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TheBCR-ABLkinase inhibitor imatinib is highly effective in the treatment of chronicmyeloid leukemia (CML).However, long-term
imatinib treatment induces immunosuppression, which is mainly due to T cell dysfunction. Imatinib can reduce TCR-triggered
T cell activation by inhibiting the phosphorylation of tyrosine kinases such as Lck, ZAP70, LAT, and PLC𝛾1 early in the TCR
signaling pathway.The purpose of this study was to investigate whether the superantigen SEA, a potent T cell stimulator, can block
the immunosuppressive effects of imatinib on T cells. Our data show that the exposure of primary human T cells and Jurkat cells
to SEA for 24 h leads to the upregulation of the Lck and ZAP70 proteins in a dose-dependent manner. T cells treated with SEA
prior to TCR binding had increased the tyrosine phosphorylation of Lck, ZAP70, and PLC𝛾1. Pretreatment with SEA prevents the
inhibitory effects of imatinib on TCR signaling, which leads to T cell proliferation and IL-2 production. It is conceivable that SEA
antagonizes the imatinib-mediated inhibition of T cell activation and proliferation through the TCR signaling pathway.

1. Introduction

Imatinib (IM; formerly STI571) is a tyrosine kinase inhibitor
that has strong activity against the BCR/ABL tyrosine kinase,
a fusion protein that causes the onset of Philadelphia chromo-
some positive chronic myeloid leukemia (CML) and broad
activity against Src-family tyrosine kinases, such as c-KIT
and platelet-derived growth factor receptor, which play a
role in gastrointestinal stromal tumors. The introduction of
IM for the treatment of CML represents an ideal example
of molecular targeted therapy in human cancer. It is also
conceivable that although imatinib is a successful kinase
inhibitor in clinical use, immunosuppression, an imatinib-
associated side effect, is inevitable. Accumulating evidence
shows that long-term imatinib treatment induces defects in
humoral and cell-mediated immunity [1–5].

A new generation of tyrosine kinase targeted drugs, such
as dasatinib and nilotinib, are effective in many cases in
which disease is resistant to imatinib. These drugs have been

reported to inhibit T cell function in vitro, in mouse models
[6–13], and in CML patients [14, 15].

Studies have shown that the inhibition of Lck and other
kinases involved in T cell signaling by tyrosine kinase
inhibitors, including imatinib, dasatinib, and nilotinib, is
responsible for the suppression of T cell function. The Src
kinase Lck is a key target of these compounds during T cell
activation. These findings raise a concern for potential T
cell inhibition in patients taking tyrosine kinase inhibitors.
While targeted therapy could induce CML remission, this
disease remains largely incurable. We have come to realize
that induction of the immune response may lead to a cure
for this disease [16–21].

T cells play a central role in cell immunity. The
T cell receptor (TCR) signaling cascade is initiated by
engagement of antigenic peptides bound to the major his-
tocompatibility complex (MHC). Upon TCR stimulation,
CD4/CD8-associated Lck is brought into proximity with
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TCR/CD3 complexes and phosphorylates the immunorecep-
tor tyrosine-based activation motifs (ITAMs) of the CD3
subunits. ZAP70 is then recruited to the phosphorylated
ITAMs and subsequently activated by Lck. Activated ZAP70
phosphorylates LAT, which in turn phosphorylates PLC𝛾1
and other signaling molecules, resulting in the activation
of multiple pathways. These sequential molecular events
eventually lead to T cell activation and IL-2 production.

Although the mechanism of imatinib-mediated TCR
signaling inhibition has been well defined, a feasible solution
for imatinib-mediated immunosuppression is unknown. As
the critical tyrosine kinase in the TCR signaling pathway,
Lck is vital for T cell activation. In Lck-deficient T cell
lines, T cells fail to induce ZAP70 phosphorylation and Ca+
mobilization following TCR stimulation. On this basis, Lck
inhibition by imatinib due to its sequence homology with
ABL kinase in the adenosine triphosphate (ATP) binding
pocket consequentially results in decreased TCR-mediated
T cell activation [22]. It has been demonstrated that Lck
determines the threshold forT cell activation and a lack of Lck
in T cells leads to an increased activation threshold [23–25].

Because Lck expression affects T cell activation and pro-
liferation after TCR engagement, it is reasonable to hypoth-
esize that the Lck upregulated during imatinib treatment
decreases the threshold of T cell activation and to some extent
may enhance T cell activation, proliferation, and cytokine
production. Unlike conventional peptide antigens, bacterial
superantigens (SAgs) are protein toxins that bind to the
external surfaces of the TCR and MHC class II to simultane-
ously activate large numbers of T cells [26]. Therefore, SAgs
have been considered to activate T cells through the canon-
ical signaling pathway, which includes TCR engagement of
peptide-MHC complexes. Previous findings have shown that
the superantigen staphylococcal enterotoxin A (SEA) not
only powerfully activates T cells, but also induces broad
expression of genes related to cytokine production and TCR
signal transduction [27–29], implying that SEAmay affect the
expression of early kinases in the TCR signaling pathway.The
aim of this study was to investigate the effect of SEA on the
expression of Lck, Fyn, and ZAP70 and determine whether
this effect could antagonize the imatinib-mediated inhibition
of T cell activation. We demonstrate that SEA upregulates
the expression and phosphorylation of Lck and subsequently
avoids the imatinib-mediated inhibition of T cell activation.

2. Materials and Methods

2.1. Cell Preparation, Chemicals, and Antibodies. The Jurkat
cell line was obtained from American Type Culture Collec-
tion (ATCC). Peripheral blood mononuclear cells (PBMCs)
were obtained from four healthy donors who provided
informed consent. Mononuclear cells were isolated by Ficoll-
diatrizoate density gradient centrifugation (Sigma Chemical
Co., USA). Imatinib mesylate (Glivec, STI571) was purchased
from Selleck Chemicals (USA), and SEA was obtained from
Sigma (USA).The following antibodies were used as primary
antibodies : rabbit monoclonal anti-Lck, anti-Fyn, and anti-
ZAP70 (Epitomics, USA), mouse monoclonal anti-GAPDH

(Santa Cruz Biotechnology, USA), mouse monoclonal anti-
phospho-Lck (Tyr394) (GeneTex, USA), rabbit monoclonal
anti-phospho-ZAP70 (Tyr319) (Cell Signaling Technology,
USA), and rabbit monoclonal anti-phospho-PLC𝛾1 (Tyr783)
(Epitomics, USA). Secondary antibodies were purchased
from Santa Cruz Biotechnology (USA).

2.2. Cell Culture. Jurkat cells were maintained in RPMI 1640
medium (Gibco, USA) supplemented with 10% fetal bovine
serum (Hangzhou Sijiqing Company, China), 100U/mL
penicillin, and 100 𝜇g/mL streptomycin (Invitrogen) at 37∘C
in a humidified incubator with 5% CO

2
. Culture media was

passaged every 2-3 days.

2.3. ELISA for IL-2. Jurkat cells or human PBMCs (1 ×
10
5/well) in a total volume of 200𝜇L were incubated in 96-

well plates in the presence or absence of SEA (20 ng/mL) for
24 h and subsequentlywashedwith PBS.Afterward, cells were
treated with or without imatinib (40 nM) for 1 h followed by
stimulation with anti-CD3/CD28 coated beads at a cell : bead
ratio of 5 : 1 for 24 h. The IL-2 content in the supernatant was
measuredwith an ELISA kit (RayBiotech, USA) following the
manufacturer’s protocol.

2.4. Cell Proliferation Assay. Cells were treated the same as
above. After treatment, 10 𝜇L of CCK-8 solution (Dojindo,
Japan) was added into each well, and the cells were incubated
at 37∘C for 2 h. The sample absorbance was then recorded at
450 nm.

2.5. Western Blotting Analysis. Jurkat cells (3×106/well) were
cultured in 6-well plates with different concentrations of SEA
for 24 h. Cells without treatment served as a negative control.
The expression of Lck, Fyn, and ZAP70 was examined by
Western blotting [7]. Briefly, cells were lysed in 1mL of lysis
buffer containing 1% Triton X-100. Protein concentrations
were determined by the Bradford assay. The proteins were
separated by electrophoresis in a 10% SDS-polyacrylamide
gel and transferred onto a PVDF membrane. The blots were
blocked with 5% (w/v) nonfat drymilk constituted in 1x TBS-
T for 1 h at room temperature. Membranes were incubated
at 4∘C overnight with a primary monoclonal antibody in 5%
bovine serum albumin (BSA) in 1x TBS-T and then with
the respective horseradish peroxidase-conjugated secondary
antibody as directed by the manufacturer for 1 hour at room
temperature. Immunoreactive bands were visualized using
the enhanced chemiluminescence light (ECL) detection
reagent.

To assess the effects of SEA on the imatinib-mediated
inhibition of the TCR signaling pathway, Jurkat cells and
PBMCs (3 × 106/well) were pretreated with and without SEA
(20 ng/mL) for 24 h followed by imatinib or control stimu-
lation (40 nM) for 1 hour. Finally, cells were stimulated with
anti-CD3 and anti-CD28 coated Dynabeads (Dynal, Invitro-
gen, Oslo, Norway) at a cell : bead ratio of 1 : 1 for 15min [28].
Whole-cell lysates were subjected to Western blot analysis to
examine the phosphorylation level of Lck, ZAP70, and PLC𝛾1
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Figure 1:The cell proliferation and IL-2 production of Jurkat cells and PBMCs following TCR stimulation. (Control) Untreated Jurkat cells or
PBMCs. (SEA) Cells were pretreated with SEA (20 ng/mL). (IM) Cells were pretreated with 40 nM imatinib. (SEA + IM) Cells were pretreated
with SEA (20 ng/mL) for 24 h followed by 40 nM imatinib treatment for 15min. Each groupwas stimulated with anti-CD3/CD28 coated beads
at a cell : bead ratio of 5 : 1 for 24 h. Cell proliferation was assayed with the CCK-8 kit (a) and (b). The IL-2 level was assayed using a human
IL-2 ELISA kit (c) and (d). The mean value and standard deviation of 3 independent experiments are shown.

with the respective horseradish peroxidase-conjugated sec-
ondary antibody as directed by the manufacturer.

2.6. Statistical Analysis. The data were analyzed using SPSS
version 16.0 statistical software. Error bars indicate SDs from
the mean of at least three replicates. Statistical tests were
conducted using the Student’s test or analysis of variance
(ANOVA) where indicated.

3. Results

3.1. SEA Reduces the Inhibitory Effects of Imatinib on T Cell
Proliferation and IL-2 Production. It is known that imatinib
suppresses T cell activation and proliferation. To investigate
the effects of SEA on the inhibitory effects of imatinib
on T cell proliferation and IL-2 production, Jurkat cells

and PBMCs were preincubated with SEA and then washed
followed by treatment with imatinib and stimulation with
anti-CD3/CD28 coated beads. T cell proliferation and IL-2
production were measured using the CCK-8 kit and an IL-
2 ELISA kit. The T cell proliferation and the IL-2 level were
significantly decreased with imatinib treatment alone, but
this suppression could be reversed with SEA pretreatment
(𝑃 < 0.05) (Figure 1).

3.2. SEA Upregulates Lck and ZAP70 in a Dose-Dependent
Manner. The effects of SEA on the imatinib-mediated inhi-
bition of T cell activation and proliferation could be due to
the upregulation of proximal signaling eventsmediated by the
TCR because imatinib could inhibit TCR signal transduction
[7]. Therefore, we used the well-characterized Jurkat T cell
line to determine the level of signaling protein expression in
response to SEA.
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Figure 2: SEA increases Lck and ZAP70 expression in Jurkat cells. (a) Western blot analysis of Lck, Fyn, and ZAP70 after 24 h of incubation
with the indicated concentrations of SEA. GAPDH served as a loading control. (b) Densitometry (target protein : GAPDH ratio normalized
to control) was conducted on three independent experiments and is depicted in the bar graph.

Jurkat cells were incubated with different concentrations
of SEA ranging from 5 to 20 ng/mL for 24 h, and cell
lysates were subjected to Western blot analysis. The results
demonstrated that SEA increases Lck and ZAP70 protein
expression in a dose-dependent manner, but there was no
effect on Fyn expression (Figure 2).

3.3. SEA Abrogates the Inhibitory Effects of Imatinib on
TCR Signaling. It has been reported that imatinib selectively
inhibits Lck and its downstream signaling molecules [7].
Given the restricted expression of Lck, which binds to CD4/8
and is located within the vicinity of TCR-CD3 complex, as
a superantigen, SEA not only causes upregulation of the Lck
and ZAP70 proteins but also might cause an increase in the
phosphorylation of Lck and downstream proteins by binding
the TCR V beta chain. We asked whether the upregulation
of Lck by SEA could prevent the suppressive effects of
imatinib during T cell activation. To test this hypothesis, we
measured the phosphorylation of Lck and its downstream
molecules during T cell stimulation. We found that the Lck,
ZAP70, and PLC𝛾1 phosphorylation in T cells, including the
Jurkat cell line and PBMCs, could be increased by SEA and
the reduction in the activating phosphorylations of these
four signaling proteins caused by imatinib was prevented
after pretreatment with SEA followed by TCR stimulation
(Figure 3). SEA rescues T cells from inhibition by imatinib.

4. Discussion

Small molecule tyrosine kinase inhibitors have been suc-
cessfully used for the treatment of CML. Imatinib and

dasatinib are two of the most commonly used tyrosine kinase
inhibitors, and both have been shown to impact T cell
function. Imatinib inhibits T cell receptor-mediated T cell
activation and proliferation in a dose-dependent manner
[1, 7]. Brauer et al. described the downregulation of several
LAAs in CMLs treated with imatinib [30]. Due to this
activity, their use as potential immunosuppressants has been
proposed. These agents have been recently used to treat
autoimmune diseases, such as immune-mediated kidney
injury and rheumatoid arthritis. Tyrosine kinase inhibitors
(TKIs) are effective for the treatment of these diseases [31, 32].

With the development and use of TKIs being rapidly
expanding, their potential side effects against cancer are
of considerable clinical importance. The T cell suppressive
effects of imatinib and dasatinib have been attributed to Lck
inhibition. Our study is consistent with published results
demonstrating that imatinib perturbs TCR signaling, inhibit-
ing the phosphorylation of LCK and Zap70 following TCR
stimulation (Figure 3).

Lck, a src family kinase, is critical for T cell activation,
and its activity is tightly regulated in lipid rafts. Indeed,
an appropriate balance between active and inactive Lck
is essential for safe TCR sensitivity, and abnormal T cell
responsiveness occurs if the balance is broken. On one
hand, an absence or reduction in Lck activity leads to an
impairment in the activation of mature T cells. On the
other hand, increased Lck phosphorylation is associated with
T cell hyperresponsiveness, which can induce autoimmune
disease such as that exhibited by SLE patients [33, 34].
With respect to the role of Lck in T cell activation, Lovatt
et al. support the suggestion that Lck sets a threshold of
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Figure 3: SEA pretreatment inhibited the reduction in imatinib-induced phosphorylation of Lck, ZAP70, and PLC𝛾1 in Jurkat cells (a) and
PBMCs (b). Densitometry (target protein : GAPDH ratio normalized to control) was conducted on three independent experiments in Jurkat
cells (c) and PBMCs (d). Jurkat cells or PBMCs were pretreated in the absence or presence of SEA (20 ng/mL) followed by treatment with or
without imatinib (40 nM), and cells were then stimulated with anti-CD3/CD28 coated beads for 15min. Total cell extracts were resolved by
SDS-PAGE and subjected to immunoblot analysis using phosphospecific antibodies as indicated.

activation in T cells [24]. Accordingly, Lck is undoubtedly a
key protein in the strategy of eliminating imatinib-induced
immunosuppression.

Effective biologic treatment is a promising solution for
tumors. In particular, the existence of a suppressed immune
response directed against tumors can be relieved by treat-
ment, or, alternatively, treatment needs to be combined with
an immune-enhancing therapy. In general, bacterial SAgs can
simultaneously interact with MHC II and TCR molecules
to activate T cells, which produce cytokines such as IL-2
and TNF-𝛼 and both directly and indirectly enhance
immunotherapy efficiency [35–37]. However, there were
reports that superantigens can mediate T-cell-dependent
killing of tumor cells independently ofMHCclass IImolecule
expression on the target cell and the Asp227Ala replace-
ment was introduced to destroy the site having the highest
affinity for MHC class II in SEA to decrease the reactivity
of the superantigen with MHC class II bearing cells for
the treatment of human colorectal cancer [38–40]. These

studies indicated that a direct superantigen-TCR interaction
could result in superantigens activation of T cells in a MHC
class II-free system. And these findings could support our
results that SEA could directly stimulate Jurkat cells.

Bacterial SAgs cause polyclonal T cell activation due
to their capacity to bind different TCR V𝛽 chains [41–43].
Jurkat cells are originally from TCR V𝛽8 T cell clone. And
the V𝛽8 chain could react with SEA weakly [44]. Lck is
activated after TCR engagement with SAgs [45]. Dauwalder
et al. studied the early kinetics of the transcriptional response
of PBMCs primed with SEA and SEG. These authors con-
cluded that SEA, in contrast with SEG, induced the early
transcriptional activation of several pathways, including T
cell activation mediators and TCR-mediated signaling [29].
Although several reports have shown that bacterial SAgs
can activate human T cells lacking Lck, suggesting the
existence of an additional TCR signaling pathway [46, 47],
in this study, we demonstrated that SEA could upregulate Lck
and ZAP70 expression and phosphorylation following TCR



6 BioMed Research International

stimulation. SEA has shown effects that are antagonistic to
the imatinib-mediated inhibition of Lck phosphorylation and
downstream signaling molecules after T cells were pretreated
with SEA (Figure 3).This antagonistic effect may be due to an
increase in Lck and ZAP70 expression. Because the imatinib-
induced inhibition of Lck phosphorylation occurs in a dose-
dependent manner [7], the amount of phosphorylated Lck
reduction is limited at a certain concentration of imatinib.
Thus, Lck is able to trigger TCR-mediated expansion signals if
basal Lck expression is increased prior to imatinib treatment.

In contrast with the conventional paradigm for T cell
activation in which Lck plays a critical activating role in
the TCR signaling process, Criado and Madrenas reported
that Lck is dispensable for T cell activation by SAgs, but
it actively inhibits this signaling pathway. The disruption of
Lck function led to increased IL-2 production in response to
SAgs stimulation [48].These observations could be explained
by the multistage role of Lck in T cell activation signaling
based on the two pools of Lck detected at the immunological
synapse, that is, the central pool and the peripheral pool. Lck
may have a dual role where, early in TCR engagement, the
central Lck pool participates in the initiation and activation
of downstream signaling molecules and the peripheral Lck
pool downregulates TCR-dependent signaling [49].

In conclusion, although the immunomodulatory effects
of imatinib and dasatinib remain controversial [50], it
has been confirmed that increasing effective and specific
immunotherapies involving vaccination or adoptive cellular
immunotherapy are necessary for CML. In this study, we
showed that imatinib may affect TCR-mediated immune
responses and characterized the effects of SEA on the
imatinib-mediated inhibition of T cell reactivation in which
this superantigen increased the tyrosine phosphorylation of
Lck, ZAP70, and PLC𝛾 in T cells. This finding suggests
that the SEA could be used for the prevention of imatinib-
mediated T cell immunosuppression. In addition, increasing
Lck upregulation is a feasible option for restimulating the
immune response in CML patients with TKI treatment.
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