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ABSTRACT The amount and pattern of genetic variabili-
ty in a geographically structured population at equilibrium un-
der the joint action of migration, mutation, and random genet-
ic drift is studied. The monoecious, diploid population is sub-
divided into panmictic colonies that exchange migrants. Self-
fertilization does not occur; generations are discrete and
nonoverlapping; the analysis is restricted to a single locus in
the absence of selection; every allele mutates to new alleles at
the same rate. It is shown that if the number of demes is finite
and migration does not alter the deme sizes, then population
subdivision produces interdeme differentiation and the mean
homozygosity and the effective number of alleles exceed their
panmictic values. A simple relation between the mean proba-
bility of identity and the mean homozygosity is established.
The results apply to a dioecious population if the migration
pattern and mutation rate are sex independent.

Although most studies of neutral models of geographical
variation have involved the detailed investigation of particu-
lar migration patterns (see refs. 1 and 2 for refs.), several
general properties of subdivided populations have also been
established. In ref. 2, the strong- and weak-migration limits,
properties invariant under population subdivision, and the
approximation of diploid migration by gametic dispersion are
reviewed. Here, we examine the mean homozygosity, effec-
tive number of alleles, and interdeme differentiation in a
model with diploid migration and no self-fertilization. Our
results also hold in a simpler, less realistic model with gamet-
ic dispersion and selfing in each deme at a rate equal to the
reciprocal of the number of individuals in that deme (2).

Formulation

We assume that a monoecious, diploid population is subdi-
vided into a finite number of panmictic colonies that ex-
change migrants in a fixed pattern; colony i contains Ni
adults. Self-fertilization does not occur; generations are dis-
crete and non-overlapping; the analysis is restricted to a sin-
gle locus in the absence of selection; every allele mutates to
new alleles at the same rate u (0 < u < 1). We measure time,
t (=0, 1, 2, . . .), in generations. Random genetic drift oper-
ates through population regulation.
To begin the life cycle, the adults in each colony mate at

random and produce without fertility differences a very large
number of offspring. Migration and mutation follow, and fi-
nally population regulation returns the number of individuals
in deme i to Ni. Let Iij(t) represent the probability that two
genes chosen at random from distinct adults just before re-
production in generation t, one from deme i and one from
demej, are the same allele. We designate by Ji(t) the proba-
bility that the two genes of an adult chosen at random from
deme i just before reproduction in generation t are the same

allele. Thus, Ji is the expected homozygosity in colony i. Our
formal scheme is displayed below:

adults - > zygotes . .->-- zygotes
reproduction migration

Ni, Iij, Ji 00,-,- 00,--

- > zygotes - . adultsmutation regulation
00 - - Ni, It., j;

We use the backward migration matrix, M, to describe the
pattern of dispersion: mij denotes the probability that an in-
dividual in colony i comes from colonyj. The probabilities of
identity in state satisfy (3, 4)

iVj= V MikMjlIkI
k+

+ I MikMjk(2Nk) -(1 + Jk- YUk) , [la]
k

I IEikIkk,
k

[lb]

where v = (1 - u)2 and the prime signifies the next genera-
tion. We place mutation after migration only for definite-
ness; actually, [1] holds if mutation occurs at any time be-
tween reproduction and regulation. Population regulation
during this period would have no effect if it were sufficiently
weak to leave very large numbers of zygotes. It is easy to see
that [1] holds after one generation for a dioecious population
if the migration pattern and mutation rate are sex indepen-
dent and we take

Ni= 4MiV2)1(M1) + M2)),

where NMl) and NM2) denote the numbers of males and fe-
males in deme i (3, 4).
As t -a 00, [Iij(t), Ji(t)] converges at least as fast as v' to

the unique solution of (3, 4)

iij = PlMikMilIkI + I MikMikSkJ,

Ji= V E tikIkk,
k

Sk = (1 + ik - 2Ikk)/(2Nk).

[2a]

[2b]

[2c]

Since u > 02 some genetic variability is preserved: [2] is not
satisfied if Iij = 1 and Ji = 1 for every i and j.
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Lemma

In our analysis, we shall need the fact that si . 0; i.e.,

-2 (1 + Jid ' Iii [3]

in every deme. This inequality is a special case of the combi-
natorial result stated and proved below and is therefore inde-
pepdent of the evolutionary details of our model.

Consider a population of N monoecious, diploid individ-
uals and focus attention on a single locus with alleles Al,
.. . A,. The genotypic distribution is arbitrary. Let x desig-
nate the probability that K genes sampled with replacement
from an individual chosen at random are the same allele. We
denote by y the probability that K genes chosen at random
from distinct individuals are the same allele. Then

A = vM 0 M, bij = v E MikMjkSk,
k

[8]

where the notation signifies that A is a Kronecker product,
we rewrite [2a] as the vector equation

I = AI + b. [9]

Treating b as known, we can solve [9] immediately:

i = (I -A)-'b = I Anb,
n=O

[10]

in which I denotes the identity matrix. SinceMis stochastic,
its spectral radius is one. Hence, the spectral radius ofA is v
< 1, which implies convergence of the sum in [10]. Substitut-
ing [8] into [10] leads to

X > y. [4]

Clearly, the special case of [4] with K = 2 implies [3]. This
special case can be established by introducing genotypic fre-
quencies. Here, a shorter, more informative proof, due to
R. R. Bahadur and S. L. Zabell (personal communication),
of the general inequality is presented. The proof has two
parts: first, we show that it suffices to prove [4] for N = K
and then we establish [4] under this simplification.
Let C represent a set of K distinct individuals chosen at

random and denote by qc the probability of choosing this
set. Let xc designate the probability that K genes sampled
with replacement from an individual chosen at random from
C are the same allele. Since the random choice of C followed
by the random choice of an individual from C produces an
individual chosen at random from the entire population, we
have

x = I xcqc. [5]
C

Furthermore,

Y = I ycqc, [6]
C

where Yc signifies the probability that K genes chosen at ran-
dom, one from each individual in C, are the same allele. Ob-
viously, ifxc ' Yc for every set C, then [5] and [6] imply [4].
Suppose now that N = K and number the individuals in

the population. Denote by Pij the probability that a gene cho-
sen at random from individual i is Aj. Since the arithmetic
mean is no less than the geometric mean, we obtain

r K r K

x=> >E P K> 1pi=PY [7]
j= K j=1 j=l i=l

'ij = I3 n I m l) mJ 1 sp,
n=O p 'p ip S [11]

where mt(n) = (Mn)ij. Malecot (5) has obtained a similar re-
sult. Since sp2, 0 for every p, from [11] we infer at once, for
any migration pattern,

Ii E v"'+1I 2 {[m+ 1)]2 + [m(n+1121s
n=O p 2

= 1 (A= Iii + Il) [12]

equality holds if and only if m~n") = M(nII) for every n andIp JP
P.

Let Pia represent the frequency of the allele Aa in deme i.
Had we sampled with replacement in the definition of Ii>,
then [12] would have followed at once from the trivial in-
equality

E3 P,.~a ' >23E (p2 + P2
a 2 a

To see that [12] is not merely a combinatorial result, focus
attention on demes i andj, i 7 j, and suppose that Ni = Nj,
no allele occurs more than once in either deme, and the two
demes are genetically identical. Then Iij > 0 and Iii = I, = 0;
[12] fails because the population is not at equilibrium.
We assume now that migration is conservative (6); i.e., it

does not change the deme sizes. Define the proportion of
adults in deme i, the total population number, the global and
local means of the probability of identity, and the mean ho-
mozygosity:

Ki = Ni/NT, NT== Ni, [13]

Equality holds in [7] if and only if Pij is independent of i for
everyj, i.e., if and only if all individuals have the same (ho-
mozygous or heterozygous) genotype.

Scrutiny of our proof reveals that [4] holds regardless of
ploidy; in fact, it is not even necessary for all N individuals
to have the same ploidy. Furthermore, [4] is also valid if the
K individuals in the definition ofy are sampled with replace-
ment. If all individuals have the same ploidy, this is equiva-
lent to sampling with replacement K genes from the popula-
tion.

Analysis

Defining the matrix A and the vector b by

7 = I KiKjf j
ii

Io = I KiI ,, jI= I KiiJ. [14]

Averaging [12] with the aid of [14] shows that the mean prob-
ability of identity cannot exceed the mean homozygosity:

I'2 Sij Kijfi ) = Ion1e [15]

Thus, population subdivision produces interdeme differenti-
ation. Equality occurs in [15] if and only if

m +-1)= c(+1) [16]
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for every i, j, and n, for some c(n5 ). For conservative migra-
tion (6),

Kj = K mij. [17]

On the one hand, if [16] holds, we take n = 0 and substitute
mij = cj into [17] to conclude that C1 = K1 for every j, which
means that the population is panmictic. On the other hand, if
we posit panmixia, then mij = Kj for every i and j (7). But if
M = Kj for every i and j, then

= E m nm)J = K1, [18]

so [16] holds. Therefore, equality occurs in [15] if and only if
the entire population mates at random.

Next, we average [2a] and [2b], appealing to [2c], [13],
[14], and [17]:

I = v[r + (2NT)-'1(1 + J - 21o)], [19a]
J.= vIo, [19b]

whence

I ' Ir; [23]

i.e., the mean probability of identity is decreased by popula-
tion subdivision. For the effective number of alleles (11, 12),
we find

n, = 1/IT- 1II = nr, [24]

where n' designates the panmictic value; equality holds in
[24] if and only if the population mates at random. Eq. 24
proves that population subdivision raises at least one index
of genetic diversity.

Thus, in addition to the invariance result [21], we have
established the inequalities

[25]

in which equality holds if and only if the entire population
mates at random.
The inequalities [23] and [24] can fail for nonconservative

migration. In the strong-migration limit, an effective popula-
tion number Ne < NT appears in the theory, and we fix M
and let u -* 0 and Ne -* cx so that NeU remains fixed. One
finds (4)

- v[1 - (2 - v)1o]1=
2NT(1 - V)

[20]

Eqs. 19b and 20 enable us to relate the mean probability of
identity to the mean homozygosity:

"I v-(2-v)J
=2NT(1 - V)

[21]

There is a simpler, analogous result for gametic dispersion
(8, 9).
Combining [15] and [20] yields

To 2 V/[2NT(1 - v) + v(2 -V)] = Ir [22a]

where Ir denotes the probability of identity between distinct
individuals in a panmictic population (5, 10). From [19b] and
[22a] we obtain

J 2 V2/[2NT(1 - v) + v(2 - v)] = Jr, [22b]

in which Jr represents the expected homozygosity in a pan-
mictic population (5, 10). Thus, the expected homozygosity
is at least as great as for panmixia; equality holds in [22] if
and only if the entire population mates at random. Inserting
[22a] into [20] gives

Iij -*4 Ji -*),
4) = 1/(1 + 4NeU) > 1/(1 + 4NTU).

[26a]
[26b]

Since the right side of [26b] is the limit of Ir and Jras u -* 0
and NT X-*o with NTU fixed, we conclude that [23] and [24]
must be reversed in this case.
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