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Summary
Most existing association tests for genome-wide association studies (GWAS) fail to account for
genetic heterogeneity. Zhou and Pan proposed a binomial mixture model based association test to
account for the possible genetic heterogeneity in case-control studies. The idea is elegant,
however, the proposed test requires an EM-type iterative algorithm to identify the penalized
maximum likelihood estimates and a permutation method to assess p-values. The intensive
computational burden induced by the EM-algorithm and the permutation becomes prohibitive for
direct applications to genome-wide association studies. This paper develops a likelihood ratio test
(LRT) for genome-wide association studies under genetic heterogeneity based on a more general
alternative mixture model. In particular, a closed-form formula for the likelihood ratio test statistic
is derived to avoid the EM-type iterative numerical evaluation. Moreover, an explicit asymptotic
null distribution is also obtained which avoids using the permutation to obtain p-values. Thus, the
proposed LRT is easy to implement for genome-wide association studies (GWAS). Furthermore,
numerical studies demonstrate that the LRT has power advantages over the commonly used
Armitage trend test and other existing association tests under genetic heterogeneity. A breast
cancer GWAS data set is used to illustrate the newly proposed LRT.
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Introduction
Common and complex diseases (or traits) are often genetically heterogeneous in etiologies
(Lander & Schork, 1994; Zhou & Pan, 2009). Some well-known complex diseases with
genetic heterogeneity include asthma, breast cancer (Hall et al., 1990; Wooster et al., 1994;
Turnbull et al., 2010), and diabetes (Hattersley, 1998; Sladek et al. 2010). As in Zhou & Pan
(2009), this paper considers the situation when a complex disease (or trait) is caused by
mutations in multiple unlinked loci, commonly referred to as locus heterogeneity (Ott, 1999;
Abreu et al., 2002; Fu et al., 2006). As a consequence of genetic heterogeneity, the
population of individuals with disease may be decomposed into various latent sub-
populations, each with disease caused by mutations at different loci (or their combinations).
Most of the existing association tests for population-based case-control studies, e.g. GWAS,
are based on comparing the mean genotype scores (e.g. the Armitage trend test) between the
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case and control groups, which are not efficient in the presence of genetic heterogeneity.
Zhou & Pan (2009) showed that it can be beneficial to use methods that account for genetic
heterogeneity for testing association in a case-control study.

Similar to admixture mapping in linkage analysis (Smith, 1963; Abreu et al., 2002; Fu et al.,
2006), Zhou & Pan (2009) proposed a binomial mixture model to account for genetic
heterogeneity and developed a modified likelihood ratio test (MLRT) for a single locus (Fu
et al., 2006). They also consider two methods to combine single-locus-based MLRTs across
multiple loci in linkage disequilibrium to boost power when causal SNPs are not genotyped
(Zhou & Pan, 2009). They illustrated, with a wide spectrum of numerical examples, that the
proposed MLRT tests are more powerful than some commonly used association tests under
genetic heterogeneity. Following Zhou and Pan, we define the genetic score X as the number
of the minor alleles at a single locus for a subject. Zhou and Pan (2009) assumed the genetic
score XH in a healthy control subject follows a binomial distribution, that is

(1)

where  and where θb represents the minor allele frequency
(MAF) on that specific locus of the control subject. On the other hand, under genetic
heterogeneity, the genetic score for a diseased subject, XD, follows a simple two-component
mixture binomial distribution,

(2)

where θ represents the probability of having the minor allele on one chromosome for a
subgroup of cases with disease associated with the minor allele. They adopt a two-step
procedure for parameter estimation. First, a maximum likelihood estimate (MLE) of θb is
obtained based only on the control sample. Then, fixing the estimated θb at its MLE derived
from the control-group data, maximum penalized likelihood estimates of other parameters in
the mixture model are obtained using an EM-type algorithm (Li et al., 2009). Subsequently,
the penalized MLEs from the EM-step are plugged into a likelihood ratio to form a test
statistic to detect the association between the marker genotypes and the disease status.
Finally, they proposed a permutation procedure to obtain the p-value of the association test.

Zhou and Pan’s idea is applicable to an association study for a limited number of candidate
markers, however, there are several challenges in applying their proposed method to
genome-wide association studies (GWAS). First, the computation of their proposed MLRT
for a vast number of SNPs in a typical GWAS would be very intensive. Since the penalized
MLEs are obtained by an EM algorithm for maximization of the penalized mixture
likelihood, there are known complexities and caveats associated with the EM or other
iterative methods for identifying MLEs and penalized MLEs in mixture models including
the challenges in selecting multiple starting points for parameter estimation. Moreover, the
p-value of the MLRT is proposed to be attained by permutation, which is also difficult to
apply directly to detect the SNP-disease association in GWAS with a vast number of SNPs,
where the significance level is usually set to be less than 10−6. In addition, it is widely
believed that complex diseases and traits are caused by interplays of a large number of
genetic loci and environmental risk factors. The simple binomial mixture model with two-
components in equation (2) may be too simple to capture the complex heterogeneity for
many complex diseases. A more general form of binomial mixture model can be written as
follows
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(3)

where η = (ηj)j≤J, ηj = (θj, αj)T, j = 1, …, J, and θi = θj if and only if i = j. In particular, for
many of the complex diseases with genetic heterogeneity, it is likely that J is quite large.
Since it is hard to know the number of the sub-populations J under genetic heterogeneity, it
is desirable to have a new test that is applicable without the need to know the exact value of
J while allowing J ≥ 2.

In this paper, we developed a likelihood ratio test (LRT) for genome-wide association
studies (GWAS) based on the more flexible binomial mixture models in (3). It is widely
believed that complex diseases and traits are caused by interplays of a large number of
genetic loci and environmental risk factors. Thus, we assume that the genetic score in the
case group, XD, follows a general binomial mixture distribution in (3) which allows the
possibility of a large and unknown J. The proposed LRT overcomes the above mentioned
challenges of using Zhou and Pan’s method for testing association of a vast number of SNPs
in a typical GWAS. In particular, we derived the closed-form formula for the likelihood
ratio test statistic even though the maximum likelihood estimates (MLEs) of parameters in
the binomial mixture model are non-regular with loss of identifiability (Liu & Shao, 2003).
We further derived the simple closed-form asymptotic null distribution of the LRT which
avoids the intensive numerical calculations, such as the EM based iterations for
identification of MLEs and the permutations for evaluation of p-values. Additionally, the
LRT can be implemented without the requirement of knowing the number of components J
in the mixture model (3). We conducted extensive simulation studies to show that the LRT
has power advantages over the Armitage trend test (ATT) and some other association tests
under genetic heterogeneity. We applied our test to a real dataset from a breast cancer
GWAS to illustrate that it can achieve a much smaller p-value than some commonly used
tests when there is evidence of genetic heterogeneity. Thus, the proposed LRT might be
used to scan SNPs in GWAS to make novel discoveries by taking account of genetic
heterogeneity.

Method
Notation and set-up

We focus on detecting marker-disease association at a single locus with two alleles A and a,
such as a SNP in a case-control genome-wide association study (GWAS). Suppose m+
controls and n+ cases are sampled from the population. For each SNP, the genotype
frequencies in a case-control study can be summarized as in the following 2 × 3 table.

Let the genetic score XH and XD denote the number of minor alleles, say a, at a single locus
for a healthy control and a diseased case, respectively. It is clear that ΣXH = 2m2 + m1, ΣXD
= 2n2 + n1. Similar to Zhou and Pan’s set-up, we assume that under the null hypothesis, both
XH and XD have the same binomial distribution B2(g, θb) as described in equation (1). As in
Zhou & Pan (2009), XH is assumed to have a binomial distribution under H1. Under the
alternative hypothesis of genetic heterogeneity, we assume XD has a mixture distribution as
described in equation (3). This last assumption is worthy of further comments. On one hand,
it is possible to have J > 2 in equation (3) under H1 both in practice and in theory, thus it is
conceptually desirable to allow J > 2 in equation (3). On the other hand, for likelihood
inference, it is not necessary to have J > 2 in the model in order to achieve the maximum of
the likelihood because the model is actually saturated with J = 2. In other words, for a given
dataset, posing a model (3) with J = 2 or with J ≥ 2, the testing results from the LRT are not
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going to be different. In fact, as will be seen in next section, our proposed likelihood ratio
test actually has the “non-parametric” nature because it has a closed-form formula, with a
simple null distribution shown to be valid, thus it will be valid for testing any alternative
models including the common models and those under heterogeneity. In this paper we will
establish that the test is actually a likelihood ratio test under the specified set-up motivated
by the elegant work of Zhou & Pan (2009) and by the fact that the likelihood ratio test has
well-known optimalities in terms of statistical power and efficiency.

Mixture binomial and maximum likelihood
Assuming the set-up in the previous subsection, under H0, using the notation in Table 1 and
denoting the true value of θb as P0, the maximum likelihood estimate (MLE) of P0 for the
overall combined case-control data in Table 1 is

(4)

Thus, the binomial likelihood function for the overall combined case-control data evaluated
at p̂0, L0, is given by

(5)

where  and p̂0 is defined in (4). Following Zhou & Pan
(2009), in the control group, the genetic score XH is assumed to follow a binomial
distribution under the alternative hypothesis, say

(6)

Using the notation in Table 1, the maximum likelihood estimate of PH within the healthy
control group only is given by

(7)

The binomial likelihood function of the healthy controls data evaluated at p̂H, LH, is given
by

(8)

Similarly, in the case group, if the genetic score XD has the distribution B2(g; PD), the
maximum likelihood estimate p̂D of PD within the diseased case group only would be

(9)

However, as in Zhou & Pan (2009), we assume that under genetic heterogeneity, the cases
can be divided into multiple latent sub-populations. Thus, under the alternative hypothesis of
genetic heterogeneity, we assume XD has a mixture distribution as described in equation (3).
It can be shown that (see Appendix 1), using the above notation, the maximum of the
mixture likelihood for XD has an explicit formula:
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(10)

The derivation of the above equation can be found in Appendix 1. It is also clear from the
derivation in Appendix 1 that the mixture likelihood function of the parameter vector η = (θj,
αj)j≤J in the mixture model (3) can have many local maxima due to the lack of identifiability
in parameters (Liu & Shao, 2003). Nevertheless, the supremum of the mixture likelihood LD
for XD has a single unique value for each dataset and can be obtained from the explicit
formula in equation (10). In the typical case-control study design, LD is independent of LH.

The likelihood ratio test
Using the maximum of the likelihood L0, LH and LD in equations (5), (8) and (10),
respectively, we can write down the explicit formula of the log likelihood ratio test statistic
as follows

(11)

No iterative numerical maximization of the mixture likelihood function is needed for the
evaluation of the LRT statistic in (11). Thus the LRT statistic is easy to compute even for
GWAS. It is known that the LRT statistics for testing homogeneity in mixture models often
have complicated asymptotic distributions that typically lack closed-form representations.
However, the above statistic 2λN can be shown to have an explicit form of asymptotic
distribution under the null hypothesis. More specifically, under H0, as n+ → ∞ and m+ →
∞, we have

(12)

where  denotes a chi squared distribution with d degrees of freedom, d=1, 2. Although the
above asymptotic null distribution can be derived from general results such as those in
Chernoff & Lander (1995), Chiano & Yates (1995), or Liu & Shao (2003), an elementary
and detailed direct derivation of the above asymptotic null distribution is given in Appendix
2 for readers who are interested in a direct derivation based on first principles.

It is worth pointing out that our extensive numerical simulations discussed in the next
section indicate that the simple asymptotic null distribution in (12) approximates the exact
finite sample null distribution very well. The asymptotic formula is only slightly
conservative. Therefore, the p-values of the likelihood ratio test can be easily read off from
the above simple closed-form asymptotic null distribution. For example, given any observed
data in Table 1, one can first evaluate the value of 2λN in (11), then can obtain the p-value
using the following simple command in the widely used R-platform:

{pchisq(2λN; 1; lower:tail = F) + pchisq(2λN; 2; lower:tail =
F)}/2.

Last but not least, it is well known that the likelihood ratio test generally has better power
than other ad hoc tests. Thus it should not be a surprise to see that the LRT can be more
powerful than other commonly used tests which ignore the genetic heterogeneity that exists
for many common complex diseases such as breast cancer. Finally, to implement the LRT,
there is no need to identify the exact number of mixture components J in (3), which is
desirable because J is hard to determine in practice.
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Numerical Results
Type I Errors

The LRT has an explicit asymptotic distribution under H0. Consequently, it is convenient to
evaluate the p-value and type I errors. We conducted comprehensive simulations to compare
the empirical type I error of the LRT to the nominal significance level ranging from 10−2 to
10−8. In the Monte Carlo simulations, the genotype data for both the control group and the
case group were generated from the same binomial distribution B2(g; θb), where θb takes
some fixed value P0, which represents the minor allele frequency (MAF). A number of
simulation set-ups, which varied over a range of minor allele frequency and sample size
were selected. The control and case sample sizes are set to be equal. The nominal
significance levels were taken to be 10−2, 10−3, 10−4, 10−5, 10−6, 10−7 and 10−8,
respectively. For each set-up, 1011 samples were generated. We found that the empirical
type I error is slightly smaller than the nominal level, but they are extremely close to each
other. Thus using the asymptotic null distribution for the LRT is valid. For illustration, an
example with θb = 0.4 and sample size n+ = m+ =1000 is shown in Table 2.

Power Comparison
The significance level of the association test is usually set very small for genome-wide
association studies (GWAS). For example, the genome-wide significance level of 5×10−8 is
being increasingly used for arrays that contain one million SNPs. The most commonly used

association tests for GWAS include Armitage’s trend test (ATT) and the  test, both
applicable for testing association in a 2 × 3 table between the case-control status and the
three genotypes, as illustrated in Table 1. Accordingly, we designed simulation studies to

evaluate and compare the powers of the LRT, the ATT and the  test when the significance
level is set to be 5×10−8. Note that, the MLRT of Zhou & Pan (2009) was not included for
comparison due to its severe computational challenge when the significance level is very
small. In the first set of Monte Carlo simulations, the control sample was generated from a
binomial distribution B2(g, θb); the case sample was generated from a two-component
mixture binomial distribution as described in (3) with J = 2:

20000 replicate data sets of n+= m+= N controls and cases were simulated for each of the
eight simulations set-up and the empirical power for each test are shown in Table 3. The
simulation results indicate that the LRT has power advantage over the Armitage trend test

(ATT) and the  test under genetic heterogeneity.

Similar power advantages of the LRT over other tests are also observed when the alternative
mixture model has three components (J = 3) as demonstrated in Table 4 where θ3 for the
cases is set as equal to θb for the control group.

Note that the Armitage trend test (ATT), also called Cochran-Armitage trend test (CATT)
by many researchers, has good power only when the disease risk of the genotypes AA, Aa,
aa is monotone increasing or decreasing under the alternative hypothesis (Armitage, 1955;
Freidlin et al., 2002). Thus, ATT can have very low power when there is a violation of a
linear trend in the disease risk across the ordered genotypes AA, Aa and aa, as in the case of
both set-ups #3 and #5 in Table 3.
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It is clear from the power simulations across the multiple simulation set-ups that the LRT

can be much more powerful than the commonly used Armitage trend test (ATT) and the 
test in GWAS in the presence of genetic heterogeneity.

A Breast Cancer GWAS
Breast cancer is the most common cancer among women. Many genes on different
chromosomes that underlie breast cancer have been identified including many well-known
studies conducted two decades ago (Hall et al., 1990; Wooster et al., 1994). Many more
genetic variants underlying breast cancer are still being discovered nowadays, thus there is
little doubt about the existence of genetic heterogeneity in the case of breast cancer. For
illustration, we applied the newly proposed likelihood ratio test to a breast cancer GWAS
dataset. In particular, Turnbull et al. (2010) conducted a genome-wide association study to
identify breast cancer susceptibility alleles. They studied 582886 SNPs in 3659 breast cancer
cases and 4897 controls in the first stage, and evaluated promising SNPs that were identified
in Stage 1 in a second stage with 12576 cases and 12223 controls. In the paper they reported
five new susceptibility SNPs with summary genotype data of the five SNPs made publicly
available. A literature search indicates that four of the five SNPs (rs1011970, rs10995190,
rs704010 and rs614367) have been independently confirmed by other studies since the
publication of their GWAS results in 2010 (Lambrechts et al., 2012; Peng et al., 2011). We

evaluated the p-values of the LRT, Armitage trend test (ATT) and  test for these four
SNPs for comparison. The results are summarized in Table 5.

Note that for the SNP rs10995190 and SNP rs614367, the p-values are smaller than the
genome-wide significance level 5 × 10−8 for the newly proposed LRT and the ATT, and for
each of the two stages. The performance of the LRT is as good as or better than the other
two tests. In particular, the LRT has an extremely small p-value 6 × 10−15 for Stage 2 data of
SNP rs614367 showing statistical significance at even lower levels. It is thus not surprising
that these SNPs are independently replicated by other GWAS. For the SNP rs704010 and
SNP 1011970, a simple combined p-value (for combining the two stages), e.g. Fisher’s meta
p-value, indicates both SNPs are significant even using the genome-wide significance level
5 × 10−8 for all three tests. The newly proposed LRT is also very competitive for these two
SNPs. For example, for the Stage 1 data of SNP rs704010, only the p-value of the LRT is
smaller than the genome-wide significance level 5 × 10−8. As an indication of overall
strength of the test, Fisher’s meta p-value of the LRT from the combined Stages 1 and 2 is
smaller than those of the other two tests, and the LRT is clearly the most competitive test
among the three competitors. This example indicates the potential value of the proposed
LRT for GWAS data to detect association of complex diseases where the presence of
genetic heterogeneity is always a possibility.

Discussion
In the analysis of GWAS data, potential latent genetic heterogeneity has been largely
ignored by researchers. Zhou & Pan (2009) first proposed mixture models to account for
genetic heterogeneity. However, for the analysis of a vast number of SNPs in GWAS, the
MLRT of Zhou and Pan has major computational challenges. In this paper, using a more
general binomial mixture model, we have derived a likelihood ratio test for case-control
association studies that improves the MLRT by Zhou and Pan on computational efficiency
and multiple other aspects. In particular, the likelihood ratio test statistic has a simple
closed-form formula, which could avoid intensive computation, such as the EM algorithm
for penalized maximum likelihood estimates. Additionally, we have derived an explicit
asymptotic null distribution for the proposed LRT, which is convenient to obtain p-values
even at a small significance level. Moreover, to perform the LRT, there is no need to decide
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the exact number of mixture components, which is convenient in practice. Therefore, the
new LRT has computational advantages over the MLRT proposed by Zhou and Pan and is
suitable for scanning SNPs in GWAS data.

As demonstrated by our numerical studies, in the presence of genetic heterogeneity, the LRT

can be much more powerful than either Armitage’s trend test or the  test, both of which
are among the most widely used tests in GWAS. Given that most complex diseases are
widely believed to be polygenic and have environmental components, genetic heterogeneity
is a hallmark of complex diseases. As illustrated using the GWAS data for breast cancer,
newly proposed LRT can be easily used for any GWAS data, thus researchers can use the
simple algorithm to scan their SNPs as a cost-effective way to potentially make novel and
important discoveries using existing data already collected in the large number of GWAS.
Given that there are already about 1000 published GWAS, and many more genome-wide
studies are being planned and conducted, the new LRT has the potential to become one of
the useful tests to scan the SNPs in these GWAS, maybe as a secondary analysis to account
for genetic heterogeneity. Thus the new user-friendly LRT can potentially be used to
increase the impact of existing and future genome-wide association studies.

Acknowledgments
This research is partially supported by the NIH Cancer Center Supporting Grant to NYU (2P30 CA16087), and the
NIEHS Center Grant to NYU (5P30 ES00260), as well as a Stony Wold-Herbert Foundation grant to YS. The
authors would like to thank the reviewers for insightful suggestions that lead to improvement of the paper.

References
Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955; 11:375386.

Abreu PC, Hodge SE, Greenberg DA. Quantification of type I error probabilities for heterogeneity lod
scores. Genet Epidemiol. 2002; 22:156–169. [PubMed: 11788961]

Bickel, PJ.; Doksum, KA. Mathematical Statistics: Basic Ideas and Selected Topics. Vol. Vol I. New
Jersey: Prentice Hall; 2000.

Chernoff H, Lander E. Asymptotic distribution of the likelihood ratio test that a mixture of two
binomials is a single binomial. J Statist Plann Inference. 1995; 43:19–40.

Chiano MN, Yates JRW. Linkage detection under heterogeneity and the mixture problem. Ann Hum
Genet. 1995; 59:83–95. [PubMed: 7762986]

Emigh TH. A comparison of tests for Hardy-Weinberg equilibrium. Biometrics. 1980; 36:627–642.

Freidlin B, Zheng G, Li Z, Gastwirth JL. Trend tests for case-control studies of genetic markers:
power, sample size and robustness. Hum Hered. 2002; 53:146–152. [PubMed: 12145550]

Fu Y, Chen J, Kalbfleisch JD. Testing for Homogeneity in Genetic Linkage Analysis. Stat Sinica.
2006; 16:805–823.

Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset
familial breast cancer to chromosome 17q21. Science. 1990; 250:1684–1689. [PubMed: 2270482]

Hattersley AT. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic
heterogeneity. Diabet Med. 1998; 15(1):15–24. [PubMed: 9472859]

Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994; 265:2037–2048. [PubMed:
8091226]

Lambrechts D, Truong T, Justenhoven C, Humphreys MK, Wang J, Hopper JL, Dite GS, Apicella C,
Southey MC, Schmidt MK, et al. 11q13 is a susceptibility locus for hormone receptor positive
breast cancer. Hum Mutat. 2012; 33(7):1123–1132. [PubMed: 22461340]

Li P, Chen JH, Marriott P. Non-finite Fisher information and homogeneity: an EM approach.
Biometrika. 2009; 96:411–426.

Liu X, Shao Y. Asymptotics for likelihood ratio tests under loss of indentifiability. Ann Stat. 2003;
31:807–832.

Qian and Shao Page 8

Ann Hum Genet. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ott, J. Analysis of Human Genetic Linkage. Third Edtition. Baltimore: The John Hopkins University
Press; 1999.

Peng S, L B, Ruan W, Zhu Y, Sheng H, Lai M. Genetic polymorphisms and breast cancer risk:
evidence from meta-analyses, pooled analyses, and genome-wide association studies. Breast
Cancer Res Treat. 2011; 127(2):309–324. [PubMed: 21445572]

Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S,
Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner
BI, Balding DJ, Meyre D, Polychronakos C, Froguel P. A genome-wide association study
identifies novel risk loci for type 2 diabetes. Nature. 2010; 445:881–885. [PubMed: 17293876]

Smith CA. Testing for heterogeneity of recombination fraction values in Human Genetics. Ann Hum
Genet. 1963; 27:175–182. [PubMed: 14081488]

Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S,
Healey CS, Hughes D, Warren-Perry M, Tapper W, Eccles D, Evans DG, Hooning M, Schutte M,
van den Ouweland A, Houlston R, Ross G, Langford C, Pharoah PD, Stratton MR, Dunning AM,
Rahman N, Easton DF. Breast Cancer Susceptibility Collaboration (UK). Genome-wide
association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010; 42:504–
507. [PubMed: 20453838]

Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill
D, Fields P, Marshall G, Narod S, Lenoir GM, Lynch H, Feunteun J, Devilee P, Cornelisse CJ,
Menko FH, Daly PA, Ormiston W, McManus R, Pye C, Lewis CM, Cannon-Albright LA, Peto J,
Ponder BAJ, Skolnick MH, Easton DF, Goldgar DE, Stratton MR. Localization of a breast cancer
susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994; 265:2088–2090. [PubMed:
8091231]

Zhou H, Pan W. Binomial Mixture Model-based Association Tests under Genetic Heterogeneity. Ann
Hum Genet. 2009; 73:614–630. [PubMed: 19725835]

Appendix 1

Derivation of the test statistic of the LRT
To prove our proposed association test is indeed a LRT under the given set-up, we just need
to establish equation (10), that is, when XD follows the mixture distribution in (3),

where p̂D is defined as in equation (9). First we we want to show that when , the
maximum likelihood estimates η̂ of the η in (3) satisfy

(13)

A simple application of Jensen’s inequality yields that, for any η,

(14)

The right-hand side of the above inequality is an upper bound which may not be achievable

in general. However, when , we can show that the equality in (13) is achievable.

In fact, when , there are infinitely many values of the MLE η̂ can make (13) an
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equality. It is straightforward and elementary to verify that one set of solutions for MLE is
given as follows:

As indicated above, θ̂1 can take any values in an interval, thus there are infinitely many sets
of solutions for the MLE. Thus equation (13) is proved. Next we show that when

,

(15)

First, we show that, for any fixed η,

Using the inequality log x ≤ x − 1, we get

It is straightforward to verify that

Therefore, when , and for any η

Finally, it is obvious that
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This finishes the proof (15), thus also (10).

Appendix 2

The asymptotic null distribution of the LRT
Under H0, both XD and XH have the same binomial distribution B2(g; θb). We denote the
true null value for θb as P0. Without loss of generality, we assume 0 < P0 < 1 to avoid P0(1
− P0) = 0 appearing in any denominator. First, we may consider testing H0 : B2(g; P0)
against H0 : B2(g; θb), θb ∈ (0, 1), using only the healthy controls. This is a classic problem,

the likelihood ratio test statistic is well known to have a  distribution. It is well known
that, under H0 : B2(g; P0), the LRT statistic can be written as

(16)

where p̂H = (m2 + m1/2)/m+ is the MLE of θb using only the healthy controls. Similarly, we
may consider testing H0 : B2(g; P0) against H0 : B2(g; θb), θb ∈ (0, 1), using only the

diseased cases. Then, under H0 : B2(g; P0), the LRT statistic has  distribution and can be
written as

(17)

where p̂D = (n2 + n1/2)/n+ is the MLE of θb using only the diseased cases. Similarly, we may
consider testing H0 : B2(g; P0) against H0 : B2(g; θb), θb ∈ (0, 1), using the overall sample
combining both the diseased cases and health controls. Then the MLE for θb = P0 from the
combined sample is p̂0 as defined in (4). The LRT statistic can be written as

(18)

From the above three equations, and the equations (5), (8), (10), we have, when ,

(19)

Denote ρ = n+/(m+ + n+). Then it is straightforward to verify that

and

Denote
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and

Then

(20)

Note that ZH ~ N(0, 1) and ZD ~ N(0, 1) and ZH and ZD are independent. Thus

Therefore, when , we have .

On the other hand, under H0, when , we can first consider testing goodness-of-fit

of H0 : B2(g; P0) using only the diseased cases. The likelihood ratio test statistic has a 
asymptotic distribution and can be written as

(21)

The first term at the right-hand side of the last equality is equivalent to the Pearson’s classic
chi-square statistic (via comparing observed to expected cell frequencies) for testing Hardy-

Weinberg equilibrium which is well-known to have the  distribution (Emigh 1980). Using

the above equations, when , we have

(22)

By equations (19) and (20), from the above equation, we have

(23)

Note that the two terms in the right-hand side of (21) are well known to be asymptotically
independent which, in turn, implies asymptotic independence of the two terms at the right-

hand side of (23). Therefore, when , we have
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Finally, it suffices to show that  as n+ → ∞. Note that, under H0,
(n0, n1, n2) follow a multinomial distribution (n+, π0, π1, π2), where πg = P(XD = g), for g =

0, 1, 2. Let UT be the random vector . Then we have (Bickel & Docksum,
2000)

where

(24)

Let G(U) denote , G(Π) denote . Under H0, then

By the central limit theorem and the multivariate delta method, G(U) has an asymptotic
normal distribution with mean 0. That is

(25)

Thus, under H0, as n+ → ∞,

This finishes the proof of the following convergence in distribution, under H0,

(26)
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Table 1

The genotype frequencies for case-control data of a SNP.

AA aA aa total

case n0 n1 n2 n+

control m0 m1 m2 m+
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Table 5

Comparison of P-values for the four SNPs reported in Turnbull et al. (2010).

SNP Stage LRT P-values ATT P-values χ2 test P-values

rs10995190 Stage 1 7 × 10−9 5 × 10−9 3 × 10−8

Stage 2 2 × 10−8 10−8 2 × 10−8

Fisher P-value 5 × 10−15 2 × 10−15 2 × 10−14

rs614367 Stage 1 6 × 10−10 2 × 10−10 3 × 10−10

Stage 2 6 × 10−15 10−8 6 × 10−8

Fisher P-value 2 × 10−22 10−16 7 × 10−16

rs704010 Stage 1 3 × 10−8 3 × 10−6 7 × 10−7

Stage 2 7 × 10−4 3 × 10−4 4 × 10−4

Fisher P-value 5 × 10−10 2 × 10−8 6 × 10−9

rs1011970 Stage 1 3 × 10−5 9 × 10−6 5 × 10−5

Stage 2 7 × 10−5 2 × 10−4 4 × 10−4

Fisher P-value 4 × 10−8 4 × 10−8 4 × 10−7
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