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Abstract
Background—Little is known for certain about the genetics of schizophrenia. The advent of
genomewide association has been widely anticipated as holding promise as a means to identify
reproducible DNA sequence variation associated with this important and debilitating disorder.

Methods—738 cases with DSM-IV schizophrenia (all participants in the CATIE study) and 733
group-matched controls were genotyped for 492,900 single nucleotide polymorphisms (SNPs)
using the Affymetrix 500K two chip genotyping platform plus a custom 164K fill-in chip.
Following multiple quality control steps for both subjects and SNPs, logistic regression analyses
were used to assess the evidence for association of all SNPs with schizophrenia.

Results—We identified a number of promising SNPs for follow-up studies, although no SNP or
multi-marker combination of SNPs achieved genomewide statistical significance. Although a few
signals coincided with genomic regions previously implicated in schizophrenia, chance could not
be excluded.

Conclusions—These data do not provide evidence for the involvement of any genomic region
with schizophrenia detectable with moderate sample size. However, planned GWAS for response
phenotypes and inclusion of individual phenotype and genotype data from this study in meta-
analyses holds promise for the eventual identification of susceptibility and protective variants.
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Introduction
In the past several decades, it has become generally accepted that schizophrenia (SCZ) is a
complex trait with a substantial genetic component. The accumulated evidence suggests that
SCZ is a relatively common disorder with lifetime morbid risk of 0.72% (1, 2). Genetic
factors have been strongly and consistently implicated via family, adoption, and twin studies
(3, 4). A meta-analytic estimate of the broad sense heritability (5) of SCZ was 81% (95% CI,
73%–90%) (4) and the recurrence risk to siblings (λsibs) (6) was 8.55 (95% CI 7.86–9.57) in
a population-based Swedish national sample of over 7.7 million individuals (2), consistent
with prior estimates (3).

These results have been used in support of the application of an array of linkage and
association methods (7) attempting to identify genomic regions that confer risk for or
protection against the development of SCZ. These efforts have been considerable: we have
identified 31 independent samples in which genomewide linkage has been applied (3,108
multiplex SCZ pedigrees and over 8.3 million genotypes) † and >1,100 association studies
of 525 candidate genes for SCZ have been published ‡.

Despite these efforts, little is known for certain about the genetics of SCZ. The genomewide
linkage studies have not converged to identify a set of high priority genomic regions (8) ;
indeed, no genomic region has been implicated in more than four of 31 genomewide linkage
studies and a perhaps implausibly large 58% of the genome has been implicated at least
once. The accumulated evidence for specific candidate genes such as NRG1 (9, 10),
DTNBP1 (11, 12), or DISC1 (13) does not constitute unequivocal and consistent replication
(14). These findings stand in contrast to other results in human complex trait genetics – for
example, genetic variation in intron 1 FTO was associated with body mass index in 13
cohorts and 38,759 individuals with remarkable consistency (15). The possibility that all
members of a consensus set of the best candidate genes for SCZ are false positives has not
been convincingly excluded.

In the past two years, the widely anticipated method of genomewide association study
(GWAS) has become technically and economically feasible. These studies entail individual
genotyping of considerable numbers of cases and controls for 100,000 or more genetic
markers (single nucleotide polymorphisms, SNPs). Evident successes in identifying highly
compelling candidate genes for age-related macular degeneration (16), body mass index
(15), inflammatory bowel disease (17, 18), type 1 diabetes mellitus (18), and type 2 diabetes
mellitus (19–22) support the utility of GWAS. To date, two GWAS that employed
individual genotyping have been published for psychiatric disorders – a small study of SCZ
(23) and the Wellcome Trust Case-Control Consortium study of bipolar disorder (18).
Multiple GWAS are known to be in progress for attention-deficit hyperactivity disorder,
autism, bipolar disorder, and major depressive disorder as well as for SCZ.

In 2006, academic investigators from the NIMH-funded Clinical Antipsychotic Trials of
Intervention Effectiveness project (CATIE) (24, 25) entered into a scientific collaboration
with Eli Lilly and Company to conduct individual GWAS genotyping and joint analyses on

†http://slep.unc.edu (accessed 28JUN2007)
‡Â‡ http://www.schizophreniaforum.org/res/sczgene (accessed 28JUN2007)
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the CATIE samples. The collaboration contract required that genotype and phenotype data
be made available to the scientific community with intellectual property rights consistent
with NIH policies intended to maximize the public benefit resulting from the research. The
genotype and phenotype data reported here were deposited with the controlled-access
repository of the NIMH in 6/2007 †.

We report here the primary analyses aimed at identifying SNPs associated with
susceptibility to SCZ using 492,900 SNPs that were genotyped in 738 participants with SCZ
and 733 group-matched controls from a United States population based sample.

Methods
We have attempted to follow published guidelines for GWAS (26, Box 1).

Subjects
All cases were participants in the CATIE project (NIMH contract NO1 MH90001) which
was conducted between 1/2001-12/2004. CATIE was a multi-phase randomized controlled
trial of antipsychotic medications involving 1,460 persons with SCZ followed for up to 18
months (24, 27). The philosophy of the trial was to assess controlled treatment with
antipsychotic drugs in a broad range of patients with SCZ under “real world” conditions. To
maximize representativeness, subjects were ascertained from an array of clinical settings
across the US. 1,894 subjects were evaluated and 1,460 (77.0%) entered into CATIE. No
subject was known to be related to any other subject. The optional genetic sub-study began
about a year after the trial began and 51% of CATIE participants donated a DNA sample.

Preliminary diagnoses were established by referring psychiatrists and final study diagnoses
of DSM-IV SCZ (28) were independently established by CATIE personnel using the
Structured Clinical Interview for DSM-IV (SCID) (29) including review of all available
information (including psychiatric and general medical records) along with one or more
subject interviews. Interviewers were experienced Master’s-level clinicians who were
trained to criterion via a standard protocol (29). Any diagnostic uncertainties were resolved
via discussion with one of the CATIE senior clinicians. Study inclusion criteria were:
definite diagnosis of SCZ (28, 29), age 18–67 years, clinical decision that oral medication
was appropriate, adequate decisional capacity, and provision of written informed consent.
Exclusion criteria are detailed elsewhere (24). Briefly, patients were excluded if they had:
received a diagnosis of schizoaffective disorder, mental retardation, or another cognitive
disorder; a history of serious adverse reactions to the proposed treatments; only one
psychotic episode; a history of treatment resistance (defined by the persistence of severe
symptoms despite adequate trials of one of the proposed treatments or prior treatment with
clozapine); pregnant or breastfeeding; or a serious and unstable medical condition.
Individuals with psychoactive drug use disorders were included but only when there was
positive evidence that SCZ was an independent diagnosis.

Controls were ascertained from a US national sampling frame as part of the NIMH Genetics
repository (MH059571, PI Dr. Pablo Gejman, release v4.0, 6/2006). Controls were collected
by Knowledge Networks (KN), a survey and market research company whose panel
contains approximately 60,000 households (>120,000 unrelated adults). Households were
selected via random digit dialing and proportionally from 25 major US population areas and
financial incentives were provided for participation. The KN panel is generally
representative of the US population but with a slight bias toward higher income and

†http://www.nimhgenetics.org (accessed 28JUN2007)
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education. To be eligible for matching to cases, we required that potential controls deny any
history of SCZ, schizoaffective disorder, bipolar disorder, auditory hallucinations, and
delusional beliefs. These controls are being used for multiple additional GWAS and meta-
analysts need to use caution when combining results or data across studies that use these
common controls.

Case-control matching
There were 3,487 individuals in v4.0 of the control dataset and 2,645 controls were eligible
for matching to CATIE cases – 842 individuals were removed from consideration due to at
least one of the following: a self-reported possible history of a psychotic disorder (SCZ,
schizoaffective disorder, bipolar disorder, delusional disorder, or auditory hallucinations),
age <18 or age >67, lack of documentation of informed consent, or missing data for a
matching variable (age, sex, or self-reported race). Cases were group-matched to controls by
five-year age band, sex, and self-reported race. Most cases (91.4%) were successfully
matched to controls. The exception was for 66 cases (8.6%) that could not be matched due
to a deficiency of African-American males aged 18–38 years in v4.0 of the control cohort.
Rather than eliminate cases, African-American females in this age band were selected as
controls.

DNA Sampling & Cell Line Establishment
Peripheral venous blood samples were sent to the Rutgers University Cell and DNA
Repository (RUCDR) where cell lines were established via EBV transformation. RUCDR
employs stringent quality control procedures and the success rate for immortalization
exceeds 99%. Sample DNA concentrations were quantified and normalized via the use of
Picogreen dsDNA Quantitation Kits (Molecular Probes, Eugene, OR).

Ethical Issues
The CATIE study was approved by the institutional review board at each site, and written
informed consent was obtained from the subjects or their legal guardians (including an
additional consent for genetic studies). Written informed consent was obtained from all
controls. All biological samples, phenotypes, and genotypes were de-identified before
deposit into the NIMH/RUDCR repositories. Although the analyses described here are
generally considered not to be “human subjects research” as defined by the relevant US
statutes (45 CFR part 46), this research was reviewed and approved by the IRB at UNC-
Chapel Hill.

GWAS Genotyping
Individual genotyping was conducted by Perlegen Sciences (Mountain View, CA, USA)
using three genotyping chips – Affymetrix 500K “A” chipset (Nsp I and Sty I chips), Santa
Clara, CA, USA) (30) and a custom 164K chip created by Perlegen (31) to provide
additional genome coverage. Genotype calls were generated with a proprietary Perlegen
algorithm (32) applied to the .cel files from cases and controls together. The Perlegen calling
algorithm shows excellent agreement with genotype calls from BRLMM (33) in a subset of
the controls used in this study (see below) as well as in genotyping of 270 HapMap samples
as part of GAIN (34) †. Supplemental Methods Part 1 provides additional details.

†Available at dbGaP, http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap (accessed 28JUN2007)
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Genotyping Quality Control
There were 500,568 SNPs on the Affymetrix 500K chips and 164,871 on the Perlegen
custom chip (665,439 SNPs in total). Of these, 157,048 SNPs failed Perlegen’s quality
control (20.2% of the Affymetrix 500K and 33.9% of the Perlegen 164K SNPs). The QC
process is detailed below (35).

First, the Perlegen genotyping algorithm yielded a quality score for each individual
genotype; after inspection of the quality score distributions, a more stringent quality score
cutoff (≥7) than that originally applied by Perlegen was used.

Second, duplicate agreement was investigated. DNA samples from cases and controls were
on 18 × 96 well plates. Two samples from each plate were chosen at random and included a
second time on that plate (from the same DNA aliquot) for a total of 36 pairs of samples that
were genotyped twice, 18 pairs for cases and 18 pairs for controls. The proportion of SNPs
with non-missing genotype calls that disagreed in these duplicated samples was 0.00291 for
cases and 0.00339 for controls.

Third, in order to investigate the impact of the genotype calling algorithm and genotyping
facility, Perlegen genotype calls were directly compared to BRLMM (33) genotype calls. Of
the controls used here, 277 individuals were independently genotyped using the Affymetrix
500K “A” chips at the MIT/Harvard Broad Institute by Dr. Pamela Sklar ‡. There were
370,704 pairs of SNPs (168,299,616 genotypes) that passed quality control at both
genotyping centers. The proportion of genotypes that were called at both centers was
0.98407 and the proportion of disagreements among called genotypes was 0.00731. These
results suggest that the impact of calling algorithm and genotyping facility was not
substantial.

Fourth, the genotyping data were used to select the final set of subjects for analysis. The
identity-by-state matrix for all autosomal genotypes for all pairwise combinations of
subjects was generated using PLINK (36). Four pairs of cases were cryptic duplicates and
one member of each pair was removed. The numbers of heterozygous and homozygous
genotypes on chrX (excluding the pseudo-autosomal regions) and chrY for each subject
were counted and compared to phenotypic sex – 21 subjects (3 cases and 18 controls) with
sex discrepancies were removed. Twelve subjects (9 cases and 3 controls) were removed for
excessive missing genotypes (≥0.05). After application of these filters, there were 1,471
subjects (738 cases and 733 controls).

Fifth, the final set of SNPs was selected for analysis. Beginning with the 508,286 SNPs
delivered by Perlegen, 76 duplicated SNPs, 3,803 SNPs with minor allele frequencies <0.01,
9,279 SNPs with missingness >0.05362 (the 99.5th percentile in this dataset), and 2,272
SNPs that led to ≥2 disagreements in 36 pairs of duplicated samples were removed. SNPs
were not excluded based solely on deviations from Hardy-Weinberg Equilibrium (37) given
the ancestries of the subjects and as there are informative reasons for departures from HWE
(38). After application of these filters, there were 492,900 SNPs for analysis (44 SNPs were
excluded for multiple reasons). We investigated batch effects and found none.

Control of Population Stratification
Cases and controls are of mixed ancestry. Using the US census “race” categories, 56.3% of
subjects described themselves as only White, 29.6% as only Black/African-American, and
14.1% selected some other or more than one racial category (i.e., American Indian/Alaska

‡http://www.nimhgenetics.org (accessed 28JUN2007)
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Native, Asian, Black/African American, Native Hawaiian/Other Pacific Islander; White, and
Hispanic/Latino). GWAS in a sample of mixed ancestry can yield false positive findings due
to population stratification if there are sufficiently large differences in the phenotype and
genotype distributions within the strata defined by ancestry (39, 40).

There were two critical decisions in regard to the analysis of these GWAS data. First, rather
than stratifying the analysis by self-reported "race" (an imperfect proxy for ancestry) (41),
the entire cohort was analyzed together in order to maximize statistical power. Second, the
available statistical methods for population stratification control were evaluated. At least
five major methods for population stratification control have been described – genomic
control (42), structured association (43), principal components (44), multi-dimensional
scaling (36), and partial least squares relating phenotype to ancestry-informative markers
(45, 46). These methods were evaluated extensively using these GWAS data – see
Supplemental Methods Part 2 and Lee et al. (in preparation) for details. Briefly, the central
criteria in evaluating these methods were control of Type 1 error while preserving statistical
power. To avoid bias, these comparisons were based on lists of p-values alone and were
blinded to all SNP rs numbers and annotation information.

The consensus among the statistical geneticists involved in these evaluations was to use
principal components (44, 47) in order robustly to control for stratification effects while
preserving statistical power. The consensus was to use seven principal components as
covariates in all logistic regression models (see Supplemental Methods Part 2). Moreover, as
has been reported elsewhere (18, 44), the principal components method can capture both
subtle and extensive variation due to both genomic and experimental features and, with the
availability of >105 genetic markers, self-reported “race” is no longer required as a proxy for
ancestry (41). The principal components method is computationally efficient and uses the
genotyping matrix to infer continuous axes of genetic variation (eigenvectors) which then
serve as covariates. The potential weakness of this method is lowered statistical power in
some genomic regions – if a SNP is highly stratified, then it could contribute strongly to a
principal component and induce collinearity. This concern is mitigated by the fact that large
numbers of SNPs contribute to each principal component. All autosomal GWAS SNPs were
used as input to EigenSoft † (44, 47) and default parameters were used except that the outlier
removal option was turned off in order to generate estimates for all subjects.

Single Marker Analyses
All autosomal and pseudo-autosomal SNPs that passed quality control checks were tested
for association with SCZ using logistic regression under a log-additive mode of inheritance
(1 df, each SNP coded as the number of minor alleles). All regression models included the
first seven principal components as covariates in order to adjust for stratification and any
artifacts detectible in the GWAS data. Of the different inheritance models that could be
considered, log-additive model appear to minimize the number of comparisons while
detecting effects under a range of unknown inheritance models (48). For chrX SNPs, a sex
term was added as a covariate and the number of copies of the minor allele were coded as 0
or 2 for males and 0, 1, or 2 for females. Analyses of chrY SNPs were necessarily limited to
males.

Control of False Discoveries
Given the ~500,000 statistical comparisons in a GWAS, highly significant findings (p<10−6)
are expected by chance. To control the risk of false discoveries, q-values (49, 50) were
computed for all p-values for single-marker tests of association. A q-value is an estimate of

†http://genepath.med.harvard.edu/~reich/Software.htm, v1.0 (accessed 28JUN2007)
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the proportion of false discoveries among all significant markers. In other words, a q-value
is the false discovery rate (FDR) for the corresponding p-value. As argued elsewhere (51,
52), the use of q-values is preferable to more traditional multiple testing controls because q-
values: a) provide a better balance between the competing goals of finding true positives
versus controlling false discoveries; b) allow more similar comparisons across studies
because proportions of false discoveries are much less dependent on the number of tests
conducted; c) are relatively robust against the effects of correlated tests (49, 53–60); and d)
provide a more nuanced picture regarding the possible relevance of the tested markers rather
than an all-or-nothing conclusion about whether a study produces significant results. The q-
value threshold for declaring significance was 0.10 – i.e., the top 10% of the significant
findings are, on average, allowed to be false discoveries (see references (51, 56) for a
thorough consideration of these issues). FDR thresholds <0.10 result in a disproportional
drop in power to detect true effects.

Multi-Marker Analyses
The score test of Schaid et al. (61) implemented in the R (62) (v2.5.1) function "haplo.score"
(v1.3.1) † was used for multi-marker association analyses. This test uses unphased
genotypes and probabilistic haplotype assignments in order to estimate haplotype-phenotype
association within a given genomic region. Overlapping sliding windows over the genome
(500 kb segments plus 200 kb segments centered on boundaries between the 500 kb blocks)
were used to estimate linkage disequilibrium (LD) and to form haplotypes via the Gabriel
method (63) implemented in HaploView (64). LD blocks were estimated in European
subjects, the predominant ancestry group in this sample. The resulting 74,411 haplotypes
have a median length of 8.2 kb and inter-quartile range of 2.7–20.0 kb. These haplotypes
contained 335,539 SNPs (69.23% of all autosomal SNPs) and covered 1.368 mb (47.78% of
the autosomal genome). As haplotype frequencies differ by ancestry (65), an assumption of
haplo.score – that all subgroups share the same haplotype frequencies – was violated.
Therefore, GWAS multi-marker analyses were run in separate subgroups, and a combined
test statistic is reported.

Statistical Power
Quanto (66, 67) was used to generate an illustrative approximation of statistical power. An
FDR framework was used to determine the α level – assuming that ~25 of 492,900 GWAS
SNPs have true effects (i.e., the proportion of SNPs without true effects p0=0.99995), two-
tailed α=4.4 × 10−6. Additional assumptions were: 738 cases and 733 controls, lifetime
morbid risk of SCZ of 0.0072 (1, 2), and a log additive genetic model. For statistical power
of 0.80 (β=0.20), the minimum detectible genotypic relative risks are 1.83, 1.56, and 1.50 for
minor allele frequencies of 0.10, 0.25, and 0.40. While the logistic model employed in our
study includes seven EigenSoft principal components as covariates, the power analyses
remain approximately correct as the additional covariates subtract only a very modest
number of degrees of freedom from the test statistic (see Supplemental Methods). Moreover,
the use of principal components could have reduced power if they accounted for variance
due to case-control status.

Software
PLINK (36), SAS (v9.1.3) (68), JMP (69), and UCSC Genome Graphs (70) were used for
data management, quality control, statistical analyses, and graphics. Statistical analyses
conducted using PLINK (36) and the SAS LOGISTIC procedure (68) produced identical
results.

†http://cancercenter.mayo.edu/mayo/research/schaid_lab/software.cfm, v1.3.1 (accessed 28JUN2007)
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Bioinformatics
All genomic locations are based on NCBI Build 35 (71) (UCSC hg17) (70). Pseudo-
autosomal region 1 (PAR1) is assumed to be located on chrX:1–2,692,881 and chrY:1–
2,692,881 and PAR2 on chrX:154,494,747-154,824,264 and chrY:57,372,174-57,701,691
(72). SNP annotations were created using the TAMAL database (73) based chiefly on UCSC
genome browser files (70), HapMap (65), and dbSNP (71) using a set of SAS programs.
These annotation files are available for download and there is a searchable repository for
genomewide studies in neuropsychiatry at the same site †. All gene names referenced are the
standard names set by the HUGO Gene Nomenclature Committee.

Fisher’s method (74) was used to combine lists of p-values for the same SNPs (e.g., from
different GWAS) or for the same haplotypes (i.e., from AFR and EUR subjects in this

GWAS). The test statistic for K independent p-values is. .

Project Context
A list of completed and proposed genotyping projects using the CATIE samples is available
on-line ‡. Future manuscripts using these GWAS data will investigate copy number
variation and genetic influence on treatment response, tardive dyskinesia, and
neurocognition. The NIMH controls are being used in multiple other projects.

Results
Sample Description

Table 1 presents descriptive data for cases and controls. Cases and controls were well-
matched for age and ancestry but not for sex (due to insufficient numbers of African-
American males in the control pool as described in the Methods). There were large
differences between cases and controls in education, marital status, and employment
consistent with the adverse effects of a chronic mental illness with onset in early adulthood.
Cases had been ill for a mean of 14 years and the mean PANSS scores (75) are consistent
with a moderately ill sample. As described previously (76), CATIE subjects who provided
DNA samples had lower symptom severity (PANSS total 74 vs. 77), lesser current drug/
alcohol abuse/dependence (29% vs. 36%) and less likely to describe themselves as African-
American (29% vs. 40%) in comparison to CATIE subjects who did not provide a DNA
sample.

SNP Description
The analysis SNP set had 492,900 SNPs including 484,664 autosomal SNPs, 8,084 SNPs on
chrX, 143 SNPs on chrXY/PAR1, 9 SNPs on chrY, and 0 SNPs on PAR2 and chrM
(mitochondrial DNA). Table 2 depicts summary missingness and MAF estimates from the
GWAS analysis set in the entire sample and separately for cases and controls; on average
across the genome, SNP missingness appears to be acceptably low. The average marker
density over the genome was 1 SNP every 6.2 kb (=3,077,088,087 bases / 492,900 SNPs).
The median inter-marker distance was 2.8 kb with an interquartile range 0.8–7.1 kb and the
99th percentile was 39.7 kb.

†https://slep.unc.edu/evidence (downloads tab, accessed 28JUN2007)
‡https://slep.unc.edu/evidence (downloads tab, accessed 02OCT2007)
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Single Marker Association Tests
We used logistic regression to test for association of the 492,900 SNPs in the GWAS dataset
with case/control status (with seven principal components (44) included as covariates to
account for population stratification). The minimum p-value obtained was 1.71 × 10−6.
There were 26,738 p-values <0.05 – six p-values in the 10−6 bin, 42 in the 10−5 bin, 486 in
the 10−4 bin, 4,845 in the 10−3 bin, and 21,359 in the interval [0.01–0.05). The GWAS
results are depicted in Figure 1. Panel A shows the QQ plot (77) for GWAS for case-control
status. The QQ plot suggests that the observed p-values do not strongly depart from the p-
value distribution expected by chance. Panel B shows the −log10(p) for the 26,738 p-values
< 0.05 (5.425%) in the context of the human genome in order to make spatial clustering
evident. To facilitate comparisons with other datasets, inclusion in meta-analyses, and
further investigation of these findings, all p-values are available in Supplemental Table 2
and the data used to create Figure 1b are contained in Supplemental Table 3. SNPs that
failed quality control are contained in Supplemental Table 4.

For an FDR threshold of 0.10, the proportion of all SNPs without true effects (p0) can be
estimated from the GWAS results (60) and was found to be p0= 0.9999904. This result is
consistent with the presence of ~5 SNPs with true effects in these GWAS data for SCZ. Q-
values were calculated for all p-values under the conservative assumption that p0=1, and no
SNPs reached genomewide significance as the minimum q-values of 0.45 (rs10911902 and
rs16977195) did not exceed the pre-specified FDR threshold of 0.10 (Table 3). Nearly
identical results were obtained using p0=0.9999904 (data not shown).

Additional data about the SNPs with the 25 smallest p-values are shown in Table 3. First,
the allele frequency differences between CATIE AFR and EUR subjects were generally
similar (median difference 0.09, inter-quartile range 0.05–0.25) suggesting that one
precondition for population stratification artifacts was not universally met. Moreover, the
SNP with the greatest MAF difference (rs297257, |MAFAFR-MAFEUR|=0.49) yielded
similar odds ratio estimates in AFR and EUR subjects (0.73 and 0.71) despite the allele
frequency difference. Second, critically, the odds ratios in Table 3 were generally of similar
direction and magnitude for the overall sample (including seven principal components) as
well as in logistic regressions without covariates for AFR and EUR subjects separately (note
that significance tests were not conducted for the stratified logistic regressions). There was
one exception as noted in Table 3 (rs4568102). These findings support the approach to
population stratification control used here, and suggest that the overall odds ratios were
generally unlikely to be caused by stratification artifacts despite different allele frequencies
in subjects of EUR and AFR ancestries.

Third, SNP allele frequencies in CATIE were reassuringly similar to those in the HapMap
panels with the possible exception of three chrX SNPs in CATIE AFR subjects. Fourth,
some results in Table 3 may be problematical due to lack of robustness of odds ratio
estimates for uncommon alleles (rs4846033, rs4568102, rs16917897, rs16977195,
rs10521865), sub-optimal performance of the calling algorithm upon manual review
(rs1380272, rs16917897, and rs17070578), and differential missingness in cases and
controls (rs10521865). The existence of a high LD “proxy” SNP that also shows association
reduces the chance of a false positive due to genotyping artifact.

Fifth, most of the top 25 findings were not located within the transcript of a known gene
and, for the 11 genes listed in Table 3, searches of PubMed and SZGene identified no
published studies of schizophrenia although prior linkage studies implicated these genomic
regions. Sixth, two pairs of SNPs in the top 25 were located near one another and two
additional SNPs clustered with over 10 SNPs that were nominally significant and in
relatively close proximity. Finally, Table 3 also presents SNP annotations; two SNPs were in
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copy number variant regions, one SNP was modestly conserved, one SNP was in a predicted
transfactor binding site, and 17 of the top 25 SNPs were predicted to be in regions with
regulatory potential.

Spatial clustering of SNPs with significant associations may be an indication that a genomic
region does not represent a spurious finding, particularly if the degree of linkage
disequilibrium is not very high. As a descriptive approach prior to multi-marker analyses,
SNP clusters with p-values <0.05 and with distances to the next significant marker ≤15 kb
were identified. For the 26,738 SNPs with p-values <0.05, 11,638 occurred in isolation, and
there were 4,427 clusters containing 2–4 SNPs, 550 clusters containing 5–9 SNPs, 60
clusters containing 10–14 SNPs, and 12 clusters containing 15–22 SNPs. Additional data
about the latter set of clusters (15–22 SNPs, p<0.05, and inter-marker distances of ≤15 kb)
are shown in Table 4. The overlap of the genes in these regions with genes previously
studied for SCZ is limited to a single study of FMO3 (78). Several regions would appear
intriguing, particularly chr7:31,322,276-31,375,664 and chr18:49,714,826-49,774,618.

Positive Controls & Bioinformatic Comparisons
It is highly desirable to compare GWAS findings to “positive controls” (i.e., genomic
regions with very strong prior evidence for association like APOE*ε4 and Alzheimer’s
disease (79) or FTO/intron 1 and body mass index (15)). At the time of this writing in
10/2007, there are no such regions for SCZ although there are a few genomic regions with
multiple positive but inconsistent findings.

First, the GWAS platform used here had at least one SNP in 25,287 “known genes” (80).
The median number of SNPs per gene was 4, inter-quartile range 2–11, and range 1–1,088.
The number of SNPs per gene is strongly related to gene size (Spearman ρ=0.79) meaning
that larger genes have more SNPs on average.

Second, the GWAS findings were compared to a list of 525 candidate genes for SCZ that
had been investigated at least once in a published report †. This list includes studies with
positive or negative findings and thus represents candidate genes that at least one set of
investigators believed to be relevant to the etiology of SCZ. The number of studies per gene
varied widely – from 302 genes studied in single reports to genes that had been studied >50
times (52 reports for HTR2A, 57 reports for DRD2, 65 reports for DRD3, and 68 reports for
COMT). In the GWAS results, there were 534 SNPs with p-values <0.001 (an arbitrary
choice) that implicated 249 genes (one SNP could be located in multiple genes) – of these,
only 6 (2.41%) had been the subject of a prior study (ARMC3, CACNA1A, FEZ1, NRG1,
PIWIL2, and VDR). Although a GWAS platform can provide very good or excellent
coverage over the genome on average, there may be important candidate genes with sub-
optimal SNP coverage. Of the 525 candidate genes previously studied in the literature, 84
genes had no SNPs that passed quality control, including eight genes that had been studied
in ≥10 reports (APOE, CNTF, CYP2D6, DRD1, DRD4, GRIN1, TH, and TNF).

Third, we focused more closely on a consensus set of 15 candidate genes for SCZ with the
best evidence of association – 12 candidate genes were selected from a review (8), CSF2RA
and IL3RA were from a published SCZ GWAS (23), and PLXNA2 was from a large-scale
candidate gene study for SCZ (81) (Table 5). Of the 249 genes with one or more p-values
<0.001 in this GWAS, only 1 was on this list of 15 candidate genes (NRG1). Although the
GWAS platform we used had generally good coverage across the genome (1 SNP/6.2 kb on
average), six of these 15 genes had inadequate coverage and nine genes had SNP densities

†http://www.schizophreniaforum.org/res/sczgene (accessed 28JUN2007)
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better than the GWAS average (2.2–5.0 SNPs/kb). For this subset of the GWAS data, the
proportion of SNPs without true effects (p0) (60) was estimated at 0.997 for an FDR
threshold of 0.10 and the minimum q-value was 0.30. In comparison to all GWAS SNPs,
these results suggest that these candidate regions may be enriched for genetic variants
influencing susceptibility to SCZ.

None of the results in Table 5 survive FDR multiple comparison correction. Nonetheless, we
investigated a few of these results further (Supplemental Figure 7). Of the 146 SNPs in the
vicinity of DISC1 (minimum p-value 0.001), the significant findings clustered around the
chr1 (1;11) (q42;q14.3) translocation break point (13) as follows: rs2738875 (p=0.001) – 5.0
kb – translocation break point – 3.0 kb – rs11122342 (p=0.62) – 0.6 kb – rs6672782
(p=0.016) – 0.1 kb – start of haplotype HEP1 – 0.8 kb – rs11588937 (p=0.83) – 8.6 kb – end
of haplotype HEP1 – 8.0 kb – rs12744978 (p=0.048). These data are not conclusive, but the
locations of the significant DISC1 SNPs coincide very closely with the DISC1 breakpoint
(13) and the HEP1 haplotype implicated in the etiology of SCZ (82) and reduced prefrontal
cortex gray matter density (83). Of the 401 SNPs in the vicinity of NRG1 (minimum p-value
0.0009), there were 15 SNPs (6 with p<0.05 including the most significant NRG1 SNP,
rs16879809) in a cluster at the 3’ end of NRG1. This cluster was 875 kb from the 5’ portion
of NRG1 that been of particular interest (9, 84, 85). Three of 53 SNPs in the “HapIce”
haplotype (9) had p-values between 0.01–0.05. The SNP rs6994992 (84, 85) was not
genotyped in this GWAS but had been done in these samples previously: rs6994992 was
weakly associated with SCZ but in the opposite direction than has been reported (86). Of the
13 SNPs in the vicinity of COMT, two consecutive exonic SNPs 1 kb apart both had p=0.02.
These were rs4633 (synonymous) and rs4680 (val158met) which has been widely studied as
a genetic risk factor for SCZ and other disorders (87). Finally, of the 84 SNPs in the vicinity
of PLXNA2, the significant SNPs were 80 kb away from those highlighted in the initial
report (81) and whose most notable SNP (rs752016) was not significant in this GWAS
(p=0.90). It is important to stress that none of these findings met genome-wide significance
and the overlap with prior studies could have been merely due to chance.

Fourth, these findings were compared with the findings of two published GWAS. The
Affymetrix 500K “A” chips were also used in these studies facilitating direct comparisons.
For a SCZ GWAS (23), the list of p-values was not available from the authors but the most
significant association was for the PAR1 SNP rs4129148 (P= 3.7×10−7) (23). This finding
was not replicated in the CATIE GWAS (p=0.41). Indeed, only 5 of 143 SNPs in the
pseudo-autosomal region had association p-values <0.05 (none within 600 kb of rs4129148)
and there were no pseudo-autosomal region p-values <0.001. In comparing the CATIE
GWAS with the Wellcome Trust bipolar disorder GWAS (18), the QQ plot for the 370,216
common to both studies is shown in Supplemental Figure 8. This comparison was motivated
by suspicions that SCZ and bipolar disorder might share etiological genetic risk factors;
however, there was no substantial divergence of the observed from the expected p-value
distributions.

Multi-Marker Analyses
The QQ plot for combined p-values from genomewide multi-marker analyses conducted on
AFR and EUR subjects is shown in Supplemental Figure 9; there was no marked deviation
of the observed from the expected p-value distributions. Moreover, there was no overlap of
the 12 genes listed in Table 5 or the 525 genes that have been investigated in studies of SCZ
with the 100 haplotypes with p<0.001.
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Discussion
The present genomewide association study (GWAS) for schizophrenia (SCZ) had multiple
notable features. It is the second published GWAS for SCZ, and the first for which all
individual genotype and phenotype data were made available to the research community
under an “open source” philosophy.

Moreover, this project was conceptualized from the beginning as a two-stage study (56, 88).
The present report constitutes the first stage and, as anticipated, there are no “slam-dunk”
findings that meet genomewide significance; however, it is very possible that there exist true
findings in these results that may not be impressive in any single study but that only emerge
by comparing multiple large GWAS.

It is hoped that the process of gene-finding for SCZ will mirror that of type 2 diabetes
mellitus (T2DM). In 2006, three genes had accumulated strong evidence in support of
association – after the publication of six T2DM GWAS in 2007 (18–22, 89), there are now
eight (and perhaps as many as 11) genes with highly compelling support (90). Notably,
several of the initial T2DM GWAS had QQ plots very similar to that in Figure 1a (19, 20)
and only after “aggressive data sharing” (22) across studies and additional genotyping in
thousands of additional samples did multiple high confidence findings emerge (90). Indeed,
some of the findings that eventually proved to be highly significant had initial p-value ranks
in the hundreds or even thousands.

Therefore, these data from the CATIE GWAS will be part of an inclusive meta-analysis of
individual phenotype and genotype data from all available SCZ GWAS that will be done in
Q1 2008 under the auspices of the Psychiatric GWAS Consortium. It is anticipated that there
will be well over 10,000 cases plus controls available for meta-analysis – particularly large-
scale projects include the GAIN SCZ samples (91) and a consortium lead by Dr. Pamela
Sklar at the Broad Institute). Drs. van den Oord and Sullivan hope to conduct large-scale
Stage 2 genotyping to confirm and refine results from the SCZ meta-analysis. The CATIE
samples are being used for deep re-sequencing of candidate genes under an award from the
Medical Re-sequencing/Allelic Spectrum project supported by the NHGRI and can be used
to discover variants not previously identified.

Additional notable features of this project include that, at the time genotyping was
conducted, the GWAS platform used here had the best genomic coverage for common
genomic variation with r2≥0.8 for 86% of genome in subjects with European ancestry, 79%
for East Asian ancestry, and 49% for African ancestry (92). The CATIE sample was
ascertained from diverse sites across the continental United States in order to accrue a “real-
world” sample of patients in treatment for chronic SCZ (27) and a rich set of phenotypes are
available for all CATIE subjects – i.e., treatment response in a randomized, double-blind
clinical trial (24), multiple assessments of tardive dyskinesia (93), and repeated assessments
of neurocognition (94).

The principal finding of the present study was that no SNP or multi-marker combination of
SNPs achieved genomewide significance. Moreover, there was no important overlap of our
findings with those from published GWAS for SCZ (23) or bipolar disorder (18). However,
some findings with uncorrected p-values <0.05 overlapped with regions of DISC1 and
COMT that have been highlighted in prior studies. Of the 146 SNPs in the vicinity of DISC1
(minimum genewise p-value 0.001), the significant findings clustered around the chr1
translocation break point (13) and the HEP1haplotype implicated in the etiology of SCZ (82)
and associated with reduced prefrontal cortex gray matter density (83). This observation is
bedeviling – these statistical signals could easily be due to chance (even the best finding
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would not survive multiple comparison correction for SNPs in DISC1 alone much less for
the 492,900 SNPs in this GWAS) and yet the location of the signals is intriguing. Whether
the observed overlap is merely due to chance (14) or reflects genetic influences on liability
to SCZ will require the meta-analyses described above.

There are three broad explanations for the pattern of findings observed in this SCZ GWAS.
The first and most optimistic possibility is that there are true findings relevant to the etiology
of SCZ imbedded in these results but that it will require careful and rigorous comparisons
with other GWAS datasets along with additional genotyping in new samples to delineate
true from false positive findings.

Statistical power is a particular concern. The sample size of 738 SCZ cases and 733 group-
matched controls and a genomewide set of 492,900 SNPs provided the capacity to detect
genetic effects of moderate size for reasonably common polymorphisms (i.e., minor allele
frequencies exceeding 10%). True genetic effects influencing case-control status might not
have been detected in this study for reasons predictable from the design of this study. Non-
detection could have occurred if the genotypic effect size was below the detection threshold,
if the effect was located in a genomic region for which there was poor SNP coverage, if the
effect was a genetic variant other than a SNP (e.g., a copy number variant) and if there was
low LD with genotyped SNPs, or in the presence of excessive phenotypic or locus
heterogeneity. Additionally, it is possible that true positive findings could have been
obscured by the use of principal components analysis in this heterogeneous sample
particularly for SNPs in strongly stratified genomic regions.

The second possibility is that there are true genetic effects for SCZ but that assumptions
fundamental to GWAS are incorrect. It is possible that current definitions of SCZ (28, 95)
lack validity. If true, attempting to identify genetic variants associated with “caseness” in a
GWAS may prove fruitless as case classifications based on signs and symptoms are poorly
correlated with genetic etiological factors. It is possible that the fundamental model is
incorrect – GWAS are predicated under the common disease/common variant model
whereby prevalent human diseases are caused by polymorphisms of relatively modest
effects. If SCZ is caused by multiple rare variants (causation due to multiple quite
uncommon genetic variants of very strong effect) (96) then the GWAS design is
inappropriate to the fundamental genetic phenomenon. It is possible that liability to SCZ is
mostly or entirely due to interactions between genomic regions or between genomic regions
and environmental factors and that these must be explicitly modeled in order to be detected.
Each of these instances provides an explanation why true effects were not detected.

Finally, the least optimistic possibility is that, despite the indirect evidence from family,
adoption, and twin studies (4), there exist no true genetic effects causal to SCZ. This option
does not appear consistent with a sizeable body of genetic epidemiological data; however,
data from quasi-experimental studies do not constitute proof of the involvement of specific
genetic variants in the etiopathology of SCZ.

It could prove possible to determine of which of these three possibilities are operative for
SCZ on near horizon. In the meantime, SCZ genetics needs no more false claims (14) –
there is an urgent need to identify replicable findings associated with SCZ. Consistent with
this belief, these analyses have been interpreted with caution and the individual phenotype
and genotype data made available to the scientific community †.

†http://www.nimhgenetics.org (accessed 28JUN2007)
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Results of single-marker association tests of case-control status for 492,900 SNPs. Panel A.
shows the QQ plot (77) of the observed p-values, −log10 (p), versus those expected by

chance, , where p is the asymptotic p-value from the additive test that the
SNP coefficient is zero, i is the rank for each SNP p-value (1=smallest, L=largest), and L is
the number of SNPs. The dashed lines show the expected 95% probability interval for
ordered p-values. Panel B depicts −log10 (p) for the 26,738 SNPs with p-values < 0.05 in the
context of the human genome in order to make spatial clustering more evident.

Sullivan et al. Page 20

Mol Psychiatry. Author manuscript; available in PMC 2014 February 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sullivan et al. Page 21

Table 1

Descriptive data for cases with schizophrenia and controls included in GWAS.

Subject Descriptor Cases Controls Test

Number of subjects genotyped 738 733 -

Mean age in years (SD) † 40.9 (11.1) 41.0 (11.6) F1,1469 =0.09 p=0.77

Proportion male (N) † 0.74 (544) 0.67 (493)

Ancestry proportions (inferred from self-report) †

  African only (N)
  European only (N)
  Other (N)

0.29 (217)
0.57 (417)
0.14 (104)

0.30 (219)
0.56 (411)
0.14 (103)

Proportion with high school degree or more (N) 0.74 (543) 0.93 (684)

Proportion married (N) 0.11 (78) 0.57 (415)

Proportion employed (N) 0.06 (43) 0.75 (548)

Mean years since first antipsychotic prescribed 14.2 (10.8) -

Mean PANSS total score 74.0 (17.2) -

Mean PANSS positive symptom score 17.8 (5.5) -

Mean PANSS negative symptom score 19.9 (6.4) -

†
Matching variable.
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Table 2

Distribution descriptors for missingness and MAF in GWAS SNP set †.

Property SNP Location All subjects Cases Controls

Missingness chr1-22 0.0048 (0.0014–0.0116) 0.0041 (0.0014–0.0108) 0.0041 (0.0014–0.0123)

chrX 0.0082 (0.0027–0.0177) 0.0081 (0.0027–0.0163) 0.0082 (0.0027–0.0177)

PAR1 0.0082 (0.0048–0.0180) 0.0081 (0.0041–0.0149) 0.0082 (0.0041–0.0177)

chrY ‡ 0.0010 (0.0005–0.0039) 0.0000 (0.0000–0.0018) 0.0020 (0.0000–0.0071)

MAF chr1-22 0.212 (0.102–0.347) 0.213 (0.103–0.347) 0.212 (0.100–0.346)

chrX 0.241 (0.121–0.371) 0.241 (0.122–0.369) 0.240 (0.119–0.370)

PAR1 0.240 (0.073–0.372) 0.241 (0.071–0.375) 0.244 (0.073–0.374)

chrY ‡ 0.218 (0.055–0.462) 0.252 (0.052–0.465) 0.181 (0.057–0.456)

†
Data are medians (25th-75th percentiles). MAF=minor allele frequency.

‡
Males only.
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Table 4

Clusters containing ≥15 SNPs (all p<0.05 and inter-marker distances of <15 kb).

Chr. Start End Distance
SNPs in

cluster (all
p<0.05)

SNPs
with

p<0.001
Minimum p RefSeq genes

1 167,784,811 167,850,858 66,047 16 0 1.9E–03 FMO3 FMO6

2 10,878,985 10,902,509 23,524 16 0 2.4E-02 PDIA6

6 4,012,045 4,070,654 58,609 17 1 5.1E-04 PECI C6orf146 C6orf201

6 30,052,958 30,154,225 101,267 22 0 8.4E-03 HLA-A29.1 HCG9 ZNRD1 PPP1R11
RNF39

6 30,429,340 30,500,227 70,887 22 0 3.3E-03 -

6 32,447,818 32,497,626 49,808 15 0 4.2E-03 BTNL2

7 31,322,276 31,375,664 53,388 22 8 1.4E-04 LOC223075 CCDC129

11 126,178,796 126,246,694 67,898 15 0 5.9E-03 KIRREL3

16 80,722,907 80,789,170 66,263 19 1 6.6E-04 MPHOSPH6

18 49,714,826 49,774,618 59,792 19 5 3.4E-05 -

21 24,343,408 24,426,048 82,640 19 0 1.2E-03 -

21 43,307,905 43,360,473 52,568 22 0 5.8E-03 PKNOX1 CBS

Mol Psychiatry. Author manuscript; available in PMC 2014 February 03.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sullivan et al. Page 25

Ta
bl

e 
5

G
W

A
S 

re
su

lts
 f

or
 a

 s
el

ec
te

d 
se

t o
f 

ca
nd

id
at

e 
ge

ne
s 

fo
r 

SC
Z

.

A
de

qu
at

e
co

ve
ra

ge
G

en
e

na
m

e
G

en
e

pr
od

uc
t

G
en

e
si

ze
Si

ze
pe

rc
en

ti
le

N
um

be
r

of
 S

N
P

s

SN
P

D
en

si
ty

(k
b/

SN
P

)

P
-v

al
ue

s
<0

.0
5

P
-v

al
ue

s
<0

.0
01

M
in

im
um

p-
va

lu
e

N
o

A
K

T
1

v-
ak

t m
ur

in
e 

th
ym

om
a 

on
co

ge
ne

 h
om

ol
og

 1
24

,2
50

53
2

12
.1

1
0

0.
03

16

N
o

C
SF

2R
A

co
lo

ny
 s

tim
ul

at
in

g 
fa

ct
or

 2
 r

ec
ep

to
r,

 a
lp

ha
41

,0
89

68
0

-
-

-
-

N
o

IL
3R

A
in

te
rl

eu
ki

n 
3 

re
ce

pt
or

, a
lp

ha
46

,2
20

71
1

46
.2

0
0

0.
41

N
o

P
R

O
D

H
pr

ol
in

e 
de

hy
dr

og
en

as
e 

1
23

,7
72

53
3

7.
9

1
0

0.
02

3

N
o

R
G

S4
re

gu
la

to
r 

of
 G

-p
ro

te
in

 s
ig

na
lin

g 
4

7,
22

8
26

1
7.

2
0

0
0.

84

N
o

Z
D

H
H

C
8

zi
nc

 f
in

ge
r,

 D
H

H
C

-t
yp

e 
co

nt
ai

ni
ng

 8
16

,1
65

43
0

-
-

-
-

Y
es

C
O

M
T

ca
te

ch
ol

-O
-m

et
hy

ltr
an

sf
er

as
e

27
,2

22
56

9
3.

0
2

0
0.

01
6

Y
es

D
A

O
A

D
-a

m
in

o 
ac

id
 o

xi
da

se
 a

ct
iv

at
or

25
,1

68
54

9
2.

8
0

0
0.

12

Y
es

D
IS

C
1

di
sr

up
te

d 
in

 s
ch

iz
op

hr
en

ia
 1

41
4,

45
6

98
99

4.
2

4
0

0.
00

11

Y
es

D
R

D
3

do
pa

m
in

e 
re

ce
pt

or
 D

3
50

,2
00

72
13

3.
9

0
0

0.
31

Y
es

D
T

N
B

P
1

dy
st

ro
br

ev
in

 b
in

di
ng

 p
ro

te
in

 1
14

0,
23

1
91

28
5.

0
0

0
0.

06
4

Y
es

H
T

R
2A

se
ro

to
ni

n 
re

ce
pt

or
 2

A
62

,6
63

77
29

2.
2

0
0

0.
15

Y
es

N
R

G
1

ne
ur

eg
ul

in
 1

1,
12

4,
80

6
99

29
3

3.
8

19
1

0.
00

09
1

Y
es

P
L

X
N

A
2

pl
ex

in
 A

2
21

6,
89

8
95

70
3.

1
4

0
0.

01
3

Y
es

SL
C

6A
4

se
ro

to
ni

n 
tr

an
sp

or
te

r
37

,8
00

65
8

4.
7

0
0

0.
52

Mol Psychiatry. Author manuscript; available in PMC 2014 February 03.


