has been examined, suggesting that cells important for vision came under the control of
this transcription factor at a very primitive stage of their evolution 19.

During the second larval instar, ey expression is lost from the antennal disc and comes to
define the eye field, while the transcription factor Cut specifies and maintains the antennal
state 10, 20, 21. Ey is coexpressed with two other transcription factors, Homothorax (Hth) and
Teashirt (Tsh), and acts in combination with them to promote the growth of the early eye
disc 17, 22. Ey also induces the expression of eyes absent (eya) and sine oculis (so) at the
posterior of the eye disc, acting directly through binding sites in the regulatory regions of
these genes (Fig. 3B, D) 10, 23, 24. Eya and So can form a compound transcription factor that
is targeted to specific sequences by the DNA-binding domain of So 25, 26. Eya and So are in
turn required for the expression of Dachshund (Dac) 27, another protein that can both
interact with Eya and bind to specific DNA sequences (Fig. 3D) 28, 29. Eya, So and Dac are
all essential for eye differentiation 25, 30–33. When ectopically expressed, these downstream
factors have a more limited ability to induce ectopic eye development, and this is
accompanied by induction of ey expression, indicating the existence of feedback loops
within the retinal determination network 25, 29, 34, 35. In addition to its role as a transcription
factor, Eya has a second function in the cytoplasm as a tyrosine phosphatase enzyme.
Although its phosphatase activity seems to contribute to eye specification, the mechanism of
this effect is not fully understood 36–38.

eya expression is confined to the posterior part of the eye disc due to its regulation by
localized signaling molecules. Posteriorly expressed Hedgehog (Hh) and Decapentaplegic
(Dpp), a Bone Morphogenetic Protein (BMP) homologue, act as positive regulators of eya,
and anteriorly expressed Wingless (Wg) as a negative regulator 18, 20, 39, 40. The lateral
regions that express Wg do not form part of the eye field, but will instead give rise to head
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cuticle 41. Wg is both necessary and sufficient to promote the head cuticle fate; loss of Wg
activity expands the eye field into the dorsal head, while ectopic activation of the Wg
pathway within the eye field produces cuticular outgrowths 42–45. Because Wg acts at a long
range, the disc must reach a certain size before Wg levels are low enough in its posterior
region for eya expression to be initiated 20. Growth of the disc thus controls the timing of
eya expression, and mutations that disrupt growth will secondarily block differentiation.

Growth of the eye disc depends on the subdivision of the disc into dorsal and ventral
compartments, which allows activation of Notch signaling specifically at the dorsoventral
boundary. This is achieved by partitioning the glycosyltransferase enzyme Fringe (Fng)
specifically into the ventral compartment. Modification of Notch by Fng renders it
insensitive to the ventrally expressed ligand Serrate (Ser), but sensitive to the dorsally
expressed ligand Delta (Dl), ensuring that it is active only where the two domains meet 46–48

(Fig. 3E). The upstream regulators of Dl, Ser and fng expression are three homeodomain
transcription factors known as the Iroquois complex (Iro-C) in the dorsal compartment, and
two Sloppy-paired transcription factors, members of the Forkhead family, in the ventral
compartment; mutual repression maintains this complementary arrangement 49, 50.
Expression of the Iro-C genes is initiated by Wg, which is predominantly dorsal in the early
eye disc, due to its activation by Pannier (Pnr), a transcription factor expressed at the dorsal
margin of the eye disc, and ventral repression by the JAK/STAT pathway ligand Unpaired
(Upd) 51–54. Interestingly, Upd expression is also induced by Notch activation at the midline
of the posterior margin, a point from which it acts at a long range to stimulate growth
throughout the eye disc 55–58. In addition, Notch signaling promotes growth autonomously
through the downstream effectors Eyegone (Eyg) and Four-jointed 53, 55, 58.

Progressive photoreceptor differentiation is driven by autoregulatory loops
In the middle of the third larval instar, photoreceptor clusters begin to form at the posterior
of the eye disc. As the morphogenetic furrow progresses anteriorly, successive rows of
ommatidia differentiate approximately every two hours until the eye field is complete 24
hours after pupariation 3. The driving force behind this differentiation wave is the signaling
molecule Hh, which is essential for both the initiation and progression of photoreceptor
differentiation 59–61. Hh expression at the posterior margin of the early eye disc is
established by three zinc finger transcription factors in the Odd-skipped family 62.
Subsequently, Hh itself induces additional Hh expression in the photoreceptors as they
differentiate, through an indirect autoregulatory loop. This gradual spread of Hh expression
drives the progression of differentiation from posterior to anterior across the disc 59, 60. In
the eye disc, Hh acts primarily to inactivate the repressor form of the downstream
transcription factor Cubitus interruptus (Ci), allowing the expression of dpp 18, 63. dpp is
expressed in a stripe in the morphogenetic furrow, immediately anterior to the zone of hh
expression (Fig. 4A, B) 60. Posterior to the morphogenetic furrow, cells can no longer
respond to Hh because Ci is degraded by a ubiquitin ligase complex containing Cullin3 and
the adaptor protein Roadkill 64, 65. The morphogen Dpp acts at a long range to restrict the
expression of the transcription factor Hth to the anterior of the eye disc, where it represses
eya in combination with Ey and Tsh 17. Dpp signaling thus creates a preproneural zone in
which cells express both ey and eya and are primed to respond to the shorter-range Hh signal
(Fig. 4A, B). Hh and Dpp signaling, in combination with additional inputs, lead to the down-
regulation of ey and tsh in differentiating cells and the up-regulation of so and dac as well as
eya in the preproneural zone and more posteriorly 40.

Another critical target gene that is activated redundantly by Hh and Dpp signaling is atonal
(ato), which encodes a proneural basic helix-loop-helix transcription factor 66, 67. ato is first
expressed in all cells in a stripe just anterior to the morphogenetic furrow, but it rapidly
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resolves more posteriorly into regularly spaced groups of cells and then into single cells, the
future R8 photoreceptors (Fig. 4B) 68. Its initial expression is driven by a 3’ enhancer region
that contains essential binding sites for Ey and So 69–71, suggesting that the input from Hh
and Dpp signaling may be mediated by these eye determination factors 72. A 5’ enhancer
that responds to Ato autoregulation and to the zinc finger transcription factor Roughened eye
mediates its later expression 69, 73. This expression is restricted to R8 precursors by lateral
inhibition, which is mediated by the Notch pathway through the transcription factors
Enhancer of split and Daughterless (Da) 74, 75. Notch signaling and the spacing of ato-
expressing groups of cells are also regulated by the secreted protein Scabrous 76–78.
Downstream of Ato, which is only transiently expressed, permanent expression of the zinc
finger transcription factor Senseless (Sens) seals the fate of the R8 cell 79. Ato is
nevertheless predicted to directly regulate numerous downstream genes, only a subset of
which are shared with Sens 80.

Photoreceptor differentiation must be precisely coordinated in space and time. Anterior to
the morphogenetic furrow, two repressors and antagonists of Ato, Extramacrochaetae (Emc)
and Hairy, prevent it from functioning prematurely 81. Emc acts primarily by inhibiting the
expression of Da, an obligate partner for the Ato protein 82. These antagonists are
themselves induced by Hh and Dpp, and are subsequently repressed by Dl, a very short-
range signal also emanating from the morphogenetic furrow 17, 67, 82, 83. Posterior to the
morphogenetic furrow, Ato expression in undifferentiated cells is terminated by the
homeodomain proteins BarH1 and BarH2 84.

The primary role of Hh signaling is to activate Ato and thus promote the specification of the
R8 precursor in each ommatidium. This is sufficient to set in motion the construction of the
entire ommatidium, not because the remaining cells are descendants of R8, but because they
are recruited by R8 from the surrounding pool of undifferentiated cells (Fig. 4C) 3. Under
the control of Ato, R8 expresses Rhomboid (Rho) and Rhomboid-3/Roughoid, two proteases
that cleave and activate the transmembrane precursor form of Spitz (Spi), a ligand for the
Epidermal growth factor receptor (EGFR) 85–87. Spi signaling promotes the stepwise
differentiation of R2 and R5, R3 and R4, R1 and R6, R7, and the cone and primary pigment
cells 88–90. Rho is also expressed in R2 and R5, and Spi produced by these cells contributes
to the differentiation of other photoreceptors 88, 90, 91. The short range of Spi action 92 and
the geometry of the initial arc may explain why R3 and R4, at the tips of the arc,
differentiate later than R2 and R5, which are immediately adjacent to R8. The precursors of
R1, R6 and R7 divide in the second mitotic wave, which may delay the response to Spi
signaling in these cells. Activation of the EGFR pathway in more distant cells is also
prevented by Argos, a secreted feedback inhibitor that prevents Spi from binding to the
EGFR 93–95. Later differentiating cells require input from the Notch ligand Dl in addition to
Spi. Dl is itself transcribed in response to Spi signaling, creating a feedforward loop 96. Dl
produced by R1-R6 helps to recruit R7 and cone cells 96–98, while Dl produced by cone cells
in response to EGFR signaling can recruit primary pigment cells 99.

In addition to promoting the differentiation of R2 and R5, Spi signaling also induces these
cells to express Hh. An eye-specific enhancer of the hh gene integrates input from Pointed
P2 (PntP2), the Ets transcription factor responsive to EGFR signaling, and the retinal
determination transcription factor So 100. Hh secreted by more posterior photoreceptors thus
promotes Ato expression, R8 differentiation, Spi-dependent recruitment of R2 and R5, and
eventually its own expression in response to EGFR signaling in these cells. This indirect
autoregulatory loop is the basis for the gradual anterior progression of differentiation.
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Combinatorial signals control the differentiation of specific cell types
All the photoreceptors other than R8 require Spi for their induction. Nevertheless, they differ
in other properties, such as their position, timing of differentiation, and gene expression.
Mutations that transform one subtype into another have given some insight into how
individual subtypes are specified. A classic example is the sevenless (sev) mutation, in
which R7 photoreceptors are absent and the R7 precursor instead differentiates into a non-
neuronal cone cell 101. A second mutation, bride of sevenless (boss) was later shown to have
the same phenotype 102. Since only R7 cells express rhodopsins that detect ultraviolet light,
both mutations were initially isolated based on the failure of the adult flies to choose
ultraviolet light over visible light 102, 103. sev was subsequently shown to encode a receptor
tyrosine kinase required in the R7 cell 104–106, while boss encodes a transmembrane ligand
required in the R8 cell 102, 107. The pathway downstream of Sev was elucidated using a
genetic screen for dominant modifiers of a temperature-sensitive sev allele 108. Interestingly,
Sev signals through the Ras/Mitogen-activated protein kinase (MAPK) cassette, the same
pathway that is downstream of the EGFR and other receptor tyrosine kinases 109, 110.
Analysis of the promoter of prospero (pros), a gene expressed strongly in R7 and weakly in
cone cells that encodes a transcription factor important for their differentiation, suggested
that combined signaling through both receptors is necessary for high-level pros
activation 111 (Fig. 5). Degradation of Tramtrack88 (Ttk88), a transcription factor that
represses neuronal differentiation and pros expression, may integrate the two pathways.
Ttk88 degradation is mediated by a ubiquitin ligase complex that contains both the adaptor
protein Phyllopod, which is regulated by Sev, and the F-box protein Ebi, which is regulated
by EGFR, as well as the RING domain protein Seven in absentia 112–114.

R7 differentiation also requires input from R1 and R6; these cells express Dl, which
activates the Notch pathway in the R7 precursor 97, 115. Notch signaling exerts antagonistic
activities. It appears to increase Ttk88 levels to oppose photoreceptor differentiation.
However, it also induces expression of sev, allowing R7 to receive the Boss signal that
overrides the effect of Ttk88 116. In addition, Notch signaling represses seven-up (svp),
which encodes a direct repressor of pros expression 117. Differentiation of R7 and
transcription of pros also require input from the Runt domain transcription factor Lozenge
(Lz) 118 111. Lz is expressed in undifferentiated cells posterior to the furrow and is
maintained in the descendants of cells that divide in the second mitotic wave 119. Its
expression is activated by So and another retinal-specific transcription factor, Glass 120, 121,
both of which also directly regulate pros and other cell type-specific genes 80, 117. The
intricacy of pros regulation illustrates the complex combinatorial mechanisms necessary to
render a single cell distinct from its immediate neighbors (Fig. 5).

While the R7 precursor becomes a cone cell if it does not receive the appropriate signals, the
R7 fate can itself be a default choice for earlier differentiating cells. Svp is an orphan
nuclear receptor required in R1, R3, R4 and R6; in its absence all these cells were initially
thought to become R7 cells 122. However, it was recently shown that svp mutant cells are
equally likely to differentiate as either R7 or R8 cells. Interestingly, in this case the cells
choose one of these two fates only quite late in development, and Notch signaling promotes
the R7 fate by repressing the R8-specific transcription factor Sens 123. Additional
transcription factors specify the other cell fates within the ommatidium. Sens and the
homeodomain protein Rough (Ro), which is expressed in the R2 and R5 cells, mutually
repress each other’s expression to prevent R8, R2 and R5 from switching their fates 124, 125.
In rough mutants, Sens is misexpressed in the R2 and R5 precursors, and these cells
differentiate as R8 cells 125. The transcription factors Spalt, expressed in R3 and R4, and
Bar, expressed in R1 and R6, differentiate these photoreceptor pairs from each other 126, 127.
However, the upstream regulators of these factors are largely unknown. Finally, R3 and R4
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are differently specified under the influence of planar polarity signaling, a topic covered by
another review in this series (Singh and Mlodzik, 2012).

Terminal differentiation is regulated independently from cell type
specification

Photoreceptors establish specific patterns of gene expression during the larval and early
pupal stages, but do not take on their characteristic morphologies until later in pupal
development. Analysis of mutants lacking the two adjacent spalt genes revealed that
morphogenesis and cell fate are under separate control. In these mutants, the adult R7 and
R8 cells resemble outer photoreceptors in that they form large rhabdomeres and express the
rhodopsin Rh1 128. However, during larval development R8 differentiates normally, and
although R7 fails to express genes such as pros and runt, it does not take on an outer
photoreceptor fate at this stage 129. Thus Spalt transcription factors are specifically required
for late steps in inner photoreceptor differentiation.

Terminal differentiation of photoreceptors involves modification of the apical membrane to
create the rhabdomere, a stack of membranes packed with rhodopsin that functions as a
photon detector. The apical membrane rotates 90° to face the center of the ommatidium
rather than the apical surface of the eye, becomes folded into numerous microvilli, and is
connected to the cell body by a proximal stalk region (Fig. 6A) 130. The transmembrane
protein Crumbs and other protein complexes that regulate apical-basal polarity carry out this
reorganization of the apical surface 131, 132. In addition, rhodopsin and proteins that
transport it into the rhabdomere are essential for rhabdomere morphogenesis 133, 134. At the
transcriptional level, rhabdomere formation is redundantly controlled by Orthodenticle (Otd)
and Pph13, two homeodomain proteins 135. Together with the steroid hormone ecdysone,
Otd directs the timing of photoreceptor maturation 136.

During pupal development, each photoreceptor must also choose only one specific
Rhodopsin (Rh) molecule to express; Rh1 and Rh5 detect blue light, while Rh6 detects
green light and Rh3 and Rh4 detect ultraviolet light 137. All R1-R6 cells express Rh1, but
inner photoreceptors are divided into several distinct groups. In a dorsal region of the eye
specialized for polarized light detection, R7 and R8 both express Rh3, a fate determined by
the transcription factor Hth 138. In the remainder of the retina, about 30% of ommatidia have
R7 cells that express Rh3 and R8 cells that express Rh5, and 70% have R7 cells that express
Rh4 and R8 cells that express Rh6 1. This distinction is controlled by transient stochastic
expression of the transcription factor Spineless (Ss) in the subset of R7 cells that will later
express Rh4 139. The Rhodopsin expressed by an R8 cell depends on signaling from the R7
cell within the same ommatidium. Rh3-expressing R7 cells induce neighboring R8 cells to
express Rh5; in the absence of this signal, R8 cells express Rh6. Although the nature of the
signal is still unknown, it is transduced by molecules better known for their role in growth
control in proliferating tissues: components of the Hippo (Hpo) pathway and the pleckstrin
homology domain protein Melted (Melt) (Fig. 6B) 140, 141.

During the pupal period, the non-photoreceptor cells also take on their final positions and
morphologies. The second mitotic wave generates an excess of undifferentiated cells, and
some of these must be eliminated by cell death to create a hexagonal lattice with only a
single secondary pigment cell at each edge and a single tertiary pigment cell or bristle group
at each vertex 142. Reorganization of these lattice cells is driven by differential adhesion
between two proteins of the immunoglobulin superfamily: Roughest (Rst) on the membrane
of secondary and tertiary pigment cells binds to Hibris on the membrane of primary pigment
cells. Those cells with the highest levels of Rst form the largest contact surfaces with
primary pigment cells, enabling them to survive and adopt an extended morphology, while
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other cells lose contact and ultimately die 143 144. Survival appears to depend on Spi
produced by cone and primary pigment cells, which activates the EGFR in lattice cells to
downregulate Head involution defective, an inducer of apoptosis 145. Computational
modeling suggests that apical expansion of the cone and primary pigment cell profiles also
plays an important role in generating the normal pattern of secondary and tertiary pigment
cells 143.

Conclusions
Clearly, the repetitive structure and accessibility of the eye and the power of Drosophila
genetics have led to a wealth of knowledge about how this organ develops. The
identification of numerous genes required for normal development of the eye and the
characterization of enhancer elements that control the expression of many of these genes
have been particularly informative. Autoregulation and feed-forward loops play a role at
several developmental stages. However, we still do not fully understand how a combination
of external signals and intrinsic factors leads to the production of specific cell types in a
precise temporal and spatial pattern. Further study of eye development will doubtless
provide us with additional insight into fate specification, combinatorial signaling networks
that generate complex patterns, and cell biological aspects of differentiation.
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Figure 1. Structure of the adult Drosophila eye
(A) shows a scanning electron micrograph of the surface of the eye, demonstrating the
hexagonal packing of the ommatidia. (B) shows a tangential section through the eye,
illustrating the characteristic trapezoidal arrangement of the rhabdomeres of photoreceptors
R1-R7. The rhabdomere of R8 lies below that of R7. (C) shows a coronal section through
the adult head of a fly expressing lacZ in all photoreceptors, stained with anti-β-
galactosidase. This section shows the elongated shape of the photoreceptor cells in the retina
and their axons extending to the lamina and medulla. (D) is a diagram of the arrangement of
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cell types found in each ommatidium. 1–8, photoreceptors R1-R8; cc, cone cells; 1°, 2°, 3°,
pigment cells; b, mechanosensory bristle.
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Figure 2. Pattern formation in the developing eye disc
(A) shows part of an eye disc labeled with E-cadherin-GFP (E-cad-GFP, green) and anti-
phosphorylated myosin light chain (p-MLC, red). Anterior is to the left. The morphogenetic
furrow (MF) is indicated. (B) shows a series of E-cad-GFP-labeled cell clusters increasing in
age from left to right, and (C) shows tracings of the same clusters. Unpatterned cells in the
morphogenetic furrow transform into arcs, which close by removal of the central cells and
ultimately become 5-cell preclusters. Figure kindly provided by Franck Pichaud.
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Figure 3. Retinal determination genes
(A–C) are diagrams showing the expression pattern of Ey, Eya, So and Dac in first instar
(A), second instar (B) and third instar (C) eye-antennal discs. Colored bars below the
diagrams indicate the regions in which these expression domains overlap. Repression of eya
by anterior Wg and its activation by posterior Hh is indicated in (B). MF, morphogenetic
furrow. (D) represents the functional relationships between these transcription factors. Ey
directly activates eya and so transcription, and Ey, Eya and So all contribute to dac
activation. Eya can interact with the DNA-binding protein So to form a compound
transcription factor that regulates downstream genes, and may also regulate gene expression
in a complex with Dac. (E) shows the expression domains of some of the factors that drive
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dorsal-ventral compartmentalization and growth of the early eye disc. Dorsally expressed
Pnr activates wg expression, and Wg then establishes the expression domains of the Iro-C
and Slp transcription factors. These control the compartmentalized distribution of Notch
ligands and modifying enzymes that lead to Notch activation at the dorsoventral midline.
Downstream targets of Notch that regulate growth include the transcription factor Eyg and
the long-range signaling molecule Upd.
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Figure 4. Progression of the morphogenetic furrow
(A) is a diagram showing that Hh expressed in developing photoreceptors activates a stripe
of dpp expression in the morphogenetic furrow. Dpp then acts at a long range to repress hth,
limiting it to the anterior of the eye disc and establishing a preproneural zone (PPN) in
which cells can respond to Hh. (B) shows regions of third instar eye discs stained for the
indicated markers. Elav is a neuronal-specific protein used to mark differentiating
photoreceptors. (C) is a diagram of the five signaling steps involved in recruitment of each
photoreceptor or photoreceptor pair to the forming ommatidium. Rho proteins expressed in
R8, R2 and R5 allow these cells to produce Spi, which is instrumental in recruiting all

Treisman Page 20

Wiley Interdiscip Rev Dev Biol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



photoreceptors other than R8. Dl produced by R1 and R6 and Boss produced by R8 are also
necessary to recruit R7.
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Figure 5. Diagram of the factors involved in regulating prospero, a gene expressed in R7
The activator PntP2 and repressors Yan and Ttk88 are regulated by EGFR signaling, and
Ttk88 also responds to Sev and Notch signaling. In addition, Notch positively regulates sev
expression and negatively regulates svp, which encodes a repressor of pros. The eye-specific
transcription factors Gl, Eya/So, and Lz also contribute to pros activation. lz is itself a target
of Gl, Eya and So. This diagram only indicates the factors that bind to the Pros enhancer,
and not the correct number or placement of their binding sites.
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Figure 6. Terminal differentiation involves Rhodopsin expression and localization
(A) is a diagram of the adult rhabdomere, indicating the rotation and folding of the apical
surface. Rhodopsin molecules are represented in green. n, nucleus. (B) shows the
distribution of the five different rhodopsins between the eight photoreceptors. All R1–6 cells
express Rh1. Approximately 70% of R7 cells express Ss and Rh4. The R8 cells in the same
ommatidia activate the Hpo pathway and express Rh6. In the absence of Ss, R7 cells express
Rh3 and signal to the R8 cells in their ommatidia to express Melt and Rh5
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