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Abstract
Purpose of review—Recent advances in T cell biology have shed light on the role of T cell
subsets in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to harness
our understanding of recent advances in T cell biology in tissue injury and repair and provide a
mechanistic insight into the role of T cells in the inflammation of AKI.

Recent findings—New specific reagents and genetic animal models have led to advances in our
understanding of the role of T cell subsets involved in renal injury. Whereas some T cells promote
innate renal inflammation and injury, other T cells promote protection and repair. Recent studies
illuminated the pathogenic mechanisms of invariant natural killer T (NKT) cells and T helper1-
type responses, and the beneficial functions of regulatory T cells and NKT cells are just beginning
to be explored. Pharmacologic and cell-based therapies that influence T cell responses to
experimental AKI suggest that this is a promising approach to preserve renal function.

Summary—The recent insights gained into how T cells modulate renal injury suggest that
strategies targeting specific types of T cells, to either inhibit or enhance their activity, may
ameliorate renal injury in patients.
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INTRODUCTION
The incidence of acute kidney injury (AKI) has been steadily increasing in recent decades,
and AKI causes significant morbidity and mortality in those who are affected [1]. Common
causes of AKI include: sepsis, use of nephrotoxic drugs and conditions resulting in ischemia
or hypoperfusion of the kidneys (cardiopulmonary bypass, hemorrhage, severe hypotension,
etc.). Ischemia induces a complex series of events that lead to altered hemodynamics,
tubular injury and inflammation. Early in the course of AKI, Sutton et al. [2] have proposed
an ‘extension phase’ of ischemic AKI in which immune cells play a critical role. This
proposal is based upon a long recognized feature that the kidney interstitial
microenvironment is a fertile ground for innate immune cells such as dendritic cells and
macrophages [3], and following ischemia there is an accumulation and activation of immune
cells in the damaged kidney [4]. CD3+ T cells are prominent in the inflammatory infiltrate in
human AKI [5] and accumulate in the kidney within 30 min to a few hours in murine models
of AKI [6-10]. Studies in experimental AKI have demonstrated a causal role for certain

© 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins

Correspondence to Mark D. Okusa, MD, Division of Nephrology, Box 800133, University of Virginia Health System, Charlottesville,
VA 22908, USA. Tel: +1 434 924 2187; fax: +1 434 924 5848; mdo7y@virginia.edu.

Conflicts of interest
M.O. has the following disclosures: Daiichi-Sankyo, PGX Health/Adenosine Therapeutics, LLC; UVA Patent Office.

NIH Public Access
Author Manuscript
Curr Opin Nephrol Hypertens. Author manuscript; available in PMC 2014 February 02.

Published in final edited form as:
Curr Opin Nephrol Hypertens. 2014 January ; 23(1): 9–16. doi:10.1097/01.mnh.0000436695.29173.de.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



types of T cells in promoting renal injury, whereas other studies have revealed protective
roles for other T cell subsets (see below). Immune cells accumulate in the corticomedullary
junction leading to vascular congestion, interstitial edema, and diminished nutrient and
oxygen delivery.

T CELLS IN THE PATHOGENESIS OF EXPERIMENTAL ACUTE KIDNEY
INJURY

The role of T cells in tissue injury is supported by several early studies [11-15]. Zwacka et
al. [15] demonstrated an early role of T cells in mouse liver ischemia-reperfusion injury. In
this mouse model of liver injury, T cells were detected maximally at 1 h post reperfusion
[15]. Using T-cell deficient mice and/or adoptive transfer of T cells, T cells were found to be
key mediators of inflammatory responses mediated by neutrophils [15]. In a warm
ischemiareperfusion model, using specific markers for inflammatory cells, macrophages,
CD4+ T cells and CD8+ T cells have been identified in renal tissue [16]. The appearance of
these inflammatory cells began as early as 1 h after ischemia-reperfusion and appeared to
peak at around 5 days [16]. Several other studies have demonstrated that CD4+ T cells are
involved in kidney ischemia-reperfusion injury (IRI) [17-21]. However, conventional CD4+

T cells are thought to play an obligatory role in antigenspecific, cognate immunity that
requires 2–4 days for T cell processing. The kinetics of conventional T cell activation is
inconsistent with the rapid, innate immune response following IRI. By contrast, natural
killer T (NKT) cells are a T cell sublineage [22] known to participate in innate immunity
and may contribute to the early events in IRI (described below).

HOW ARE T CELLS ACTIVATED?
Both kidney parenchymal cells and bone marrow-derived cells make up the renal interstitial
microenvironment [3]. Under normal conditions, members of the mononuclear phagocytic
system make up the largest population of immune cells in the kidney [23-25]. Many of these
mononuclear phagocytes are dendritic cells, based on the expression of phenotypic markers
[23-25]. Dendritic cells are professional antigen presenting cells (APCs), specialized for
activating T cells. In addition, the uninjured kidney also contains several different types of T
cells [CD4+, CD8+, CD4−CD8−, NKT and regulatory T cells (Tregs)] [26]. Following
ischemia-reperfusion, vascular endothelial cells and renal tubular epithelial cells are injured
and play a critical role in initiating and facilitating inflammation in response to kidney injury
[27]. After injury, damage-associated molecular patterns are released by dead or dying cells
in the kidney, and these molecules activate dendritic cells through interaction with toll-like
receptors and a variety of other proinflammatory receptors [28]. Dendritic cells in turn
upregulate positive costimulatory ligands, produce proinflammatory cytokines and activate
both innate and adaptive immune cells (including T cells) [29-31]. The injured tubular
epithelial cells produce chemokines to attract circulating leukocytes and renal vascular
endothelial cells upregulate expression of adhesion molecules to facilitate extravasation of
leukocytes [27,32-34]. In summary, the kidney interstitium is inhabited by professional
APCs and T cells under normal circumstances and after injury multiple cells contribute to
the establishment of a proinflammatory microenvironment.

Common features of T cells are the expression of the T cell receptor (TCR) and CD3, which
is a protein complex that transduces signals from the TCR into the T cell. The TCR allows T
cells to recognize specific antigens (peptides, glycolipids, etc.) presented by APCs. At the
time of antigen presentation, additional signals provided by APCs influence the type of T
cell response that will develop. Costimulation is one such signal provided through cell
surface receptors and ligands on APCs and T cells. Positive costimulation through CD28 on
T cells and CD80 or CD86 expressed on APCs reinforces the TCR signal and promotes
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cytokine production and T cell proliferation [35]. On the other hand, negative costimulation
through inhibitory receptors on T cells [e.g. cytotoxic T lymphocyte antigen-4 (CTLA-4)
and programmed death 1 (PD-1)] antagonizes the activation of T cells [35]. Some APCs also
produce cytokines such as interleukin (IL)-12 and IL-23 that promote and direct the T cell
response to antigens.

Nitric oxide is an important signaling molecule and critically related to the pathogenesis of
AKI [36]. Depending on its concentration and duration of action nitric oxide can promote
survival or death of endothelial and epithelial cells of the kidney [36]. In addition, nitric
oxide and inducible nitric oxide synthase (iNOS) can influence the immune response. For
example, nitric oxide is required for processing of certain antigens intracellularly prior to
presentation to T cells by APCs [37]; however, iNOS-expressing dendritic cells were shown
to inhibit T cell activation in an autoimmune myocarditis model [38]. In an ischemic AKI
model, iNOS-expressing macrophages contribute to kidney injury, but the role of T cells in
this process has not been studied [39]. Given the complexity of the actions of nitric oxide in
different contexts and cell types, the influence of nitric oxide on T cell action during AKI
requires further study to be understood.

ROLE OF T CELL SUBSETS IN ACUTE KIDNEY INJURY
The family of T cells is large, containing multiple subtypes of lymphocytes with vastly
different characteristics. CD3+CD4+ T helper (Th) cells recognize peptide antigens and
primarily coordinate and promote the activity of other inflammatory cells. Depending on the
context of their activation (costimulation and cytokine milieu), naive CD4 T cells can
differentiate into: Th1 cells that produce interferon γ (IFN-γ), Th2 cells that produce IL-4,
Th17 cells that produce IL-17, or several other types of Th cells [40]. On the other end of
the spectrum of CD3+CD4+ lymphocytes are the Tregs that suppress the activation of most
other proinflammatory cells [41]. Tregs are identified by the expression of the transcription
factor forkhead box P3 (FoxP3) [42-44] and use a variety of mechanisms to inhibit other
immune cells. These include production of anti-inflammatory cytokines (e.g. IL-10) or
molecules (e.g. adenosine) or cell contact-dependent mechanisms (CTLA-4, cyclic
adenosine monophosphate transfer, etc.) [41]. CD3+CD8+ cytotoxic T cells recognize
antigens generated by cancerous or infected cells and kill target cells using perforin,
granzymes and/or Fas ligand. NKT cells make up a relatively small proportion of T cells but
are robust producers of Th1 and Th2 cytokines. There are two main groups of NKT cells:
type I, invariant NKT cells that express very similar TCRs and recognize glycolipid antigens
(e.g. α-galactosylceramide) and type II NKT cells that express more diverse TCRs and
recognize other lipid antigens (e.g. sulfatide). Depending on the setting, NKT cells can
perform proinflammatory or anti-inflammatory functions [45,46]. Thus, T cells are a large
family of lymphocytes with diverse functions and phenotypes.

T CELLS THAT PROMOTE INJURY
As mentioned above, CD4+ T cells were initially identified as the primary type of
pathogenic T cells in experimental AKI. As there are multiple types of CD4+ T cells,
identification of the responsible subset(s), and the ways in which they affect renal function
during AKI, is critical to developing therapeutics based on the role of T cells in injury.
There are numerous mechanisms by which T lymphocytes can induce injury to other cells
and promote renal dysfunction (Fig. 1) [47,48]. The requirement for IFN-γ made by T cells
suggests that Th1 cells are involved. However, when signal transducers and activators of
transcription 4 knockout mice (which cannot mount Th1 responses) were compared with
wild-type mice after IRI, only a mild reduction in serum creatinine was observed, and no
difference in tissue damage was noted between groups [49]. Also, the time required for a
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conventional Th1 response to develop (3 or more days) is not congruent with the
inflammation observed in experimental AKI (beginning within hours). In contrast, NKT
cells (some but not all of which are CD4+ [46]) once activated can produce large amounts of
IFN-γ within hours [45,46]. In support of this, adoptive transfer of α-galactosylceramide
(glycolipid antigen specific for type I NKT cells) loaded dendritic cells prior to subthreshold
ischemic injury exacerbates renal injury and dysfunction in wild-type mice [33,50■■], but
not NKT-cell deficient or IFN-γ-deficient mice [33]. It should be noted that that several
studies have observed protective phenotypes in mice either lacking type I NKT cells, or in
which glycolipid antigen presentation has been blocked [8,33], whereas another study did
not report protection in type I NKT-cell deficient mice [51]. The reasons for this discrepancy
are not known, but could be because of the differences in gut flora between different
institutions as gut flora has been shown to modulate type I NKT cell phenotype [52].

Some other recent studies have focused more on the mechanisms of activation, and
mediators produced by CD4+ T cells in experimental AKI rather than identification of
specific subsets. For example, Akcay et al. [48] reported that IL-33 released by renal cells
injured by cisplatin activates CD4+ T cells and promotes their recruitment to the kidney.
IL-33 promoted chemokine (C-X-C motif) ligand 1 (CXCL1) production by CD4+ T cells in
the kidney and in vitro [48], and CXCL1 is known to promote neutrophil recruitment and
can directly induce apoptosis [53]. Other recent studies have focused on T-cell
immunoglobulin and mucin domain-containing protein-1 [(TIM-1); also known as kidney
injury molecule-1 (KIM-1)] expressed on T cells in experimental AKI models [54,55].
TIM-1 is expressed on activated CD4+ T cells as well as injured renal tubular epithelial cells
[56■]. Using a blocking antibody to TIM-1 [rat monoclonal TIM-1 antibody (RMT1–10)]
was protective against both cisplatin [54] and ischemia-reperfusion [55] induced renal injury
in mice. The protective effect was lost in both studies if the antibodies were administered to
recombination activating gene-1 (RAG-1) knockout mice (which lack T and B cells) prior to
injury [54,55]. Adoptive transfer of splenocytes (containing T and B cells) into RAG-1
knockout recipients restored the protective effect of RMT1–10, demonstrating the role of
immune cells in protection from IRI [55]. As pointed out by Ichimura et al. [56■], there are
several caveats of these studies to be considered before concluding that TIM-1 on CD4+ T
cells is a target to be blocked therapeutically. These include the expression of TIM-1 on
immune cells other than just CD4+ T cells, possible stimulatory action of the RMT1–10
antibody on TIM-1 and the very high expression of TIM-1/KIM-1 on tubular epithelial cells
vs. intrarenal immune cells after injury (see [56■] and references therein).

In summary, numerous studies support a pathogenic role for T cells in AKI. Progress toward
understanding the identity of the T cells involved and the mechanisms by which they
promote injury is progressing at a modest pace. Factors hindering progress include the ever
growing awareness of the heterogeneity and plasticity of T cell subsets [40] and limitations
of the current mouse models and experimental reagents. Persistence and innovative ideas/
technologies are needed to advance our knowledge of T cell-based targets for inhibition to
ameliorate AKI.

T CELLS THAT PROTECT FROM INJURY OR PROMOTE REPAIR
Research has been progressing more rapidly on the recently discovered protective role of
several types of T cells in AKI models. Several subsets of T cells show promise as potential
therapeutic agents themselves (as cell-based immunotherapies) or as targets for
pharmacological enhancement.
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Regulatory T cells
Tregs provide a balance to proinflammatory immune cells by using multiple mechanisms to
suppress inflammation (Fig. 2) [41,57]. In 2009, the role of endogenous Tregs to protect
against kidney IRI [58] and promote recovery from ischemic injury [59,60] was identified.
Since then the critical role for Tregs in the protection afforded by renal ischemic
preconditioning has been demonstrated [61,62]. Furthermore, in a nephrotoxic cisplatin-AKI
model endogenous Tregs were also shown to protect from injury [63]. Adoptive transfer of
isolated Tregs prior to ischemia or cisplatin markedly protects mice from renal dysfunction
and tissue injury [58,62,63,64■■]. In addition, adoptive transfer of Tregs after injury
accelerates repair and restoration of renal function [59]. Importantly, Treg adoptive transfers
have been successfully performed in humans [65-67], suggesting this type of therapy could
be used clinically for AKI.

An alternative approach is to target endogenous Tregs to promote their proliferation, activity
or trafficking to enhance their ability to protect the kidney or promote recovery from injury.
Recently, numerous agents that target Tregs in vivo have been utilized in models of AKI
with very encouraging results. The sphingosine kinase inhibitor dimethylsphingosine (DMS)
protects against IRI in mice by promoting Treg recruitment to the kidney very quickly
during reperfusion [68■]. A second sphingosine kinase inhibitor did not replicate this
protection [68■], suggesting the enhanced Treg trafficking is mediated by a currently
unknown mechanism of action for DMS. CTLA-4 blockade negated the protective effect of
DMS in this study suggesting that Tregs utilize CTLA-4 to protect the kidney [68■].
Through CTLA-4, Tregs interact with dendritic cells to downregulate costimulatory
molecule expression, and thus inhibit their ability to promote inflammation [69]. In another
study, the protective effect of FTY720, a sphingosine-1-phosphate analog, on kidney IRI
was shown to require Tregs [70]. Interestingly, bee venom injections increased Treg
numbers in the spleen of mice and enhanced the trafficking of Tregs to the kidney shortly
after cisplatin administration [71■■]. Bee venom injections reduced renal dysfunction and
injury caused by cisplatin in control mice, but not mice in which Tregs were depleted
[71■■]. In support of the feasibility of this therapy in cancer patients, bee venom had no
effect on cisplatin’s anticancer effects in their mouse model [71■■]. In other disease models,
IL-2/anti-IL-2 complexes protect from inflammatory injury by inducing Treg proliferation in
vivo [72]. Kim et al. [73■■] used this technique in mice and nicely demonstrated that IL-2/
anti-IL-2 complexes can be used to prevent renal IRI and promote recovery from IRI if
given after injury. Importantly, IL-2/ anti-IL-2 complexes significantly reduced renal
fibrosis at 28 days after injury even when treatment was started 1 day after the ischemic
insult [73■■]. Finally, mesenchymal stem cell (MSC) therapy for AKI, which is currently
being studied in several clinical trials (NCT00733876, NCT01275612), was shown to
depend partially on the interaction between MSCs and Tregs in the spleens of recipient
mice, as depletion of Tregs or splenectomy reduced the ability of MSCs to protect the
kidney in this experimental IRI model [74■].

Natural killer T cells
NKT cells have the unique ability to produce Th1 (IFN-γ) and/or Th2 (IL-10 and IL-4)
cytokines rapidly and may promote or inhibit immune-mediated renal injury. Yang et al.
[51] found that adoptive transfer of activated type II NKT cells (those which respond to the
lipid antigen sulfatide) inhibited renal injury induced by ischemia-reperfusion. To offer
protection, the NKT cells needed to traffic into the injured kidney [51]. In-vitro coculture
experiments revealed that suflatide-activated NKT cells suppress hypoxia-induced tubular
epithelial cell death in an IL-10-dependent manner [51]. Using a separate methodology to
target the protective potential of type I NKT cells, our laboratory has loaded wild-type
dendritic cells with α-galactosylceramide in the presence of an immunosuppressive
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adenosine 2A receptor (A2A R) agonist [75■■], or loaded sphingosine-1-phosphate receptor
3 (S1P3R)-deficient dendritic cells with α-galactosylceramide [50■■] prior to adoptive
transfer into mice. A2AR agonist-treated α-galactosylceramide-loaded wild-type dendritic
cells and α-galactosylceramideloaded S1P3R knockout dendritic cells induced long lasting
(up to 7 days after injection) protection from IRI [50■■,75■■]. In addition, significant
functional protection was observed when the ex-vivo manipulated dendritic cells were
injected 3–6 h after ischemia [50■■,75■■]. The protective effects of A2AR agonist-treated
α-galactosylceramide-loaded dendritic cells were dependent on IL-10 expression in the
recipient [75■■] and the α-galactosylceramide loaded S1P3R knockout dendritic cells
required IL-4 [50■■]. These studies show that activation of NKT cells in the appropriate
context can endow the NKT cells with renal protective properties, likely based on their
ability to produce the Th2 cytokines IL-10 and IL-4. These findings are in line with the
previous observation that Th2 responses are protective in renal IRI [49]. Similar to Tregs
and MSCs, dendritic cells have been adoptively transferred to humans in numerous clinical
trials [76] and may represent an effective way to target intrinsic T cells in AKI.

Splenic T cells
The spleen is a rich source of immune cells including T cells. Recent studies suggest that the
spleen plays an important role in modulating organ ischemia-reperfusion. Evidence for the
importance of the spleen in protecting organs comes from studies of preconditioning [77]
and ischemia reperfusion to the kidney [78]. In these studies, splenectomy increases the
injury or inflammation in organs subjected to ischemia-reperfusion or in distant organs
[77,78]. The mechanism for this effect is unknown, however recent studies by Gigliotti et al.
[79■■] have shed some light on this issue. In this study, exposure of mice to ultrasound led
to marked tissue protection and this protective effect required the presence of CD4+ cells.
Protection was lost following splenectomy or in Rag1−/− mice that lacked T and B cells. The
tissue protective effect of ultrasound was reconstituted following adaptive transfer of CD4+

cells into Rag1−/− mice [79■■]. Thus, a novel concept and paradigm has evolved that
extrarenal splenic T cells may have an important modulatory role in kidney IRI (Fig. 3)
[79■■].

CONCLUSION
The role of T cells in AKI has become much more complicated than originally envisioned.
Some progress has been made in understanding the detrimental mechanisms of T cells in
promoting injury and a previously unrecognized protective role of some T cell subsets has
emerged. The complexity of the T cell family and the characteristics of T cells that are yet
unknown make this a challenging area of investigation. However, as our understanding of
how T cells modulate renal injury grows this should facilitate development of specifically
targeted therapies to protect the kidney without causing unwanted global
immunosuppression.
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subsequent kidney IRI. Ultrasound-mediated protection requires splenic CD4 T cells that initiate
a protective anti-inflammatory response.
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KEY POINTS

• Some T cells use proinflammatory cytokines (e.g. IFN-γ) and chemokines (e.g.
CXCL1) to promote acute renal injury.

• Tregs promote protection from injury by production of IL-10 and expression of
anti-inflammatory proteins on their cell surface.

• Activation of endogenous Tregs or cell-based therapy using Tregs may be used
in the treatment of AKI.

• NKT cells can induce renal inflammation and injury or protect from it
depending on the context of their activation.
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FIGURE 1.
Potential mechanisms of renal injury by T cells. Expression of FasL on bone marrow-
derived cells (possibly T cells) promotes renal ischemia-reperfusion injury [47]. FasL
interaction with Fas induces apoptosis in Fas bearing cells (e.g. renal TECs (a)). Activated T
cells can release granzymes or perforin to injure neighboring cells (b). Release of
proinflammatory cytokines promotes the activation of neutrophils (PMN), macrophages
(Mφ) and other leukocytes (c). In cisplatin nephrotoxicity, CD4 T cells release the
chemokine CXCL1 [48], which can promote PMN recruitment to the injured kidney (d).
CXCL1, chemokine (C-X-C motif) ligand 1; FasL, Fas ligand; TECs, tubular epithelial
cells.
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FIGURE 2.
Mechanism by which regulatory T cells suppress immune responses. T regulatory cells
(Tregs) target dendritic cells (DCs) to inhibit their maturation through LAG3 (also known as
CD223)–MHC-class-II interactions and CTLA-4 interaction with CD80 and CD86 on the
surface of DCs. By acting as a sink for IL-2, Tregs can cause cytokine deprivation-induced
cell death of effector T cells. Tregs secrete inhibitory cytokines such as IL-10, TGFβ and
IL-35. Metabolic disruption can be induced by Tregs through cell transfer of cyclic AMP
and by the sequential dephosphorylation of ATP by CD39 and CD73 to generate adenosine,
which acts on the adenosine receptor 2A (A2AR) of target cells to mediate suppression.
Cytotoxicity to target cells can also be induced through granzyme A and B and perforin-
dependent killing. AMP, adenosine monophosphate; ATP, adenosine triphosphate; CTLA-4,
cytotoxic T lymphocyte antigen-4; IL-2; interleukin-2; LAG3, lymphocyte-activation gene
3; MHC, major histocompatibility complex; TGFβ, transforming growth factor β. Adapted
with permission from [41,57].
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FIGURE 3.
Splenic T cells are critical for an anti-inflammatory pathway that reduces kidney ischemia-
reperfusion injury. CD4+ T cells in the spleen are activated by ultrasound to produce
acetylcholine (ACh), which activates the α7 nicotinic acetylcholine receptor, expressed on
myeloid cells, initiating an anti-inflammatory response promoting protection from kidney
ischemia-reperfusion injury (IRI). NE, norepinephrine. Adapted with permission from
Gigliotti et al. [79■■].
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